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Abstract
The internal structure of the snow and its reflectance func-

tion play a major contribution in its appearance. We investi-
gate the snow reflectance model introduced by Kokhanovsky and
Zege in a close-range imaging scale. By monitoring the evolu-
tion of melting snow through time using hyperspectral cameras
in a laboratory, we estimate snow grain sizes from 0.24 to 8.49
mm depending on the grain shape assumption chosen. Using
our experimental results, we observe differences in the recon-
structed reflectance spectra with the model regarding the spec-
tra’s shape or magnitude. Those variations may be due to our
data or to the grain shape assumption of the model. We intro-
duce an effective parameter describing both the snow grain size
and the snow grain shape, to give us the opportunity to select the
adapted assumption. The computational technique is ready, but
more ground truths are required to validate the model.

Introduction
Stating that snow is white would be a good simplification of

a sophisticated and complex phenomenon. During a sunny day, it
is possible to see green or yellow sparkles on a snow landscape.
At night, under natural or artificial light sources, snow appears to
be gray or blue if shadows are cast on the scene. Many phenom-
ena are at stake and will influence the way snow is perceived.
The grain size and the grain shape define the structure of the
snow, thus defining the optical characteristics of the snow: ab-
sorption, refraction and scattering. Furthermore, snowpacks can
be organized as snow layers impacting the light propagation [14],
and can contain pollutants influencing its optical characteristics
[1].

In this work, we investigate those parameters with a snow
reflectance model established by Kokhanovsky and Zege [11] us-
ing hyperspectral images. This model has been widely studied
for the last 15 years. It was compared to in-situ measurements
by Kokhanovsky et al. [8], and later on, approved using multi-
angular and multispectral observations over Greenland and An-
tartica [9]. It has also been used in the remote sensing area for re-
trieval or estimation of snow grain size [2, 19]. Others have used
the exponential model of the snow reflectance function with near-
infrared (NIR) and short-wave infrared (SWIR) photographies to
measure the snow specific surface area (SSA). Gallet et al. [4]
used an integrating sphere to measure the SSA at 1310 and 1550
nm. Another method was used by Langlois et al. [13], Matzl and
Shneebeli [15] and Montpetit et al. [17] as they all measured the
SSA using in-situ hyperspectral photographies of snow pits and
snow walls.

Although the Kokhanovsky model has been thoroughly
tested for the remote sensing setting, it is not well understood
how it performs for close-range imaging. Coupled with hyper-
spectral cameras, we use the reflectance model to estimate the
snow grain size and the concentration of pollutants of a snow
sample in laboratory. Since obtaining a proper value of the grain

size is subject to a choice of assumption on the grain shape, we
introduce an effective parameter to better qualify the snow.

The first section of this article presents the snow reflectance
model along with the refractive indices used. A short study on
the influence of studied parameters is conducted as well. In a
second section, the methodology of our experimental acquisition
is introduced along with the model inversion used. The third
section highlights the main results and discussion of that study,
followed by a conclusion and future works.

Snow reflectance
In this section, we chose to present a snow reflectance model

based on the work of Kokhanovsky and Zege [11] over other
models for its simplicity and small number of parameters, which
permits its inversion and the retrieval of the parameters with lim-
ited struggle. Following the reflectance model are the refractive
indices used extracted from Warren et al. [22], and an influence
study of the parameters in the Kokhanovsky model.

Kokhanovsky snow reflectance model
One way of modeling the reflectance function is to solve the

radiative transfer equation (RTE) that describes the propagation
of light inside materials. As described in [11], it requires some
assumptions to obtain an asymptotic solution to the RTE. The
major assumptions are: snow has an infinite thickness (ie. no
contribution of what is below the snow layers), snow grains have
little absorption of light and the light coming from the source is
azimuth independent. The RTE is defined by Equation (1):

µ
∂ I(τ,µ,φ)

∂τ
= I(τ,µ,φ)−S(τ,µ,φ) (1)

where I is the specific intensity, S is the source function (there-
fore independent of the azimuth φ by assumption in our case),
τ is the optical length and µ is the cosine of the polar angle.
Therefore, following the previous assumptions established and
the derivations detailed in [7], the snow reflectance function can
be modeled by Equation (2):

R(λ ,θ0,θ ,ϕ) = R0(θ0,θ ,ϕ)exp
(
− K(θ)K(θ0)

R0(θ0,θ ,ϕ)
b
√

dγ(λ )
)
,

(2)

where R represents the bidirectional function (also known as the
Bidirectional Reflectance Distribution Function or BRDF) for the
reflectance under the assumption of a semi-infinite layer and R0
is the value of R at zero absorption (equation given in [7]).

The parameters (θ0,θ ,ϕ) describe the geometry of the situ-
ation studied by respectively being the incident illumination an-
gle of the light source, the viewing angle for the observation sys-
tem, and the relative azimuth between the source and the view-
ing system. All those angles are given in degrees. K(θ) is
called the escape function, and is defined in Milne’s problem
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[16]. Under the assumption of cosθ ≥ 0.2 (corresponding to
θ ≤ 75◦), excluding grazing angles, we can approximate K(θ)
by K(θ) = 3

7 (1+2cosθ) [10].
The parameter b is defined as the shape factor and represents

the influence of the shape of snow grains. Several shapes are
reported in the literature [3], and their characteristics impact the
propagation of light. Kokhanovsky and Zege [11] established
their model under the assumption of a fractal grain shape, giving
the value of b = 3.62. That assumption will be discussed later
in the results and discussion section. The parameter d stands for
the snow grain size and is given in micrometers. Its definition has
long been debated: some authors considered it as the diameter of
a spherical snow grain [18, 11], other as the greatest dimension of
a snow grain [1]. This is also the parameter that could be linked
to the SSA [17].

γ(λ ) is the coefficient of absorption of the medium, which
is defined by Equation (3):

γ(λ ) =
4π

λ
(χ(λ )+M), (3)

where λ is the wavelength of light in nanometers, χ(λ ) the imag-
inary part of the refractive index of the medium considered, and
M the concentration of pollutants in the medium [1, 9].

In our context, we are studying the spectra of VNIR and
SWIR images. Therefore, the wavelength is a varying parameter
whereas the lighting and observing conditions are known (ie. we
are not in a goniometric study). Thus, we discard the dependence
on (θ0,θ ,ϕ) and we can rewrite Equation (2) into

R(λ ) = R0 exp
(
−αb

√
d

√
(χ(λ )+M)

λ

)
(4)

with α =
K(θ)K(θ0)

R0

√
4π being a known constant.

Refractive index
Refractive indices have a major role in understanding the

optical behavior of a material. For our case, our interest is solely
focused on the imaginary part of the refractive index, as it is
linked to the absorption of a medium in the electromagnetic the-
ory. Also, as we are studying the evolution of snow along time
as it melts away, it is safe to assume a mixture of ice and water.

For describing snow in the wavelength range of 400 nm to
2500 nm, few databases are available for the imaginary part of
the refractive index. Hale et al. [5] are providing measurements
of the water refractive index for water samples at a temperature of
25◦C. Warren [22] established a compilation of refractive indices
in the case of ice, and a revision to that database was given later
[23] with changes in the range 1400 nm to 1800 nm for our inter-
est. Both references are actually doing a compilation of several
experimental results obtained by other authors with smoothing
and linear interpolation when necessary. Kou et al. [12] have
done measurements on their side and compared them to those of
Hale et al. for the water, and Warren for the ice. They noted
small differences for some wavelengths but since general results
are quite similar, those databases can be trusted to a certain de-
gree.

Influence of parameters (grain size and pollutant
coefficient)

Sources of pollution are most likely soot, dust or new de-
posited snow on top of the snowpack. Aoki et al. [1] were
one of the first to lead a study on the influence of both the grain
size and the concentration of pollutants in the snow in the NIR

Figure 1. Evolution of the imaginary part of the ice refractive index based

on the database in [22]. The y-axis is displayed in logarithmic scale.

range. Their study showed promising results and was later reit-
erated by using hyperspectral satellites in remote sensing [9] or
by using contact spectroscopy directly on the field [21]. In Equa-
tion (4), the parameters at stake are the snow grain size d and
the concentration of pollutants M. Then, we used the database
of Warren [22] for the ice refractive indices to observe the in-
fluence of those parameters. Results obtained in Figures 2 and
3 are under the fractal assumption for the snow grain shape (ie.
b = 3.62 in [11]). For the geometrical configuration, we used
(θ0,θ ,ϕ) = (45◦,0◦,0◦) as it is the configuration we had for our
experiment. In this case, the value of R0 is R0 = 1.035 (obtained
from Equations (4) and (11) in [6]).

Figure 2. Influence of the concentration of pollutants for a grain size of

1000 µm.

On Figure 2, at a fixed value of snow grain size (d = 1000
µm) and for an increasing concentration of pollutants, the re-
flectance curve is tilted away in the visible range but is still
conserving characteristic responses at bands 1050 nm, 1300 nm,
1800 nm and 2300 nm. That result is coherent with the work
of Singh et al. [21] who showed that the concentration of pol-
lutants had more impact on the visible reflectance of the snow
rather than on the NIR or SWIR. On Figure 1 is plotted the evo-
lution of the imaginary part of the ice refractive index used for
the computation of the model. Linking those values with Fig-
ure 2, for some wavelengths, M is negligible in front of χ(λ )
thus explaining some saturations visible for certain bands. For
Figure 3, the evolution of the snow grain size clearly changes the
magnitude of the reflectance of the snow. It is more observable
in the visible range since the reflectance values are higher than
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in the SWIR range from the beginning, but the decrease is quite
homogeneous.

Figure 3. Influence of the snow grain size for a concentration of pollutants

of 3.10−6

Methodology
Our ultimate focus is to observe the snow grain sizes of

snow layers by using hyperspectral images. However, due to the
complexity of going outside with our equipement, we decided to
study the evolution of the snow grain size through time while the
snow sample is melting. We expect an increase of the grain size
with time. This was an alternative to the snow layers study that
was achievable in a laboratory where light conditions can be con-
trolled. The resulting images were the basis for the computation
of spectra and reconstruction of the reflectance functions. Then,
a model inversion was run to have an estimate of parameters such
as the snow grain size and the concentration of pollutants.

Acquisition process
For this acquisition, we had two hyperspectral cameras at

our disposal. The first one is the HySpex VNIR-1800 with 186
bands from 400 nm to 1000 nm with a spectral resolution of
3.17 nm. The second camera is the HySpex SWIR-384 with
288 bands from 950 nm to 2500 nm with a spectral resolution of
5.43 nm. Both cameras are sharing an overlap of bands that will
be useful later to connect the spectra obtained from each cam-
era. For this experiment, we used a reference object called Spec-
tralon® to compute the reflectance of snow. The Spectralon® is
a white surface whose reflectance function is known for a spe-
cific range of wavelengths. So, when setting up the experiment,
we calibrate the integration time on the Spectralon®.

The setup of the experiment can be seen on Figure 4. We
used two identical lights provided with the cameras that allowed
us to have an illumination response in the infrared. Those lights
were placed so that the incident angle on the snow would be
θ0 = 45◦ for each camera, and the viewing angle would be
θ = 0◦. The value of the relative azimuth φ is of less importance
because the cameras are orthogonal to the scene. For both cam-
eras, the integration times were tuned independently. They were
chosen so that the illumination of the Spectralon® was around
50% in each images for VNIR and SWIR. On Figure 4, one may
note some light pollutions. It does not have a major impact on
the model since illuminations angles remain constant. Further-
more, it was a strategic choice to avoid doing two scans for both
camera. That way, the acquisitions for the VNIR and SWIR are
very close in time and with no changes in the snow sample.

The snow sample used was mainly composed of snow taken
outside of our laboratory and put in a glass box. The transporta-

Figure 4. Experimental setup for the acquisition. The Spectralon® and the

snow sample are placed on a moving platform whose speed is controlled by

a computer and linked to the integration time of each camera. The platform

is moving from right to left on this picture.

tion was done with an isothermic bag to minimize thermal ex-
changes. That experiment was conducted in late March in Nor-
way with temperature close to 0◦C at that time. Unfortunately,
we were not able to conduct any chemical analysis of the sample
to determine the concentration of pollutants. With the snow sam-
ple, we were able to acquire 17 images for both camera in a span
or 2 hours. The transformation of solid snow into liquid water
was clearly visible on the last spectral images.

Reconstruction of the full spectrum
From the previous acquisition are obtained 34 images in to-

tal, 17 for each camera. Figure 5 shows an image from the VNIR
camera (left) taken for the band 663 nm, and an image from the
SWIR camera (right) taken at 1388 nm (wavelengths chosen for
their contrast and showing purposes). Also, both images were
acquired at the beginning of the experiment (0 min) when the
snow was the freshier.

In the process for the reconstruction of VNIR and SWIR
spectrum, we selected two areas of pixels: one focused on the
Spectralon® used as a reference Ire f , and a second area focused
on the snow sample Isnow. The main challenge was to ensure the
area of the snow would remain the same across time and that we
would be looking at the same material on the 17 images. This
was quite difficult as the snow is turning into liquid water, lead-
ing to small unpredictable translations and rotations. Once those
regions of interest defined, and knowing the reflectance of the
Spectralon® tile fspec(λ ), the reflectance function can be recon-
structed following Equation (5):

R(λ ) =
Isnow

Ire f
fspec(λ ) (5)

which gives us the spectrum of the VNIR camera and the spec-
trum of the SWIR camera.

To assemble the two spectra obtained from the VNIR and
the SWIR images, we used the shared overlap of bands between
950 nm and 1000 nm, assuming linearity of the cameras. Since
both cameras do not have the same spectral resolution (the VNIR
is at 3.17 nm and the SWIR at 5.43 nm), a resample around 3 nm
by linear interpolation was required to compute a scaling factor
between the two data. The ratio computed was the VNIR over the
SWIR, and we took the average from each band from 950 nm to
1000 nm. Therefore, to obtain spectra such as Figure 6 for each
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Figure 5. Examples of images obtained from the VNIR (left, at 663 nm)

and the SWIR (right, at 1388 nm) cameras. The Spectralon® reference is

on the top of images (square target in the paper sheet between the two

magnets), and the snow target on the bottom. Those images are taken at

the beginning of the experiment.

image sets, we multiplied the SWIR data by the ratio computed
and we connected the VNIR and SWIR data. We chose that ratio
because the data in the SWIR range have a magnitude lower than
the VNIR data, so they would not be much affected by the scaling
factor.

Figure 6. Full spectrum reconstructed for a couple of images along the

experiment. The VNIR and SWIR spectra were connected using the shared

overlap between 950 nm and 1000 nm.

Model inversion
Once the full spectrum is reconstructed, we can focus on

the estimation of the snow grain size and the concentration of the
pollutants. We rewrite the Equation (4) under Equation (6):

Rβ ,M(λ ) = R0 exp
(
−αβ

√
(χ(λ )+M)

λ

)
(6)

with β = b
√

d and M as parameters to estimate. We chose to
look at the product β and not only the snow grain size d since b is
chosen under an assumption of the snow grain shape. Therefore,
we are optimizing the product containing the information of the
snow grain (both shape and size) and we just have to choose one
assumption to have an estimate of d.

For this model inversion of the spectrum reconstructed y(λ ),
we chose two costs functions:

C1 = ||Rβ ,M(λ )− y(λ )||F (7)

and

C2 = cos−1
(

∑i yi(λ )Rβ ,M(λ )i

||y(λ )||F ||Rβ ,M(λ )||F

)
(8)

with ||A||F =
√

∑i(ai)2 known as the Frobenius norm, and C2
is the Spectral Angle Mapper (SAM). Note that SAM is not af-
fected by the scaling choice of the reflectance, which is one of
the reasons we chose that cost function. Therefore, the estimate
of (β̂ ,M̂) is given by

(β̂ ,M̂) = argmin
β ,M

C1,2 (9)

The optimizer used for that study is an optimizer of Nelder-
Mead. To ensure that we were not at a local minimum, several
seeds were tested for that optimizer and the results were always
the same. Furthermore, we also computed some global optimiza-
tion using dual annealing and we found the same results as with
the Nelder-Mead.

Results and Discussion
We used the spectral data acquired and compared it to the

model introduced earlier in order to estimate the snow grain size
through the parameter β and the concentration of pollutants in
the snow M. In doing so, two approaches were taken:

• Approach 1 consisted in estimating both parameters at the
same time using Equation (9). That approach gave us val-
ues of β and M for each acquisition along time. It is la-
belled C1-1 and C2-1 for the use of cost functions C1 and
C2 in the following figures.

• In approach 2, both parameters were estimated from the
first acquisition at t = 0 min, and the value of M found was
kept for the rest of the inversion to only have one parameter
to estimate. We argue that the concentration of pollutants
is not expected to change with the snow melting. Similarly
as the approach 1, it is labelled C1-2 and C2-2.

Figure 7. Estimation of M parameter using the two cost functions C1 and

C2 with the first approach of optimization.

Results for the M parameter are displayed on Figure 7. In
the first approach, C1 gives an increasing estimate with time
while C2 provides an estimate in a narrower range. That result
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Figure 8. Estimation of β parameter using the two cost functions C1 and

C2 with two approaches of optimization.

is actually close to the assumption made by the second approach
where both M values are estimated on the first acquisition and
kept constant afterwards.

Figure 8 showcases the estimates for the β parameter. In
both approaches, SAM is providing values very constants and
close to each other. The similarity between the approaches is
expected since the M parameter is not changing that much. The
constancy of β over time could be related to the evolution of the
grain shape that is discussed later. As for C1, the estimates are
increasing along time which is coherent assuming a fixed shape
of snow grains. Therefore, grains would expand and sizes would
increase. The second approach even estimates higher values. The
only drawback is to not have any ground truth for that experiment
to qualify those results.

Table 1: Table of estimated parameters that were used for
plotting spectra on Figure 9 and Figure 10

t1 = 23 min t2 = 88 min
β (µm1/2) M β (µm1/2) M

C1-1 84.3 1.53.10−6 152.4 4.11.10−6

C1-2 87.5 1.34.10−6 241.1 1.34.10−6

C2-1 84.1 1.51.10−6 76.8 1.25.10−6

C2-2 76.9 9.41.10−7 72.8 9.41.10−6

In Table 1 were referenced estimated parameters that were
used to compute spectra based on Equation (4). Those spectra
are displayed on Figure 9 for the acquisition done at t1 = 23 min,
and on Figure 10 for the acquisition at t2 = 88 min. The samples
at those times were different, but they are quite representative. At
t1, the snow is still present and some areas start to melt. At t2, the
ratio is inversed and the liquid water is predominant in the box. In
fact, small snow parts are remaining and flotting. For both times,
the temperature was not measured. However, it is not changing
much during the overall experiment. In fact, the snow sample
might be slighty under 0◦C, but then the temperature stabilizes
around zero once the melting starts.

There is clearly a difference between the two approaches in
term of results. While having a constant concentration of pollu-
tants in the snow, the second approach gives estimates of spectra
closer to the spectrum obtained from the data, as it is shown on
Figure 10 for C1-1 and C1-2. The choice of cost functions is
also to be discussed, as they are providing very different results
in the estimate especially for aged snow. The Frobenius norm C1
is very common and would provide a good estimate of the mag-

Figure 9. Spectra obtained from the model used with β and M estimated

by cost functions and approaches for the image acquired at t1 = 23 min.

nitude while having an appropriate shape of the spectrum. The
SAM function C2 is not subject to the scaling of the reflectance,
which suits our data. Since we have a scaling of data for the
VNIR camera and one for the SWIR camera, and then a fusion
of both data, the border to where is our scaling is unclear. There-
fore, the SAM helps discarding those scaling effects and provides
a very good shape of the spectrum. In addition, on Figure 7,
SAM estimates a value of M in a narrow interval. The estimation
is almost constant which is close to the assumption made for the
second approach.

Figure 10. Spectra obtained from the model used with β and M estimated

by cost functions and approaches for the image acquired at t2 = 88 min.

With the previous results, we would like to introduce an ef-
fective parameter β = b

√
d as a parameter to estimate and qualify

the snow. This parameter contains the contribution of the snow
grain size and the snow grain shape. As pointed out by Picard et
al. [20], there are numerous values of the shape factor b depend-
ing on the assumption taken. Furthermore, with the snow aging
or melting, snow grains will expand leading to a change of shape
and size.

On Figure 8, the estimates given by SAM of β remain con-
stant through time. Looking back at the definition of the effective
parameter, both the grain size and the grain shape are evolving:
one increases while the other decreases. Using Table 2, the esti-
mated value of the snow grain size goes from 328 µm to 767 µm
for the same value of the effective parameter. Having a 100% dif-
ference just for assuming one shape over the other seems quite
important. Therefore, a fixed shape factor does not seem ade-
quate, hence the introduction of the effective parameter β .
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Table 2: Table of snow grain sizes depending on the shape as-
sumption. The effective parameter chosen was β = 87.5 µm1/2

for t1 = 23 min.

Grain shape b d (µm)
Non sticky sphere 4.44 [20] 388
Cubes 3.39 [20] 666
Long cylinder 4.83 [20] 328
Depth hoar 3.16 [20] 767
Tetrahaedral fractal 3.62 [11] 584

In the case of our experiment, the model presents several
limitations. One of them is the assumption of infinte thickness
of snow. This cannot be applied for our snow sample due to the
proximity of the camera. Also, the model is only considering sur-
face reflections which is suitable for a remote sensing setting. For
a close range imaging, the contributions of internal and subsur-
face reflections need to be added to the model for more accuracy.
The problematic is linked to the surface roughness of the snow
sample as well.

Conclusion
We conducted an experiment to monitor a melting snow

sample using hyperspectral cameras in a controlled environment
with known lighting conditions. The data obtained from this ex-
periment in a proximal range was confronted to the Kokhanovsky
model, which models the reflectance function of snow using var-
ious physical parameters but was developed for remote sens-
ing applications. Therefore, those parameters were estimated
through this model. We introduced the effective parameter to de-
scribe the contribution of both the snow grain size and the snow
grain shape. The computation is ready, but there is a need for
more ground truth to verify our results.

We are planning to do a new set of experiments to provide
more data to our current set and to compare the results to approve
the protocol and model. We are thinking of refining the current
protocol as well such as changing the reference tile to increase
the signal-to-noise ratio and have better spectra reconstructed.
Another possibility for us is to compute our own database for the
ice refractive index as it was pointed by Singh et al. [21]. We
are also planning to look for other reflectance models of white
surfaces (such as the ones that were discarded previously in the
introduction), and see if they could fit to the behaviour of the
snow. A last aspect would be to conduct the experiment for vari-
ous geometric configurations (light and camera positions) to have
more data for our fitting parameters.
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