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Abstract 
We describe a comprehensive method for estimating the 

surface-spectral reflectance from the image data of objects acquired 
under multiple light sources.  This study uses the objects made of an 
inhomogeneous dielectric material with specular highlights. A 
spectral camera is used as an imaging system. The overall 
appearance of objects in a scene results from the chromatic factors 
such as reflectance and illuminant and the shading terms such as 
surface geometry and position.  We first describe the method of 
estimating the illuminant spectra of multiple light sources based on 
detecting highlights appearing on object surfaces.  The highlight 
candidates are detected first, and then some appropriate highlight 
areas are interactively selected among the candidates.  Next, we 
estimate the spectral reflectance from a wide area selected from an 
object's surface.  The color signals observed from the selected area 
are described using the estimated illuminant spectra, the surface-
spectral reflectance, and the shading terms.  This estimation utilizes 
the fact that the definition domains of reflectance and shading terms 
are different in each other.  We develop an iterative algorithm for 
estimating the reflectance and the shading terms in two steps 
repeatedly. Finally, the feasibility of the proposed method is 
confirmed in an experiment using everyday objects under the 
illumination environment with multiple light sources. 

Introduction  
Because the surface-spectral reflectance provides a physical 

feature inherent to the surface of a target object, knowing the 
spectral reflectances of objects in a scene is crucial in many aspects 
such as recognizing and identifying objects, realizing color 
constancy, and constructing object appearance.  The problem of 
estimating the surface-spectral reflectance from image data has a 
long history.  So far, many methods have been proposed in a variety 
of fields, including color science, image science and technology, and 
computer vision (e.g., see [1-5].   When an imaging system observes 
the reflected light, called color signal [6], from object surfaces 
illuminated by a light source, the reflectance estimation problem 
always involves separating illumination and reflectance from the 
color signal. 

In the estimation problem, how to assume the environment 
illuminating the object surfaces is important.  Most methods 
assumed uniform illumination from a single light source or 
restricted to a scene in which the illumination across the scene is 
constant.  We note that our illumination environment is not 
necessarily a single light source nor constant such as daylight or a 
light bulb. Still, it often consists of multiple light sources from 
different directions (e.g., see [7-8]).  

The present study considers a comprehensive estimation 
problem that estimates reflectance and illuminant.  As a first step 
towards solving the problem, Tominaga et al.[9] discussed an 
approach to estimate light sources and their spectral-power 
distributions from the spectral image data of objects acquired in a 
complex illumination environment.  The target objects were 
everyday objects, which were usually assumed to be made of an 
inhomogeneous dielectric material. The illuminant spectra and the 
corresponding light sources were effectively estimated based on 
highlight areas on dielectric object surfaces.  

We note that multiple light sources generate the illumination 
field where different locations in a scene possess different spectral-
power distributions, which are the mixture of illuminants emitted 
from the multiple light sources.  For instance, we suppose different 
locations in a room with a ceiling lamp, a table lamp, and daylight 
through a window. 

In addition to the non-uniformity of illuminant spectra, the 
material making up an object's surface and the object's shape must 
be taken into consideration when estimating the surface-spectral 
reflectance.   Objects existing in a scene are not necessarily matte 
and flat objects.   In the case of dielectric materials, glosses or 
specularities may appear on the object surfaces. In curved objects, 
surface normals may change depending on the location or the 
surface roughness may differ. 

The overall appearance of three-dimensional objects in a scene, 
results from combining the chromatic factors (such as reflectance 
and scene illuminant) and the geometric factors (such as surface 
geometry, roughness, position, and lighting conditions).   Although 
the geometric factors do not have color information, they have 
shading information, so they may be called shading terms in this 
paper.  They also are sometimes called the geometric factors.  In this 
paper, the color signals observed from an object's surface are 
modeled using the illuminant spectra, the surface-spectral 
reflectance, and the shading terms.  Since the estimated illuminant 
spectra are available in the first step, both spectral reflectance and 
shading terms are the unknowns to be estimated in solving the 
spectral reflectance estimation problem. 

The two unknowns have different domains. That is, spectral 
reflectance is defined in the wavelength domain, and the shading 
terms are defined in the spatial coordinate domain.  We develop an 
iterative algorithm that estimates the reflectance and the shading 
terms in two steps repeatedly, where the output estimates in the first 
step are used as input in the second step, and the output estimate are 
then used as input for the other step.   

In the following, first, we describe the method of estimating the 
illuminant spectra based on highlight detection.   Next, we consider 
estimating the spectral reflectance from a wide area selected from 
an object's surface. The color signals observed from the selected 
area are described using the estimated illuminant spectra, the 
surface-spectral reflectance, and the shading terms. We develop an 
iterative algorithm that estimates the reflectance and the shading 
terms in two steps repeatedly.  Finally, the feasibility of the 
proposed approach to spectral-reflectance estimation is confirmed 
in an experiment, where multiple light sources illuminate real 
dielectric objects.   

Illuminant Estimation 

A. Highlight detection 
Many of the objects we see in our daily lives are plastics, 

ceramics, natural objects such as fruits, painted metals and wood, 
and leather products, the surface materials of which are 
inhomogeneous dielectrics. Light reflection from an 
inhomogeneous dielectric object consists of specular reflection and 
diffuse reflection components. The spectral composition of the 
specular reflection component is the same as that of illumination 
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light.   The specular reflection component often produces gloss and 
specular highlights.  Therefore, if there is gloss or highlight on an 
object surface, the illumination light source is estimated using it as 
a clue.  In Ref.[9], the illuminant spectra were estimated based on 
highlight areas appearing on the object surfaces.  Highlight areas 
were detected using a center-surround filter.  

Since the present paper purposes to estimate the surface-
spectral reflectance of a target object, highlight regions are 
interactively determined to improve the efficiency of illuminant 
estimation.  In other words, a set of the highlight candidates is 
detected first. Then some appropriate highlight areas are 
interactively selected among the set by considering the intensities, 
locations, and shapes of the highlight candidates.  This process is 
not automated, but needs the manual input. 

Let  ,Y x  be the observed color signal (spectral radiance of 
the reflected light) at pixel location x = (x, y) from an object surface.  
The color signals can be recovered from the outputs of a spectral 
imaging system by knowing the spectral sensitivity functions.  We 
use the luminance value ( )L x for highlight detection, which is 
calculated from the color signal by the CIE luminosity function.  A 
filter creating the center-surround filter is determined by a 
difference of two Gaussian distributions (DOG) of equal areas.  The 
broader Gaussian is subtracted from the narrower Gaussian. The 
filter outputs applied to the luminance image ( )L x  are calculated 
by a convolution by multiplying pixel values of the luminance image 
to the matrix over some range.  

B. Spectral Estimation 
The highlight areas provide an important clue for estimating 

the light sources. The specular reflection occurs only when the 
incidence angle of the incoming light is coincident with the viewing 
angle by a camera. We note that each detected highlight area has the 
illuminant information of the corresponding only one light source 
among multiple light sources. The algorithm for estimating 
illuminant spectra is described.  When the object surface consists of 
an inhomogeneous dielectric material, the color signal is described 
by the dichromatic reflection model as follows: 

     
D S

, , ,Y Y Y   x x x
 (1) 

where the suffix D and S indicate the diffuse reflection component 
and the specular reflection component, respectively.  We suppose L 
different light sources.  Let ( )S   be the surface-spectral 

reflectance of the target object, and let ( )E   be the spectral power 
distribution of the incident light, which is the mixture of different 
illuminant from L light sources 

       
1 2

...
L

E E E E       .  Then the color signal 

observed at a highlight point xp is described as 

       
p D p S p
, ( ) ( )

i
Y c S E c E    x x x                       (2) 

where  
i

E  is the illuminant spectrum of a single light source 

corresponding to the highlight, and  
D p

( )c x and
P p
( )c x  are the 

weighting coefficients to the spectral functions, which are constants 

over the visible wavelength range.  We estimate  
i

E  based on the 

data set of observed spectra   
p
,Y x at the highlight area.   

The singular-value decomposition (SVD) is applied to the data 
set at each highlight area [10].  Recently, SVD is often used as a tool 
for PCA.  The SVD provides an orthogonal decomposition of the 
data matrix of    

p
,Y x  by using the singular vectors 

1 2
, , ...u u .  

The spectral data are then mapped onto a two-dimensional subspace 
defined by the first two singular vectors 

1
u and 

2
u , due to the 

characteristic of the dichromatic reflection.  Figure 1 shows an 
example of the pixel distribution, where the coordinates 

1 2
( , )a a  

are calculated by the first two singular vectors.  Although the pixel 
distribution appears as a straight line, it consists of two clusters. The 
pixel distribution on the upper right in the figure mostly belongs to 
the diffuse cluster, and the remaining linear distribution is the cluster 
by the specular reflection component. The directional vectors of this 
linear cluster correspond to the light source color, that is, the 
illuminant to be estimated. In Figure 1, points A and B are the 
centroid of the pixel distribution and the farthest pixel point from 
the centroid A, respectively.  The directional vector A B of the 
linear cluster corresponds to the light source color.  We note that the 
linear highlight cluster is much longer than the diffuse cluster.   Thus, 
illuminant estimation is reduced to detecting the direction vector
A B .  The spectral curve of the illuminant is estimated from the 
singular vectors 

1
u and 

2
u , and the directional vector 

2 1
a a . We 

obtain the estimated spectral curve of illuminant at each highlight 
area.    

 

 
Figure 1 Pixel distribution of the image data in a highlight area projected on the 

two-dimensional space 
1 2

( , )a a , where the points A and B are the centroid of 

the pixel distribution and the farthest pixel point from the centroid A, respectively. 

Reflectance Estimation 

A. Observation model 
We consider estimating the spectral reflectance ( )S  from a 

wide area of an object's surface.  Figure 2 shows an observation 
scene by a spectral camera for the reflectance estimation, where an 
object is illuminated under multiple light sources.  A discrete form 

of the color signal  ,Y  x is often represented as an n-dimensional 

column vector when the visible range [400-700nm] is sampled at n 
wavelengths with equal intervals.  Typically, in this paper, all 
spectral functions are sampled in the high dimension of n=61 with 
5nm intervals.  Let N be the number of pixels in the region of interest.  

The color signals observed at wavelengths
i
 (i=1, 2, …, n) and pixel 

points 
j

x (j=1, 2, …, N) are described as 
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       

       

   

S1 1 S2 2 S

D1 1 D 2 2

D

, ( ) ( ) ... ( )

( ) ( ) ...

( )

i j j i j i N j L i

j i i j i i

N j i L i

Y c E c E c E

c S E c S E

c S E

   

   

 

   

  



x x x x

x x

x

  

(3)                  

We note that the weighting coefficients
S

( )
k j

c x and 
D

( )
k j

c x

(k=1, 2, ..., L) are the shading terms, which depend on such 
geometries as object shape, position, and distance from light and 
camera. Normally, there are as many shading terms as the two 
components of specular reflection and diffuse reflection multiplied 
by the number of light sources 

We note that the illuminant spectral  
k

E   (k=1, 2, ..., L) of 

L light sources are already estimated in the previous section. The 

spectral reflectance ( )S   and the shading terms 
S

( )
k j

c x and 

D
( )

k j
c x (k=1, 2, ..., L) are unknown to be estimated.  We define 

several vectors for discrete representation of the model as follows: 

S1

11

S22

D1

D

,

,

,
,

,

( )

( )( )

( )( )( )
,

( )

( )( )

( )

j

j

j j

j

j

L j

j

nn

L j

c

yS

cyS

c

yS

c
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c

x

x

x

x

x
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x

x






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1
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,
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i
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x

x

x
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z
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

        
 (4) 

where s is an n-dimensional column vector of the spectral 

reflectance, 
j

y is an n-dimensional column vector of the imaging 

system outputs at location
j

x , 
j

c  is a 2L-dimensional column vector 

of the shading terms at location
j

x , and
i

z is an N-dimensional 

observation vector for diffuse reflection component at wavelength

i
 , which is obtained by subtracting the specular reflection 

component from the observation. 
 

 

Figure 2 Observation scene by a spectral camera for the reflectance 
estimation.   

B. Estimation algorithm 
Because there are two types of unknown variables s and 

j
c , in 

this paper, we propose an iterative solution method to obtain the 
optimal estimates of the surface-spectral reflectance function and all 
weighting coefficients of the shading terms.   The iterative process 
is decomposed into two steps of (1) the estimates of the shading 
terms are updated under the estimated reflectance fixed and (2) the 
estimate of the reflectance is updated under the estimated shading 
terms fixed. 

(1) Shading term estimation 
The relationship between the shading terms and all 

observations is described as 

      

1 1

2 2

N N



    
    
    
    
        

cB 0 0

c0 B

0

c0 0 B

y

y

y



 

  



 

, (5) 

where the observation vector in the left side is an nN-dimensional 
vector, an n2L matrix B in the right side is defined as 

       
       

       

1 1 1 1 1 1 1 1

1 2 2 2 1 2 2 2

1 1

( ) ( )

( ) ( )

( ) ( )

L L

L L

n L n n n n L n

E E S E S E

E E S E S E

E E S E S E

     

     

     



 
 
 
 
  

B

 

 

   

 
. (6) 

The observation at each pixel point is rewritten as 

j j
y Bc .         (j=1, 2, …, N)                                                   (7) 

Therefore, the standard least square estimate for 
j

c  is given in a 

form 

  1

ˆ t t

j j



c B B B y ,         (j=1, 2, …, N)    (8) 
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where symbol t represents matrix transposition.   
 

(2) Spectral reflectance estimation 
   The relationship between the spectral reflectance and all 

observations is described as 

 
 

 

1 1

2 2

1

2

n nn

S

S

S









    
    
    
    
        

z b 0 0

z 0 b

0

z 0 0 b



 

  



 

 (9) 

where the observation vector in the left side is an nN-dimensional 

vector, an n 1 matrix 
i

b  in the right side is defined as 

     
     

     

D1 1 1 D2 1 2 DL 1

D1 2 1 D2 2 2 DL 2

D1 1 D2 2 DL

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i i L i

i i L i

i

N i N i N L i

c E c E c E

c E c E c E

c E c E c E

  

  

  

  

  

  



 
 
 
 
  

x x x

x x x

x x x

b








.

 (10) 

The observation at each wavelength is rewritten as 

( )
i i i

S z b .         (i=1, 2, …, n)                                            (11) 

Therefore, the standard least square estimate for s  is given in a 
form 

 ˆ( )
t t

i i i i i
S   b z b b .     (i=1, 2, …, n)                              (12) 

where we note the estimate is a scalar. 
 

(3) Iterative estimation process 
We repeat the iterative estimation calculations of the above two 

steps (1) and (2), starting from an appropriate initial estimate of 
spectral reflectance.  Figure 3 shows a visual diagram of the iterative 

estimation process.  The initial value of ˆ( )
i

S  is constant in the 

range 400 700   (say, ˆ( )
i

S  =0.5). In the observation model 

Eq.(3), the shading term
D

( )
k

c x (k=1, 2,…, L) and the spectral 

reflectance ( )S  are in a multiplying relationship  
D

( )
k

c S x .  We 

cannot determine the absolute value of each estimate.  Therefore, we 
assume in this paper that the spectral reflectance is normalized as 

2

1
( ) 1 ( 1)

n

ii
S 


  s . 

The area selected for reflectance estimation may affect the 
performance.  Because we aim to estimate the spectral reflectance 
for the diffuse reflection component, only matte areas containing 
neither gloss nor specularity can be extracted and used for the 

estimation.  In this case, the specular shading terms  
S

( )
kk

c E x  

(k=1, 2, ..., L) in the above algorithm are neglected as 
S

( ) 0
k

c x . 

Nevertheless, the rest of the paper describes the general situation 
where region of interest has both diffuse and specular reflection. 

 

 

i=1, 2, .., n.   j=1, 2, …, N 

Figure 3 Visual diagram of the iterative estimation process. 

Experimental Results 

A. Experimental setup 
Figure 4 shows a scene comprising of three objects, where the 

left object is a blue cylinder made of painted metal, the center object 
is red paprika of natural product, and the right object is a yellow soy 
sauce container made of ceramic. These objects were placed on a 
black felt cloth and illuminated using three different light sources: 
incandescent light source from a light bulb from the left direction, 
fluorescent light source from a table lamp from the right direction, 
and LED light source from a ceiling lamp from the upper direction.  
The distances between the light sources and the target objects were 
1-3 m.  Gloss and specular reflection can be seen on the surface of 
each object.  A spectral imaging system was used in experiments, 
which consisted of a monochrome CCD camera with 12-bit dynamic 
range and Peltier cooling (QImaging, Retiga 1300), a VariSpec 
liquid crystal tunable filter, an IR-cut filter, and a personal computer.  
The imaging system was placed at the same height as the objects 
and bout 3 m away.  

 

 
Figure 4 Scene comprising three objects, where the left object is a blue 
cylinder made of painted metal, the center object is red paprika of natural 
product, and the right object is a yellow soy sauce container made of ceramic. 

B. Illuminant estimation 
The spectral image captured from the scene was converted into 

the luminance image, to which the center-surround filter was applied.   
Figure 5 (a) shows the filtration outputs by the center-surround filter 
with 

1
3   and 

2
7  , and the candidate highlight areas 

extracted by thresholding.  The extracted blue areas in Figure 5 (a) 
include the boundary area.   We then selected specular highlight 
areas with strong intensity except for the boundary regions.  Figure 
5 (b) depicts the whole set of eight highlight areas extracted from 
three object surfaces. 

The spectral power distribution was estimated for each of the 
detected highlight areas.  The SVD was applied to the data set of the 
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observed spectra at each highlight area.  The spectral data are then 
mapped onto a plane defined by the two singular vectors.  Eight 
illuminant spectral curves were estimated at the eight highlight areas 
along with algorithm in Section 2.2.  Finally, the light source for 
each highlight and the corresponding spectral power distribution 
were determined from the clustering algorithm and the iterative 
labeling process.  Figure 6 draws the spectral curves estimated for 
three light sources, where three bold curves correspond to the 
estimated illuminant spectra of incandescent, fluorescent, and LED 
light sources.  The method of probabilistic relaxation labeling was 
applied to identify the three light sources [9]. The broken curves 
represent the directly measured illuminant spectral power 
distributions. 

 

  

                       (a)                                               (b) 

Figure 5 Highlight detection, where (a) filtration outputs by the center-surround 
filter, and (b) selected highlight areas with strong intensity except for the 
boundary regions. 

 

Figure 6 Spectral curves estimated for three light sources, where three bold 
curves correspond to the estimated illuminant spectra of incandescent, 
fluorescent, and LED light sources.  The broken curves represent the directly 
measured illuminant spectral power distributions. 

C. Reflectance estimation 
The red paprika was selected as a target object to examine the 

performance of spectral reflectance estimation.  All spectral 
functions, including spectral reflectance, illuminant spectra, and 
output color signals were represented in 61-dimensional column 
vectors.  The number of light sources was L=3, and the estimated 
spectral curves in Figure 6 were used for the reflectance estimation. 

First, the image region used for estimating the spectral 
reflectance was determined.  Region A surrounded by the dashed 
square in Figure 7, contains many highlights on the red paprika.  The 
region size was about 250x350 pixels, and so the number of pixels 
N used for reflectance estimation was about 75000 (=250x350).  The 
spectral reflectance and the shading terms were estimated using the 
proposed algorithm in the previous section.  Figures 8 and 9 show 
the results of 100 iterative calculations.  The estimated shading 
terms for the specular reflection component and the estimated 
shading terms for the diffuse reflection component are presented in 

Figure 8, where (
S1

( )c x , 
D1

( )c x ) , (
S2

( )c x , 
D2

( )c x ) , and (
S3

( )c x , 

D3
( )c x ) represent, respectively, the shading terms for (1) the ceiling 

lamp from the upper direction, (2) the table lamp from the right 
direction, and (3) the incandescent lamp from the left direction.   The 
gamma correction was applied to the shading images for the 
specular component to improve the visibility.  The mapping between 
the shading terms and the light sources was done manually here, but 
the automated mapping is possible because the directions of the light 
sources can be predicted.  We note that the shading images of 

S1
( )c x ,

S2
( )c x , and

S3
( )c x contain highlights by the corresponding 

light sources.  Also, note that the shading image of
D3

( )c x  looks 

brighter than the others. This means that the illumination from the 
left is stronger compared with the other light sources. 

The estimated spectral reflectance of the red paprika is 
presented by the bold curve (A) in Figure 9.  The CIE-LAB color 
coordinates under white illuminant E with equal energy were 
L*=21.2, a*=46.7, and b*=-1.8.  The dashed curve in Figure 9 
represents the directly measured spectral reflectance by a 
spectrometer, which was used as the ground truth. The root-mean-
square error to the ground truth was rmse=0.030, and the CIE-LAB 
color differences were DE76=8.12 and DE00=5.24. 

Next, the spectral reflectance was estimated using the image 
region B without highlights on the red paprika.  Region B 
surrounded by the bold square in Figure 8, contains no highlight at 
all.  This region looks like a uniform color region without gradation 
of shading and color.  However, although the region is not large, it 
is influenced by the locally non-uniform spatial distributions of the 
three illuminations.  The region size of B was about 120x170 pixels, 
so that N was about 20400 (=120x170).  The estimated spectral 
reflectance is shown by the broken curve (B) in Figure 10.  The root-
mean-square error to the ground truth was rmse=0.038, and the CIE-
LAB color differences were DE76=2.39 and DE00=1.76. 

The same experiment on reflectance estimation was performed 
for the blue metal cylinder and the yellow ceramic container. We 
found that the matte regions without specularity are more stable for 
reflectance estimation than the regions including specularity. 

 

 

Figure 7 Image regions used for estimating the spectral reflectance of the red 
paprika, where region A surrounded by the dashed square contains many 
highlights, and region B surrounded by the bold square contains no highlight 
at all.  
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Figure 8 Estimated shading terms S1( )c x , S2 ( )c x , and S3 ( )c x for the specular 

reflection component and D1( )c x , D2 ( )c x , and D3 ( )c x for the diffuse reflection 

component for region A.  The gamma correction (was applied to the 
shading images for the specular component to improve the visibility. 

 

Figure 9 Estimated spectral reflectances of the red paprika, where the bold 
curve (A) and the broken curve (B) were results from region A and region B in 
Figure 7, respectively.  The dashed curve represents the directly measured 
spectral reflectance used as the ground truth. 

Conclusions 
This paper discussed a comprehensive method for estimating 

the surface-spectral reflectance from the image data of objects 
acquired under multiple light sources.  The target objects were 
everyday objects, which were usually assumed to be made of an 
inhomogeneous dielectric material.  We supposed the use of a 
spectral camera as an imaging system.  It was noted that the overall 
appearance of objects in a scene depended on the combination of the 
chromatic factors such as reflectance and illuminant and the shading 
terms such as surface geometry and position.  The chromatic factors 
were then represented as spectral functions in the visible range.  The 
shading terms were then represented as position functions in the 
spatial location range. 

We first described the method of estimating the illuminant 
spectra of multiple light sources based on detecting highlights 
appearing on object surfaces in a scene.  A set of the highlight 
candidates was detected first, and then some appropriate highlight 
areas were interactively selected among the set by considering the 
intensities, locations, and shapes.  Next, we considered estimating 
the spectral reflectance from a wide area selected from an object's 
surface.  The color signals observed from the selected area were 
described using the estimated illuminant spectra, the surface-

spectral reflectance, and the shading terms.   The estimation was 
based on using the fact that the definition domains of reflectance and 
shading terms were differed.  We developed an iterative algorithm 
for estimating the reflectance and the shading terms in two steps 
repeatedly.   The algorithm could be simplified if the selected area 
belonged to a matte surface with only a diffuse reflection component 
without gloss nor highlight.   

We experimented to confirm the feasibility of the proposed 
method using three dielectric objects of painted metal, a natural 
plant, and ceramic, and an actual illumination environment with 
multiple light sources of LED, fluorescence, and incandescent.  We 
showed the effectiveness of the proposed estimation algorithm and 
the accuracy of the estimated illuminant spectra and spectral 
reflectance compared with the ground truths of the direct 
measurements. 
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