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Abstract. While RGB is the status quo in machine vision, other
color spaces offer higher utility in distinct visual tasks. Here,
the authors have investigated the impact of color spaces on the
encoding capacity of a visual system that is subject to information
compression, specifically variational autoencoders (VAEs) with a
bottleneck constraint. To this end, they propose a framework—color
conversion—that allows a fair comparison of color spaces. They
systematically investigated several ColourConvNets, i.e. VAEs
with different input–output color spaces, e.g. from RGB to CIE
L∗a∗b∗ (in total five color spaces were examined). Their evaluations
demonstrate that, in comparison to the baseline network (whose
input and output are RGB), ColourConvNets with a color-opponent
output space produce higher quality images. This is also evident
quantitatively: (i) in pixel-wise low-level metrics such as color
difference (1E), peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM); and (ii) in high-level visual tasks
such as image classification (on ImageNet dataset) and scene
segmentation (on COCO dataset) where the global content of
reconstruction matters. These findings offer a promising line of
investigation for other applications of VAEs. Furthermore, they
provide empirical evidence on the benefits of color-opponent
representation in a complex visual system and why it might have
emerged in the human brain. c© 2021 Society for Imaging Science
and Technology.
[DOI: 10.2352/J.Percept.Imaging.2021.4.2.020401]

1. INTRODUCTION
Color is an inseparable component of our conscious visual
perception with an objective utility spanning over a large
set of tasks such as object recognition and scene segmenta-
tion [8]. Consequently, color has become a ubiquitous feature
in machine vision and image processing. Currently, state
of the art and practice in these fields are being dominated
by deep learning methods. Thus, progress in these lines
requires a better understanding of the networks’ underlying
mechanism [3] and the color representation learned by them.

The human color vision is a result of three types of
cone photoreceptors present in the retina [6]. Thus, models
of color perception become defined in a three-dimensional
space. In theory, an infinite number of color spaces could
be formulated and indeed several of them exist in the
literature and industry [55]. RGB color sensors are the
standard in off-the-shelf commercial cameras. This makes
the RGB color space widely used in computer vision and
deep learning applications. We are interested to know
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whether the choice of color representation influences the
capacity of deep networks in visual information processing.
This is a generic endeavor not targeted toward a specific
application. A common real-world physical restriction to all
applications is the bottleneck in information transmission.
Hence, autoencoders are a perfect tool to study this question
given their objective is simply efficient coding under a similar
constraint [50].

To this end, we propose the color conversion framework,
inwhich the input–output color spaces are explicitly imposed
on deep autoencoders (referred to as ColourConvNets).
ColourConvNets learn to compress the visual information
in their bottleneck while transforming the input to output.
Essentially, the output y for input image x is generated
on the fly by a transformation y = T (x), where T maps
input to output. Color conversion offers a framework to
fairly compare the effect of color spaces in a complex visual
system that is driven by optimization. Here, we study the
choice of color conversion on the quality of reconstructed
images, which is an indication of whether the representation
of input–output color spaces impacts the network’s encoding
power.

In this work, we focused on Vector Quantized Vari-
ational Autoencoder (VQ-VAE) [52] due to the discrete
nature of its latent space. We thoroughly studied five
commonly used color spaces by training ColourConvNets
for all combinations of input–output spaces. First, we show
that ColourConvNets with a decorrelated output color space
(e.g. CIE L∗a∗b) convey information more efficiently in
their compressing bottleneck, in line with the presence of
color opponency in the human visual system [5]. This is
evident qualitatively (Figure 7) and quantitatively (evaluated
with three low-level and two high-level metrics). We further
discuss a potential explanation at the level of embedding
vectors linking it to the histogram equalization technique [41]
and the efficient coding theory [4].

2. RELATEDWORK
Various color spaces have been explored in classical com-
puter vision to boost the performance of algorithms. Color-
opponent spaces (e.g. CIE L∗a∗b∗) have been extensively
used in applications of image retrieval [42], color con-
stancy [1], color stabilization [19], color transfer [43], color
naming [40], texture classification [7], edge detection [2] to
name a few. Combinations of intensity, saturation and hue
(e.g. HSV) have also been shown effective in applications
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Figure 1. Left: Exemplary conversions across different color spaces. Right: The schematic view of VQ-VAE ColourConvNets.

such as object recognition [18], skin classification [21], and
object tracking [39]. In general, the fusion of color spaces is
reported to create an optimal feature detector [49].

In comparison to the classical approaches, the utility
of color spaces in deep neural networks (DNNs) is under-
studied. Initial work suggested that non-RGB color spaces
do not boost the performance in the ImageNet dataset [36].
Contrary to this, a fusion of three color spaces (RGB, HSV
and CIE L∗a∗b∗) has improved retinal medical imaging [16].
Similarly, amulti-channel architecture combining three color
spaces (RGB, HSV and YCbCr) has been proposed for
face identification [29]. Integrating six networks of different
color spaces has also been successfully applied to traffic
light recognition [23]. In addition to this, color spaces in
which luminance and chromatic information have separate
channels (e.g. YUV) are in particular helpful in applications
such as picture colorization [30] and style transfer [35]. Last
but not least, the prediction of luminance from chromatic
planes and vice versa has been explored in unsupervised
learning [57].

Color spaces have also been a topic of research in
the efficient coding literature. The choice of color space
influences the degree of image compression and efficient
representation [48]. This has made color conversion a
standard technique in image compression. In certain on-
board systems (e.g. Mars Exploration Rover) the extra
computational cost of finding an optimal space for a set
of images is justified [56]. Consequently, modern image
file formats allow for color-space information to be stored
in their metadata [44]. In the case of the commonly used
JPEG image compression, it has been specifically shown
that RGB is the least and CIE L∗a∗b∗ is the most optimal
color space [37]. Correspondingly, classical learning-based
methods of image compression also use opponency color
spaces (i.e. one luminance and two chromatic channels) [9].
To the best of our knowledge, this finding has not been
thoroughly examined in modern deep autoencoders [24]. As
opposed to classical approaches, current compression studies
rely on the encoder capabilities [51], without applying any
previous color transformation. In this article, we aim to break
this gap by systematically comparing color spaces in the
context of deep autoencoders.

3. COLOR CONVERTING AUTOENCODERS
In this article, we propose a novel unsupervised task of color
conversion: the network’s output color space is independent
of its input (see Figure 1). This is inspired by the human
visual system, in which the sensory and perceptual systems
work in different color spaces. The input to our visual system
is triggered by photoreceptors in the back of the retina.
Hence, the sensory system is defined in the LMS color space
[17]. Before reaching the cortex, this signal is transformed
into a cone-opponent space by the opponent cells present
in the retina and the lateral geniculate nucleus (LGN) [12].
Behavioral studies suggest that yet another color-opponent
space shapes our perceptual system [54]. Last but not least, it
has been argued that the current color spaces cannot fully
explain the dimension of hue in which colors and objects
are associated [26]. This collection of studies in the literature
suggests that our visual system functions with different color
spaces for distinct goals. A similar observation can be made
for machine vision. While the sensory system is in the RGB
color space (the input to the system), alternative spacesmight
be more efficient for other purposes.

A color space is an arbitrary definition of colors’ orga-
nization in space [27]. Thus, the choice of transformation
matrix T in ColourConvNets is perfectly flexible to model
any desired space,

Cin
T

−−−−→Cout , (1)

where Cin and Cout are the input and output color
spaces. This framework offers a controlled environment
to compare color spaces within a complex visual system.
Here, we compared them in an information encoding
network that is constrained to a bottleneck. This loosely
corresponds to the need for signal compression in the
human visual system due to present physical constraints. An
extension of the proposed framework can encompass other
constraints (such as entropy, energy, wiring, etc.) relevant
to understanding color representation in complex visual
systems. This structure can be further used to compare
the autoencoder’s latent space across color spaces aiming
to decipher the intermediate color representation within
these networks [14]. The proposed framework can also be
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Figure 2. Evolution of losses for VQ-VAEs of K= 8 and D= 128. In each panel, the ColourConvNets have the same output space. Across panels, curves
of the same color have the same input space.

employed in applications, e.g., as an add-on optimization
capsule to any computer vision application [38], or as a proxy
task for visual understanding [30].

3.1 Networks
One fundamental property of neural activity in biological
brains is ‘‘all-or-none’’ [22]. This, in turn, strengthens the
argument of discrete representation [34]. Hence, we studied
a particular class of VAEs—Vector Quantized Variational
Autoencoder (VQ-VAE) [52]—due to the discrete nature of
its latent embedding space, which distinguishes it from other
regimes [24].

VQ-VAE consists of three main components (see the
right panel in Fig. 1):

1. An encoder f (x) that processes the input data x to ze(x)
by non-linear operations;

2. A embedding space {e} ∈ RK×D, with K vectors of
dimensionality D, mapping the continuous ze(x) onto a
sequence of discrete latent variables zq(x) by estimating
the nearest vector ei to ze(x);

3. A decoder g (e) that reconstructs the final output x’ with
a distribution p(x|zq(x)) over the input data.

The loss function L is defined as follows,

L = ‖y− g (e)‖22+‖sg [f (x)] − e‖22+β‖f (x)− sg [e]‖22,
(2)

where y is the target image (i.e. x in the output color space);
sg denotes the stop gradient computation that is defined as
the identity during the forward propagation with zero partial
derivatives during the backpropagation to refrain its update.

The first term in Eq. (2) corresponds to the quality of
the reconstruction image by jointly updating encoder and
decoder. The other two terms align the embedding vector
with the encoder output. The second term only updates the
latent variables (embedding vectors). The third term only
updates to the encoder. The hyperparameter β ∈R regulates
the degree of change for the encoder output. Without a
hyperparameter search, we set β = 0.5 in all conducted
experiments.

3.2 Color Spaces
We explored five color spaces: RGB, LMS, CIE L∗a∗b∗,
DKL and HSV. The standard space in digital imaging is
RGB that represents colors by three additive primaries
in a cubic shape. The LMS color space corresponds to
the sensitivity function of cones in the human eye (long,
middle, and short wavelengths) [17]. The CIE L∗a∗b∗
color space (luminance, red-green and yellow-blue axes) is
designed to be perceptually uniform [10]. The DKL color
space (Derrington–Krauskopf–Lennie)models the opponent
responses of rhesus monkeys in the early visual system
[12]. The HSV color space (hue, saturation, and value) is
a cylindrical representation of the RGB cube designed by
computer graphics.

The input–output to our networks can be in any
combination of these color spaces. Effectively, our VQ-VAE
models, in addition to learning efficient representation, must
learn the transformation function from their input to output
color space. It is worth considering that the original images
in explored datasets are in the RGB format. Therefore, one
might expect a slight positive bias toward this color space
given its gamut defines the limits of other color spaces.

4. EXPERIMENTS
4.1 Training Procedure
We trained several instances of VQ-VAEs with distinct sizes
of embedding space {e} ∈ RK×D. The training procedure
was identical for all networks: trained with Adam optimizer
(lr = 2 · 10−4) for 90 epochs. To isolate the influence of
random variables, all networks were initialized with the
same set of weights and an identical random seed was
used throughout all experiments. We used the ImageNet
dataset [13] for training. This is a visual database of
object recognition in real-world images, divided into one
thousand categories. The training set contains 1.3M images.
At each epoch, a subset of 100K samples was exposed
to networks. Input images were of size 224 × 224 in
three color channels. Figure 2 reports the progress of loss
function for all ColourConvNets with an embedding space
of size {e} ∈ R8×128. A similar pattern of convergence
can be observed in all trained networks suggesting that
the optimization is a fair comparison across different
input–output color spaces.
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Figure 3. Low-level evaluation for embedding spaces of different sizes. Lower values of color difference and higher values of PSNR and SSIM indicate
higher quality of the reconstruction.

Figure 4. High-level visual task evaluation. ResNet50’s classification accuracy on reconstructed images of ImageNet and FPNS’s segmentation IoU on
reconstructed images of COCO.

4.2 Evaluation Protocol
To increase the generalization power of our findings, we
evaluated all networks (without any fine-tuning) on the
validation set of three benchmark datasets: ImageNet (50K
images), COCO (5K images), and CelebA (∼20K images).
COCO is a large-scale dataset for object detection and scene
segmentation in natural images [32]. CelebA contains facial
attributes of celebrities [33]. The types of images in CelebA
dataset (close-up faces) rarely appear in the train set of our
networks (i.e. ImageNet). We relied on two classes of evalua-
tion: low level, capturing the local statistics of an image; high
level, assessing the global content of an image (For repro-
duction, the source code and experimental data are available:
https://github.com/ArashAkbarinia/DecomposeNet).

4.2.1 Low-level Evaluation
We computed three commonly used metrics to measure
the pixel-wise performance of networks: (i) the color
difference CIEDE2000 (1E) [47], (ii) peak signal-to-noise
ratio (PSNR), and (iii) structural similarity index measure
(SSIM) [53]. These metrics are often used in the literature
of image quality assessment. Lower values of1E and higher
values of PSNR and SSIM indicate better performance.

4.2.2 High-level Evaluation
Pixel-wise measures are unable to capture the global content
of an image and whether semantic information remains
perceptually intact. To account for this limitation, we per-
formed a procedure similar to the standard Inception Score
[46]: feeding the reconstructed images into two pretrained
networks (without fine-tuning) that perform the task of
object classification, ResNet50 [20], and scene segmentation,
Feature Pyramid Network—FPN [25]. ResNet50 and FPN
expect RGB inputs, thus non-RGB reconstructed images
were converted to RGB. The evaluation for ResNet50 is
the classification accuracy on the ImageNet dataset. The
evaluation for FPN is the intersection over union (IoU) on
the COCO dataset.

4.3 Embedding Size
We first evaluated the influence of embedding size for
four regimes of ColourConvNets whose input color space
is the original RGB images. The low-level evaluation for
the ImageNet and COCO datasets is reported in Figure 3.
The most noticeable data point (in all three metrics) is
the poor performance of rgb2hsv with embedding space
{e} ∈ R8×8. This might be due to the circular nature of the
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Figure 5. Low-level pairwise comparison in four color spaces. Figures are averaged over two embedding spaces 8×8 and 8×128. Lower values of
color difference and higher values of PSNR and SSIM indicate higher quality of the reconstruction. The cells are color-coded accordingly.

hue information that cannot be adequately encoded with
low-dimensional vectors (i.e. D = 8). For the smallest and
the largest embedding space, we observe no significant differ-
ences between the four networks. However, for intermediate
embedding spaces (i.e. 8 × 8 and 8 × 128) an advantage
appears for networks whose outputs are opponent color
spaces (DKL and CIE L∗a∗b).

The corresponding high-level evaluation is reported
in Figure 4. The overall trend is much alike for both
tasks. The lowest performance occurs for rgb2hsv across
all embedding spaces. ColourConvNets with an opponent
output color space systematically perform better than
rgb2rgb, with an exception for the largest embedding space
(128 × 128) where they are on a par with each other
(despite the substantial compression, 70% top-1 accuracy
on ImageNet and 60% IoU on COCO). The comparison of
low- and high-level evaluation for the smallest embedding
space (4× 128) demonstrates the importance of high-level
evaluation. Although in the low-level metrics the four
networks perform similarly, in the high-level metrics a large
difference appears among them (compare Fig. 4 versus
Fig. 3). The classification and segmentation performance is
substantially influenced by the choice of color space. Overall,
the results of the embedding size experiment suggest that

when physical constraints demand heavy compression (i.e.
narrow bottleneck) rgb2lab and rgb2dkl autoencoders better
preserve the semantic content of images.

Noise reduction is a primary application of autoen-
coders. Essentially the imposed bottleneck enforces the
system to ignore insignificant information. Correspondingly,
we tested all networks after adding different degrees of
salt-and-pepper noise to the input images. The Colour-
ConvNets with an opponent output space systematically
outperformed the baseline in this experiment as well. While
this does not explicitly indicate better noise reduction in
these networks, it demonstrates that their efficiency is
generalized to out-of-the-distribution conditions.

4.4 Pairwise Comparison
For the two embedding spaces 8 × 8 and 8 × 128 we
conducted an exhaustive pairwise comparison across two
regimes of color spaces: sensory (RGB and LMS) versus
opponency (DKL and CIE L∗a∗b). The HSV color space was
excluded due to the aforementioned reason. Figure 5 presents
the low-level evaluation. ColourConvNets with an opponent
output space clearly perform better across all measures
and datasets. Specifically, in comparison to the baseline
(the rgb2rgb network) both rgb2lab and rgb2dkl obtain
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Figure 6. High-level pairwise comparison in four color spaces: sensory (RGB and LMS) and opponency (DKL and CIE L∗a∗b).

substantially lower color differences, and higher PSNRs and
SSIMs.

The comparison of rows and columns in Fig. 5
suggests that the quality of compression is more influenced
by the output color space in comparison to the input.
Specifically, the poor performance of networks whose output
space is LMS is noticeable. This can be explained by the
high correlation between different channels of the LMS.
Essentially, ColourConvNets struggle to accurately decode
each of those channels separately. This problem does not
occur when LMS is the input color space.

The pairwise high-level evaluation is reported in
Figure 6. In agreement to previous findings, the rgb2lab
network performs best across both datasets and embedding
spaces. Overall, ColourConvNets with an opponent output
space show a clear advantage: rgb2lab and rgb2dkl obtain
5–7% higher accuracy and IoU with respect to the baseline
(the rgb2rgb to network).

4.5 Qualitative Comparison
In addition to the quantitative evaluations reported in the
previous section, the advantage of utilizing a decorrelated
output color space can be appreciated qualitatively. In
Figure 7, we have illustrated five representative examples,

four images from the dataset of natural scenes and one
image from the faces. The Jupyter-Notebook scripts in our
GitHub provide more examples and can be executed for
user-input images. Overall, the perceptual quality of the
image reconstruction in ColourConvNets with an opponent
output space (rgb2dkl and rgb2lab) is visibly higher than
the baseline rgb2rgb. For instance, in the first row of Fig. 7,
the rgb2rgb output contains a large number of artifacts on
walls and ceilings. In contrast, the output of rgb2dkl and
rgb2lab are sharper. This qualitative difference can also be
appreciated on the cabinets of the second row and glasses of
the third row (it is best seen in the digital format with full
resolution). It is challenging to quantify the types of natural
scenes with the greatest advantage for color opponency. This
might be better addressed in amore controlled dataset where
images are generated from a set of predefined reflectance
spectra. Nevertheless, we observed a more prominent effect
under two conditions. First, in uniform regions many times
the rgb2rgb network appears to greatly suffer. For instance,
this is evident from the blue sky in the fourth row of Fig. 7.
Second, in many instances the rgb2rgb fails to faithfully
reproduce the color of an object (see the red cloth in the last
row).
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Figure 7. Qualitative comparison of three ColourConvNets (VQ-VAE of K= 8 and D= 128). The first column is the networks’ input and the other columns
their corresponding outputs. The output images of rgb2dkl and rgb2lab have been converted to the RGB color space for visualization purposes. The
artifacts in rgb2rgb are clearly more visible in comparison to the other ColourConvNets.

5. PERFORMANCE ADVANTAGE
Themain difference between the two regimes of color spaces
(sensory versus opponency) is their intra-axes correlation.
In other words, the extent of information independence in
each of the three channels. The intra-axes correlation for
LMS and RGB is very high, hence referred to as correlated
color spaces. On the contrary, the intra-axes correlations
for CIE L∗a∗b∗ and DKL is very low, hence referred to as
decorrelated color spaces. We computed these correlations
r in all images of ImageNet dataset (100 random pixels per
image). RGB: rRG ≈ 0.90, rRB ≈ 0.77, rGB ≈ 0.89; LMS:
rLM ≈ 1.00, rLS ≈ 0.93, rMS

≈ 0.93; L∗a∗b∗: rL∗a∗ ≈−0.14,
rL∗b∗ ≈ 0.13, ra∗b∗ ≈−0.34; DKL: rDK ≈ 0.01, rDL ≈ 0.14,
rKL ≈ 0.61. In biological visual systems, the retinal signal is
transformed to opponency before being transmitted to the
visual cortex by passing through the physical bottleneck of
optical nerve and LGN. This transformation has been argued
to optimize the efficiency of color signal transmission in the
visual system by reducing redundant information [5].

Interestingly, some works have suggested that deep
networks trained to perform high-level visual tasks learn

to decorrelate their inputs [45]. Here, our results show
a similar phenomenon in deep autoencoders: information
compression is more efficient when a network decorrelates
the input signal. Contrary to this, the ImageNet classification
performancewas reported unalteredwhen input imageswere
explicitly converted from RGB to CIE L∗a∗b∗ [36]. This
might be explained by the lack of bottleneck constraint
in their examined architecture, thus decorrelating color
representation leads to no extra advantage. This matches
the results we obtained with ColourConvNets of the largest
embedding space (128× 128), suggesting that decorrelation
of color signal become beneficial when the system is
constrained in its information flow.

Previous works in the literature [15] have measured
the decorrelation characteristics of color-opponent spaces
in information-theoretical analysis and demonstrated their
effectiveness in encoding natural images. The understanding
of how a complex visual system, driven by an errorminimiza-
tion strategy [28], might utilize these properties at the system
level is of great interest. We hypothesized that an efficient
system distributes its representation across all resources
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Figure 8. Error rate as a function of the distribution of features in the embedding space. A value of zero in the x -axis indicates all embedding vectors are
equally used by the model. Higher values of x indicate that the model relies heavily on certain vectors.

instead of heavily relying on a few components [31]. To
measure this, we computed the histogram of embedding
vectors across all images of the validation set in the ImageNet
(50K) andCOCO (5K) datasets. A zero standard deviation in
the frequency of selected vectors means embedding vectors
are equally used by the network. This can be interpreted as
an indication of well-distributed feature representation in the
system.

Figure 8 reports the error rate as a function of this
measure. A significant correlation emerges in both datasets,
suggesting a more uniform contribution of embedding
vectors enhances visual encoding in VQ-VAEs. To ensure the
obtained correlation is robust, we analyzed the sensitivity of
this correlation by means of two methods. (i) To determine
highly influential points, we performed the Cook’s Distance
[11]. No points surpass the standard outlier threshold
(It = 4

n ). (ii) We performed the Jackknife resampling
technique and systematically computed the correlations after
leaving out each ColourConvNet. The obtained correla-
tions are in the range of [0.59, 0.72] with an average of
0.67± 0.02. Overall, these analyses suggest that there is a
correlation between the distribution of features among the
embedding vectors and the encoding capacity of the network.

Our findings can be linked to two frameworks of
histogram equalization and efficient coding. The neural model
of histogram equalization follows a similar line of reasoning:
the materialization of all intensity values [41]. This is
achieved by explicitly minimizing a corresponding term in
an objective function. This is also consistent with the efficient
coding theory for the biological organisms [4], in which
the system distributes its encoded representation across all
response levels with an equal frequency. Here, we observe
a similar phenomenon in VQ-VAEs: ColourConvNets that
better materialize all their embedding vectors obtain higher
quality in image compression.

6. CONCLUSION
We proposed the unsupervised color conversion task to
investigate the efficiency of color representation in deep
networks. Bymeans of this framework, we studied the impact
of color spaces on the encoding capacity of autoencoders,

specifically VQ-VAEs whose feature representation is con-
strained by a discrete bottleneck. The comparison of several
ColourConvNets exhibits advantage for a decorrelated
output color space. This is evident qualitatively andmeasured
quantitatively with five metrics. Our analysis suggests that
this advantage stems from a more uniform distribution of
feature representation in networks’ embedding space, which
is reminiscent of efficient coding and histogram equalization
in biological systems.

We propose two lines of investigation for future works.
First, integrating the choice of color spaces into the
optimization problem, essentially driving the network to
explicitly find the most optimum color space for the visual
task it is learning. This formulation allows a flexible add-on
optimization capsule to any computer vision application.
Second, our findings might contribute to the understanding
of why the brain’s neural network has naturally evolved a
particular type of color vision and perception. To better
investigate this, we propose to include further biologically
motivated constraints (e.g. entropy) on the network. These
configurations would perhaps result in the emergence of
color categories when a visual scene is being efficiently
encoded.
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