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Abstract 
In this study, a large scale experiment was carried out to assess 

the image quality of 2266 images using categorical judgement 

method by 20 observers. These images were rendered in color 

contrast, chroma, colorfulness, lightness, and vividness directions. 

The results were used to derive three No-Reference (NR) Image 

Quality Estimation Models (IQEMs). The first model was based on 

color science, (different scales in CIELAB). The second model was 

a Neural Network model while the third model was a statistics model 

based on color appearance attributes. Their performances were 

evaluated using two databases, those developed at Zhejiang 

University and those available from the public databases in terms 

of correlation coefficients between the objective and predicted 

image quality scores. 

Introduction 
The widely spread use of mobile phones forced the 

manufacturers to increase the quality of their product in every aspect 

to stay in the competition. Mobile phone camera is one key 

component which is expected to produce high quality images. 

Typical methods include by shifting the colors of natural objects 

(skin, sky, grass/trees etc.) to their respective preferred color centers 

based on psychophysical studies, or by changing color saturation, 

contrast or other attributes of the perceptions. In such applications, 

it is necessary to evaluate the image quality, or preference. In such 

cases, a model of image quality is highly desired to estimate the 

quality of an image. 

Image quality estimation can be performed either objectively 

(quality assessment by human observers) or subjectively (quality 

estimation by using computer-based algorithms). Although former 

is reliable to evaluate image quality, it is time-consuming and cannot 

be used where real time quality scores are required. So a robust 

image quality model is highly desired. 

Subjective assessment methods can be divided into three 

categories namely: 1) full-reference [1-6] (to use a reference image 

to calculate differences against a test image to estimate image 

quality), 2) reduced reference (to use a reference image but only few 

or reduced set of features from the reference images are used for 

comparison) and 3) no-reference [7-17] (to perform the desired task 

of image quality estimation without using a reference image). 

Some no-reference IQEMs focus on detecting predefined 

distortions present in the images like jpeg distortions detection [7] 

and blurring artifacts detection [8], the intensity of the detected 

distortions contributes inversely to the image quality, i.e. the greater 

intensity of the detected distortions represents lower quality of an 

image.  

Other types of no-reference IQ estimation algorithms are based 

on image statistics by assuming that natural images exhibit 

statistical regularities and when such images are distorted, their 

statistics change accordingly. Moorthy et al. [9] used statistical 

models of wavelet coefficients to train a support vector regression 

(SVR) model to predict the severity of each distortion type present 

in images. Saad et al. [10, 11] trained probabilistic models using 

contrast and statistical features such as Kurtosis and anisotropy in 

the DCT domain. 

Naturalness image quality evaluator (NIQE) by Mittal et al. [12] 

is based on constructing a collection of “Quality-Aware” features 

which are derived from natural scene statistics (NSS) of the pristine 

images. Then these features are fitted to a multivariate Gaussian 

(MVG) model. Image quality of a distorted image is expressed as a 

distance between its MVG model and MVG model of the pristine 

images. Integrated local NIQE proposed by Zhang et al. [13] is 

basically an improved NIQE [12] model which includes three 

additional quality-aware features based on statistics of gradient 

domain features, Log-Gabor filters and color channels in addition to 

the NSS features of NIQE [12]. Additionally, IL-NIQE model 

applied on local image patches. The pooled local quality scores were 

used to calculate a single quality score for an image.  

The algorithm of GM-LOG-BIQA [14] by Xue et al. considers 

image local contrast features in terms of  a gradient magnitude (GM) 

map and the Laplacian Of Gaussian (LOG) response to first employ 

an adaptive joint normalization procedure and then to develop their 

joint statistics by calculating their marginal and the conditional 

distributions. The calculated statistical features were used to train a 

support vector machine-based regression model to predict the image 

quality. The IQ estimation metrics discussed above mainly focused 

on detecting spatial deformations/abnormalities present in an image. 

This implies that they are not suitable for estimating the quality of 

images in color domain. 

Choi et al. [15] carried out a psychophysical study using two 

large displays (a reference and a test display) to predict quality of 

color domain modified images. They proposed an image quality 

model based on contrast, colorfulness and naturalness attributes. It 

was aimed at predicting the change in image quality between the 

reference and test displays. Gong et al. [16] conducted another 

psychophysical experiment on smartphone and tablet displays under 

different lighting environments. The results were used to develop a 

comprehensive model which can predict image quality for different 

viewing conditions. The model considers naturalness and clearness 

attributes for determining the quality of natural scenes and 

colorfulness and clearness attributes for determining the quality of 

non-natural scenes. Although the above models [15, 16] performed 

well on the limited number of evaluated images, they both require a 

reference image to determine the image quality.  

In the author’s previous study [17], a no-reference image quality 

metric for tone-mapped images was proposed which relies on image 

appearance attributes of brightness and naturalness (naturalness was 

calculated using the attributes of colorfulness, contrast and shadow 

details) to predict the quality of tone-mapped images. Although it 

performed reasonably on the evaluated tone-mapped images, the 

model was incomprehensive to predict the image quality, e.g. lack 

of testing images and of psychophysical database testing. 

The goals of the present study were to conduct a comprehensive 

experiment to duplicate the earlier study. The results can be 

analyzed to understand the reliability of visual data. Furthermore, 
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the data were used to develop and test three types of image quality 

models. 

Datasets 
To evaluate the performance of the presented IQEMs, we used 

the most comprehensive dataset. This dataset consists of two 

datasets developed at Zhejiang University and three publicly 

available datasets. We call the datasets as ZJU1 and ZJU2 datasets 

which were developed at Zhejiang University. The ZJU1 dataset 

consists of 19 original images rendered with 8 color modifications 

(activity, chroma, clarity, depth, heaviness, lightness, sharpness and 

vividness) applied at 5 levels, while the ZJU2 dataset consist of 28 

original images rendered with 6 color modifications (chroma, 

clarity, depth, lightness, sharpness and vividness) applied at 5 levels. 

Together they made up for the major portion of the images, i.e. 760 

images for the ZJU1 and 840 images for the ZJU2 datasets. 

Three datasets (CSIQ [18], TID2013 [19] and CID:IQ [20]) 

were collected for IQEMs evaluation. Note only those images 

rendered using color attributes were used from these datasets. For 

the CSIQ [18] dataset, images modified by reduction of the color 

contrast were selected. It consists of 30 original images with contrast 

decrements for 4 levels. The subsets of mean shift, contrast change 

and color saturation rendered images were selected from the 

TID2013 [19] dataset. All the 24 original images were used and one 

laboratory image was discarded. For the TID2013 dataset, 

renderings of mean shift, contrast change and color saturation were 

made at five levels on each original image, together they make 360 

images but 40 color saturation rendered images were removed due 

to color saturation inversion. For the CID:IQ [20] dataset, Minimum 

DE and SGCK Gamut mapped images were selected for use in 

evaluation. The CID:IQ consists of 23 original images and gamut 

mapping was applied at 5 levels on each image. This made up for 

230 test images. In total, 2266 images form the above-mentioned 

datasets that were used for IQEM evaluation, including 760, 840, 

116, 320 and 230 images for the ZJU1, ZJU2, CSIQ, TID2013 and 

CID:IQ datasets, respectively. 

Psychophysical Experiment 
The images from the mentioned datasets in previous section 

were originally evaluated differently, using different devices, using 

different evaluation criteria and under different surround conditions. 

So, a psychophysical experiment under the same viewing conditions 

and by using a similar display was conducted. 

A NEC PW272 display with maximum luminance level set to 

287 cd/m2 was used. Images were displayed in dark surround with a 

neutral gray background. The distance between the observer and the 

monitor screen was fixed at about 80 cm (this roughly correspond to 

22o of viewing field on the display). 

Fig. 1 shows experimental situation. A 6-point categorical 

judgement method was applied for evaluation, where the goal was 

to force the observers to choose good or bad ratings for displayed 

images instead of selecting neutral scores for some difficult to 

decide images. Observers were asked to select image quality rating 

based on the displayed image’s perceptual quality using a slider 

whose value ranges from -3 to +3. Here, -3 corresponds to lowest 

image quality whereas +3 corresponds to highest image quality. 

In total, 29 observers (20 Males and 9 Females, ages ranged 

from 22 years to 36 years) participated in the experiment where all 

the observers performed the Ishihara test for color deficiency prior 

to the experiment. Due to large number of images, the experiment 

was divided into 4 sessions, where each session had roughly equal 

 
Figure 1. Experimental window 

number of images, i.e. 620. In other words, not all the observers 

participated in all sessions. The instructions were given to all the 

observers before starting the experiment about judging the image 

quality in terms of ratings.  

          During the evaluation, 10% of the images were repeated in 

each session to help to understand the observer’s performance. In 

total, 49,840 ((2266 + 10% repeat) *20 observers) image quality 

ratings were obtained from average 20 observers. The raw data 

ranged from -3 to +3 was first shifted and then normalized to the 

range 0 to 1. The data were then used in training and testing image 

quality. 

Experimental Results 
Intra- and inter-observer variability were first calculated using 

STRESS [21] measure. For intra-observer variability, repeated 

images data were used to calculate STRESS values between the 

observer’s image quality ratings. The worst observer had 

STRESS=45, the best observer had STRESS=14 and an average 

value of 23. For inter-observer variability, each observer’s image 

quality ratings were compared with the average observer ratings. 

The worst observer had STRESS=33, the best observer had 

STRESS=16 and an average value of 22. The large STRESS values 

for the worst observers explain the challenging nature of the task of 

image quality evaluation even by human observers. 

The subjective image quality scores obtained from the 

psychophysical experiment were also compared with the scores of 

the original datasets. Fig. 2 shows the present psychophysical data 

being plotted against the original data of the five datasets 

respectively. Table 1 shows their correlations and STRESS values. 

The small scatterings can be attributed to the use of small display 

devices and similar group of observers at ZJU using mobile phone 

display in the ZJU1 and ZJU2 datasets. Note that the present 

evaluation method is different from the pair-comparison method 

used in the TID2013 database. It can be seen that there is a 

consistently higher score for the ZJU2 and CID:IQ datasets scores, 

whereas in the CSIQ datasets, the images get lower scores than their 

original experiment scores. 

Color Science based Image Quality Model  
         The first approach was to develop the image quality model 

based on using the color appearance attributes related to image 

quality. However, some image appearance attributes were proved to 

not have consistent performance over databases. For instance, in the 

Gong’s [16] dataset, chroma was an important attribute in modelling 

the image quality, but unimportant for the other database. Four more 

image attributes, lightness, vividness, depth and clarity were also 
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Table 1: Correlations and the STRESS values between the New 
and Old psychophysical data 

Database R STRESS 

ZJU1 (760 images) 0.65 17 

ZJU2 (840 images) 0.87 12 

CSIQ (116 images) 0.92 14 

TID2013 (320 images) 0.79 14 

CID:IQ (230 images) 0.91 17 

 

 

 
Figure 2. New experiment data plotted against Old/Original data of the 
databases 

analyzed with overall image quality in each individual database. The 

attributes were calculated by following equations. It was found that 

none of above attributes had a correlation coefficient over 0.4.  

𝑣𝑖𝑣𝑖𝑑𝑛𝑒𝑠𝑠 = √𝐿2 + 𝑐2  

𝑑𝑒𝑝𝑡ℎ = √(𝐿 − 100)2 + 𝑐2  

𝑐𝑙𝑎𝑟𝑖𝑡𝑦 = √(𝐿 − 50)2 + 𝑐2  

This rather poor performance could be explained in the following 

reasons. 

 Overall image quality would not have obvious correlations 

with each single attribute since the rendering methods used in 

these databases are complicated and interfere with each other.  

 The rendering attributes are very much image dependent and 

when combining together, the trend will be lost and good 

models would be difficult to include these attributes.  

 The absolute attribute to evaluate the image quality is difficult 

due to the maximum chroma in different color regions are 

different. 

 From the analysis above, the gamut boundary must be 

considered for every pixel. Thus, a set of new relative 

attributes are proposed here corresponding to the gamut ratio, 

including lightness ratio, chroma ratio, depth ratio, vividness 

ratio, and clarity ratio. 

For certain attributes, the computational procedure is to 

increase this attribute of the target pixel until it reaches the gamut 

boundary. Then the end point on the gamut could be regard as a 

reference point. The ratio of target pixel and the end point’s  

 
Figure 3. The calculation procedure of vividness ratio. The blue curve is the 
gamut boundary in the hue page of the target pixel 

attribute will be considered as the relative attribute value. An 

apparent advantage of using the attribute ratio is that it always 

ranges from 0 to 1, which can align the diverged attribute values for 

different images. Also, for different pixel the correlated gamut 

boundary is depending on its hue, therefore the attribute of the pixels 

in different hue can be fairly compared. Fig. 3 explains how to 

acquire the end point and the vividness ratio as an example. 

In addition to the above mentioned five relative attributes, four 

more image attributes were chosen to build the image quality model 

including global contrast, local contrast, naturalness, and 

sharpness. The unmentioned attributes were calculated in following 

equations. 

𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑛𝑒𝑠𝑠 =
1

1+𝑒(𝛥𝐸′−𝛼)
  

𝛥𝐸′ = 𝑘1 ∗ √ (𝑙 − 𝑙0)2 + 𝑘2 ∗ (𝑎 − 𝑎0)2 + 𝑘3 ∗ (𝑏 − 𝑏0)2 + 𝑘4 ∗ (𝑎 − 𝑎0)(𝑏 − 𝑏0) 

𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑚𝑒𝑎𝑛(50% ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑙𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠) − 
𝑚𝑒𝑎𝑛(50% 𝑙𝑜𝑤𝑒𝑠𝑡 𝑙𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠)   
𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡
= 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑖𝑥𝑒𝑙 𝑎𝑛𝑑 𝑖𝑡𝑠 5
∗ 5 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑝𝑖𝑥𝑒𝑙𝑠  

𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠
= 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝐼𝐸𝐿𝐴𝐵 𝑐𝑜𝑙𝑜𝑢𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑓 𝑒𝑎𝑐ℎ 𝑝𝑖𝑥𝑒𝑙 𝑎𝑛𝑑 𝑖𝑡𝑠 5
∗ 5 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑝𝑖𝑥𝑒𝑙𝑠  

 All nine attributes were considered to fit the model in the first 

stage. However, it is not necessary to use all nine attribute pairs 

because of the attributes having analogous calculation method, for 

instance lightness ratio and global contrast, chroma ratio and clarity 

ratio, local contrast and sharpness, etc. 

To reduce the effects of cross terms and simplify the model, 

those attributes which had least contribution to image quality was 

removed. To rank the contribution of all attributes, each attribute 

was removed in turn and the correlation coefficient and STRESS of 

the model with rest of the terms were calculated. A small decrease 

in correlation (or a small increase in STRESS) represents not a 

significant decrease in model accuracy if this attribute is removed, 

indicating the attribute’s lower contribution in predicting image 

quality. Table 2 shows the correlation coefficients (R) and the 

STRESS values. The value in each grid is the prediction accuracy 

when remove this attribute.  

To balance the model accuracy and model complication, 6 

attributes were finally preserved including naturalness, global 

contrast, local contrast, clarity ratio, vividness ratio and sharpness. 

Following equation shows the final model. 

𝐼𝑄 = −0.33 ∗ 𝑣𝑖𝑣𝑖𝑑𝑛𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 + 0.43 ∗ 𝑐𝑙𝑎𝑟𝑖𝑡𝑦 𝑟𝑎𝑡𝑖𝑜 + ⋯ 

                   0.23 ∗ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 − 50.27 ∗ 𝑙𝑜𝑐𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 + ⋯ 

     0.18 ∗ 𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑛𝑒𝑠𝑠 + 0.009 ∗ sharpness + 0.5 
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Table 2: The correlation coefficients and STRESS of the rest 
model when removing an attribute 

 
 

Neural Network based Image Quality Model 
         The second approach is based on Convolutional Neural 

Network (CNN) which we trained to predict the image quality. 

Transfer learning was used from GoogLeNet [22]. We replaced the 

original input R, G, B by 8 color related elements for each pixel, 

including L*, a*, b*, chroma, hue, vividness, depth and clarity, to 

concentrate on the color performance of an image instead of edge 

detection. All images in database were resized to 224×224 pixels, 

therefore the input of the network was a 224×224×8 matrix. And the 

output of the network was the observers’ preference range from 0 to 

1, as mentioned before. Since the target of the network changed from 

object classification to image quality prediction, the responses also 

changed from classes to scores, thus the output layer should be 

modified from a classification layer to a regression layer. The inside 

structure was all preserved and more details could be found in the 

description of GoogLeNet.  

Image Joint Statistics based Image Quality 
Model 

The third IQ model is based on the work of Xue et. al. [14]. 

Fig. 4a shows the graphical representation of the original GM- LOG 

–BIQA [14] model. In their work, the authors utilized two image 

local contrast features, namely Gradient Magnitude (GM) and 

Laplacian of Gaussian (LOG), to calculate their joint statistics. First, 

the two feature maps were normalized jointly, this makes the local 

image contrast scales of the two feature maps consistent across the 

entire image. GM and LOG features describe local image structures 

and interaction between them can help predict the perceptual image 

quality, to achieve this the authors calculated joint statistics of these 

feature maps in terms of marginal and conditional probabilities. 

Since this IQEM predict the quality of images modified in spatial 

domain (noise, blur, compression etc.) with higher accuracy, it’s 

performance on images modified in color domain (contrast, mean 

shift, chroma, lightness etc.) is not very impressive. This motivated 

us to evaluate the usefulness of the color appearance attributes of the 

images to calculate their joint statistical features and test their 

performance on the images modified in color domain. 

Fig. 4b shows the graphical representation of the modified GM- 

LOG-BIQA [14] model where Vividness-Depth (V-D) and 

Brightness-Colorfulness (Q-M) attribute pairs are used. To calculate 

the joint statistical features, the input RGB image is first 

transformed in to XYZ color space by using the display conversion 

model. Image color appearance attributes of brightness (Q) and 

colorfulness (M) were obtained from CAM16-UCS [23] whereas the 

vividness (V) and depth (D) were calculated from the following 

equations by using the attributes of colorfulness (M) and brightness 

(Q) 

V, D = k1√(Q − Q0)2 + k2M2                                                           (1) 

         For vividness 𝑘1 = 0.15, 𝑘2 = 30 & 𝑄0 = 0  whereas for 

depth 𝑘1 = 0.4, 𝑘2 = 1 & 𝑄0 = 300 . After obtaining the image 

color appearance attributes, joint adaptive normalization (JAN) is 

             
                            (a)                                                             (b) 
Figure 4. (a) Design flow of the GM-LOG-BIQA [6] algorithm, b) Design flow of 
the proposed Image Statistical (IS) model 

applied on these attributes using the following equations 

𝐹𝐼(𝑖, 𝑗) = √𝑉2 + 𝐷2 + 𝑄2 + 𝑀2                                                        (2) 

         Then a locally adaptive normalization factor was computed at 

each pixel location (𝑖, 𝑗) 

𝑁𝐼(𝑖, 𝑗) = √∑ ∑ 𝜔(𝑙, 𝑘)𝐹𝐼
2(𝑙, 𝑘)(𝑙,𝑘)∈Ωi,j

                                            (3)    

         Where 𝜔(𝑙, 𝑘)  is a Gaussian kernel scaled to unit sum i.e. 

∑  𝜔(𝑙, 𝑘)𝑙,𝑘 = 1  and Ωi,j  is a local window operator centered at 

each pixel location(𝑖, 𝑗). Normalized features can now be calculated 

as 

�̅� = 𝑉𝐼/(𝑁𝐼 + 𝜀)                                                                            (4) 

�̅� = 𝐷𝐼/(𝑁𝐼 + 𝜀)                                                                            (5) 

�̅� = 𝑄𝐼/(𝑁𝐼 + 𝜀)                                                                           (6) 

�̅� = 𝑀𝐼/(𝑁𝐼 + 𝜀)                                                                           (7) 

         Where 𝜀  is a small constant added to avoid numerical 

instability. After JAN, the remaining steps to calculate marginal and 

conditional probabilities for V-D and Q-M attribute pairs followed 

the same methodology as in original GM-LOG-BIQA [14] model. 

We quantized the visual attributes data into 10 bins (same number 

of bins as used in original model [14]) for calculating probabilities. 

This result in two marginal probability vectors and two conditional 

probability vectors, each of length 10, and combining them together 

returns a feature vector of length 40 for each of the two attribute 

pairs V-D and Q-M. We finally combined the feature vectors of two 

visual attribute pairs (V-D and Q-M) to get a final feature vector 

consisting of 80 entries for a given input image. These features were 

then utilized in training a linear regression model to predict the 

quality of an input image.  

IQEM’s Performance Evaluation 
In order to evaluate the performance of presented IQEMs, we used 

the datasets mentioned in the Datasets section. We trained the 

regression model using the calculated features from the ZJU dataset 

(1600 images) and tested the performance on the independent 

dataset (666 images). For CS and IS model’s features, linear 

regression was used for training while SGDM optimization 

algorithm was utilized for training on the NN model features. 
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Table 3: Correlation R, STRESS, RMSE and MAE values for the 
training and testing datasets for the three IQEMs 

 

Model Data R STRESS RMSE MAE 

CS 

Training  
(1600 images) 

0.50 19 0.24 0.18 

Testing  

(666 images) 
0.58 21 0.21 0.16 

NN 

Training  
(1600 images) 

0.85 16 0.11 0.08 

Testing 
 (666 images) 

0.87 18 0.10 0.07 

IS 

Training 
(1600 images) 

0.79 14 0.09 0.07 

Testing  

(666 images) 
0.62 21 0.16 0.13 

 

   
                    (a)                                           (b)    

Figure 5. The prediction accuracy of color science (CS) model containing 6 
terms for (a) training and (b) testing dataset 

   

                    (a)                                           (b)    
Figure 6. Prediction accuracy of the Neural Network (NN) model for (a) training 
and (b) testing dataset 

   
                    (a)                                           (b)    

Figure 7. Prediction accuracy of the Image Statistics (IS) model for (a) training 
and (b) testing dataset 

Table 3 reported the performance scores in terms of correlation, 

STRESS, RMSE and MAE values for the three IQEMs. It can be 

seen that NN model performed the best among the three IQEMs with 

respective R and STRESS scores of 0.85 and 16 for the ZJU training 

dataset and 0.87 and 18 for the independent testing database. Their 

respective RMSE and MAE values are 0.11 and 0.08 for training 

data while 0.10 and 0.07 for the testing data. 

IS model performed second best with respective R and 

STRESS scores of 0.79 and 14 for the ZJU training dataset and 0.62 

and 21 for the independent testing dataset. Their RMSE and MAE 

values are 0.09 and 0.07 for training data while 0.16 and 0.13 for the 

testing data, respectively. Performance of CS model was found to 

be the worst with respective R and STRESS scores of 0.50 and 19 

for the ZJU training dataset and 0.58 and 21 for the independent 

testing dataset. Here, RMSE and MAE values are 0.24 and 0.18 for 

training data while 0.21 and 0.16 for the testing data, respectively. 

Figs. 5-7 show the predicted vs observed IQ scores for the three 

IQEMs on (a) ZJU training dataset and (b) independent testing 

dataset. 

Conclusion 
         Three IQEMs based on color science (CS), neural network  

 (NN) and image statistics (IS) were developed to predict the quality 

of color domain modified images. Also, a large scale experiment 

was carried out to collect image quality data based on a large number 

of previously assessed images under same viewing conditions. The 

visual results were used to test these models. The results showed that 

NN model performed the best, followed by IS and CS models. 
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