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Abstract
The performance of colour correction algorithms are depen-

dent on the reflectance sets used. Sometimes, when the testing
reflectance set is changed the ranking of colour correction algo-
rithms also changes. To remove dependence on dataset we can
make assumptions about the set of all possible reflectances. In
the Maximum Ignorance with Positivity (MIP) assumption we as-
sume that all reflectances with per wavelength values between 0
and 1 are equally likely. A weakness in the MIP is that it fails to
take into account the correlation of reflectance functions between
wavelengths (many of the assumed reflectances are, in reality, not
possible).

In this paper, we take the view that the maximum ignorance
assumption has merit but, hitherto it has been calculated with
respect to the wrong coordinate basis. Here, we propose the
Discrete Cosine Maximum Ignorance assumption (DCMI), where
all reflectances that have coordinates between max and min bounds
in the Discrete Cosine Basis coordinate system are equally likely.
Here, the correlation between wavelengths is encoded and this
results in the set of all plausible reflectances ’looking like’ typical
reflectances that occur in nature. This said the DCMI model is
also a superset of all measured reflectance sets.

Experiments show that, in colour correction, adopting the
DCMI results in similar colour correction performance as using a
particular reflectance set.

1. Introduction
All cameras need to perform colour correction in order to

move from the RGB coordinate system of sensors - manufactured
to avoid high costs and to obtain a good signal-to-noise ratio [1]-
to a representation correlated with how a standard human observer
would perceive the image -i.e. correlated with XYZ tristimuli (or,
equivalently to sRGB triplets [2])-. However, because the camera’s
RGB sensor spectral sensitivities are not a linear transform appart
from XYZ, the camera sees the colours in the world differently
to the human visual system (we cannot uniquely map RGBs to
corresponding XYZs).

For this reason, the problem of colour correction - see Figure
1- is usually cast as a minimization problem in which we look for
the best 3×3 matrix transform that minimizes the error mapping
RGBs to corresponding XYZs [1, 3, 4]. A linear transform is used
because it is simple and exposure invariant (though other exposure
invariant methods exist [3]).

Of course how well we can colour correct camera RGBs de-
pends on the data set used. Indeed, if reflectances could be exactly
modelled by a 3-dimensional linear model [5] then - despite the

Figure 1: Left and right show respectively raw and colour corrected
image (both images with an sRGB gamma applied). The ungam-
maed corrected linear RGBs of the camera RAW are mapped to
display counterparts by a 3×3 matrix. This matrix is chosen to
best fit the data. This data is in general a pre-defined set of re-
flectances; for example, in this case, those reflectances inside the
blue rectangle.

camera sensitivities and XYZ colour matching functions not being
a linear transform apart - we can perfectly colour correct RGBs to
their corresponding XYZs. While the 3-dimensional reflectance
model captures much of the variance in real reflectances, typically
reflectance data is modelled using a linear model with 6, 7, 8 or
more basis functions [6–9]. Consequently, colour correction is,
and must be, approximate.

A subtle part of this approximate nature (that RGBs are
mapped to XYZs with non vanishing error) is that we need to
be careful in training and testing colour correction algorithms.
Indeed, the reflectances in standard reference targets such as the
Macbeth DC target [10] are smooth (by construction) whereas
some reflectances in nature are less smooth (though still far from
spiky). As such, it is common for colour correction algorithms
trained on one data set (e.g. the checker) to perform less well on
unseen testing data. Indeed, the ranking of algorithms can change
(which algorithm is better than another) depending on the dataset
used.

Thus, a variety of “general” assumptions have been made
about the set of all reflectances. The thinking is that if an algo-
rithm is trained on the set all possible reflectances then it should
generalise well when it is applied in the real world. Assumptions
that have been made in the literature include, the Maximum Igno-
rance [11], the Maximum Ignorance [12] with Positivity (MIP),
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and the Minimal Knoweldge (MK) [13] assumptions.
The Maximum Ignorance assumption that assumes all func-

tions (with positive and negative values) are all equally possi-
ble was superceded by the MIP assumption that assumes all re-
flectances with values between 0 and 100% are equally likely.
The MIP assumption assumes that there is no correlation between
reflectances at different wavelengths and this is, to some extent,
remedied in the MK approach. Though the latter, admits equally
smooth positive and negative spectra.

In the context of this paper, it is useful to think of the MIP
assumption as, not just a mathematical construct, but being based
on analysis of real reflectance data. Suppose we compile a large
corpus of reflectances, and then, per wavelength, we find the max
and min reflectance values of the whole set. These mins and maxes
will, indubitably, be close to 1 and 0 (since bright whites and dark
blacks come close to respectively reflecting all or no light). Now
let us assume that all reflectances that meet the per wavelength
min and max bounds are equally possible. Integrating over this set
returns the MIP.

However, clearly, we expect the reflectances at (say) 500
Nanometres to be correlated to those at 510 as reflectances are
smooth. That is, for a given dataset if we plotted reflectance values
at 500 Nanometers(Nm) against those at 510Nm most of the values
would fall along a line at 45 degrees. Yet, under MIP the whole
square region of values is possible. Of course if we transformed
the plot to new axes (we rotate the data) and then take the bounding
box then we better capture the statistics of real reflectances (while
at the same time modelling a superset of the reflectances found
in the world). This visualisation is shown in Figure 3 -for the
Munsell dataset-. Another way of interpreting Figure 3 is that we
are finding the coordinate system in order of maximum variance
(like PCA).

In this paper we adopt the visualisation shown in Figure 3.
Doing so leads us to develop what we call the Discrete Cosine
Maximum Ignorance Assumption (DCMI). In the DCMI we, again,
- for a large corpus of reflectances - calculate reflectance coordi-
nates but this time with respect to a discrete cosine basis. Per
coordinate axis we calculate the min and max bounding values.
Now we assume any reflectance is possible if it has coordinates
between the per coordinate axis bounds. The DCMI is the integral
over this set.

We will show later that the DCMI is much closer to real
reflectances than previous “general” assumptions while still being
a strict superset. Moreover, in colour correction experiments when
we adopt the DCMI and test on real data we achieve excellent
colour correction performance. By training on a realistic set of all
reflectances we can be sure we are accounting for unseen data.

Background
To understand colour correction in more detail, let us start by

recapitulating the Lambertian model of image formation, in which
the 3-sensor response of an imaging system (with RGB camera
sensitivities or XYZ colour matching functions) is given by:

ρ =
∫

ω

E(λ )S(λ )Q(λ )dλ (1)

where ω is the visible spectrum, E(λ ) is the scene illuminant that
reaches the object, S(λ ) is the reflectance of the object and Q(λ )

are the sensor sensitivities
We can rewrite this equation in a matrix form by noting

that the visible spectrum is usually sampled from 400 to 700
Nanometers every 10 Nanometers. In this way, we can define the
31×3 matrix Q, and the 31×1 vectors E and S, and then find that

ρ = Qtdiag(E)St (2)

where diag() makes a diagonal matrix from the vector argument
and t denotes vector/matrix transpose.

Of course, we can extend this expression for the case in which
we have multiple reflectances. In this case, let us define S as an
31×d matrix, representing d different reflectances; and let us also
call X to the 31×3 matrix containing the camera sensitivities and
R the 31×3 matrix containing the XYZ sensitivities. Then, we can
write the responses to all n reflectances as:

P = Rtdiag(E)S (3a)

X = Qtdiag(E)S (3b)

where both P and X are 3×d matrices.
The problem of colour correction is generally posed as finding

the 3×3 matrix M that minimizes

min
M
‖MP−X‖F , (4)

where ‖·‖F above denotes Frobenius norm. The matrix M can
be found in closed form. Its solution is found using the Moore-
Penrose inverse:

M = XP[PtP]−1. (5)

Usefully, it can be shown that the matrix M depends on the
autocorrelation ( SSt

n ) of the dataset S. Substituting Equations 3a
and 3b in Equation 5, we see that:

M = Qtdiag(E)SStdiag(E)R[Rtdiag(E)SStdiag(E)R]−1. (6)

Defining auto(S) = SSt

n and incorporating the illuminant into
the sensor functions QE = diag(E)Q and RE = diag(E)R the pre-
vious equation becomes

M = QE
tauto(S)RE [RE

tauto(S)RE ]
−1. (7)

2. Problem Statement and Algorithm

As stated in the background, a reflectance spectra (in the
visible range from 400 to 700 Nm and at a 10Nm sampling interval)
can be expressed as a 31×1 vector, and therefore, we can think
of any reflectance spectra as a point in a 31-dimensional space.
Therefore, a set of d reflectances can be represented as d different
31-coordinate points in the same space.

Let us now consider a reflectance dataset S. This set of d
points can be bounded by the enclosing hypercube, i.e. the smallest
hypercube that contains the set of all the spectra from the data set.
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Figure 2: Left: For all the reflectances on the Munsell dataset we plot their values at 500Nm against those at 510Nm. Right: We rotate the
same plot 45deg and we plot the bounding box of the data in this new representation -much smaller than in the left case, where it was the
full [0,1] square-.

If we integrate over the hypercube we, by construction, account for
all the reflectances in S but also generate many unseen reflectances.
Ideally, the number of unseen reflectances should be as small as
possible. Or, put another way, the bounding hypercube should
closely bound the set of real reflectances. In Figure 2, we see
that the coordinate basis with respect to which data is described
directly impacts on how snugly a bounding hypercube accounts
for reflectance data.

To use the bounding hypercube idea we must consider how
to calculate the autocorrelation of the enclosing hypercube (since
it is only the autocorrelation we need when we calculate a least-
squares fit). For reasons that will become clear, we will present
our integration argument not specifically for the reflectance set S
but for its coordinates with respect to a basis. Clearly,

S = I31×31S (8)

Here I31×31 represents the standard basis. More generally,
we can write

S =UΩ (9)

where U is the 31×31 reflectance basis and each column of
(the 31×d matrix) Ω is the basis coordinates that define a single
reflectance.

It follows that

auto(S) =
SSt

d
=

UΩΩtU t

d
=Uauto(Ω)U t (10)

The previous equation teaches us that, given that U is fixed,
the autocorrelation for a reflectance set depends on ΩΩt (the auto-
correlation of the coordinates of the reflectances with respect to
the basis). Thus, we can compute

auto(Ω) =
ΩΩt

d
(11)

Rewriting Equation 11 as a summation we have:

[auto(Ω)]i j =
Ωi ·Ω j

d
(12)

where Ωi denotes the ith row of coordinates and · denotes the
vector dot-product.
For the special case where i = j,

[auto(Ω)]ii =
||Ωi||2

d
(13)

The bounding hypercube of the coordinate matrix Ω is defined
by the min and max row coordinates in Ω:

Box(Ω) = {m,M} ,
where mi = min(Ωi) and Mi = max(Ωi) (14)

Now, we are aiming to compute the autocorrelation of all
the reflectances in a bounding hypercube for Ω. We define this
autocorrelation as auto(Box(Ω)). To calculate auto(Box(Ω)) we
need to integrate over the bounding box.

It can be shown that:

[E(auto(Box(Ω)))]i j =


M3

i −m3
i

3(Mi−mi)
when i = j

M2
i M2

j +m2
i m2

j−m2iM2
j−M2

i m2
j

4(Mi−mi)(M j−m j)

when i 6= j.

(15)

To make our derivation more concrete, we will use the Dis-
crete Cosine Basis (DCB) for U (and Ω are reflectance coordinates
with respect to that basis). Other natural choices for basis include
those derived from Characteristic Vector Analysis or, like the Min-
imal Knowledge assumption, a Fourier basis. When we use the
autocorrelation of the bounding hypercube with respect to the
DCB basis, we call this the Discrete Cosine Maximum Ignorance
assumption (DCMI).

3. Application to colour correction

Reflectance Datasets
In our experiments we use the following reflectance datasets:

• The 462 reflectance MUNsell dataset [5]. These reflectances
are painted patches designed to have a large colour gamut.
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MUN OBJ DUP NAT µ

LS: MUN 0.78 1.18 2.30 2.30 1.64
LS: OBJ 1.45 1.11 2.47 1.79 1.70
LS: DUP 1.28 0.94 1.71 1.44 1.34
LS: NAT 2.00 1.25 2.23 1.28 1.69
µ 1.34 1.13 2.25 1.74 1.59

Table 1: Cross validated colour correction using least squares to
train. Mean Delta E.

MUN OBJ DUP NAT µ

LS: MUN 2.66 3.53 6.30 5.11 4.40
LS: OBJ 3.13 3.38 9.30 4.11 4.98
LS: DUP 2.66 2.46 4.87 3.64 3.41
LS: NAT 3.27 3.04 5.75 3.35 3.85
µ 2.91 3.19 7.05 4.19 4.16

Table 2: Cross validated colour correction using least squares to
train. 95 percentile Delta E.

• The 170 reflectance OBJect dataset [6]. This reflectance set
contain spectral of typical objects including bricks, wood
and pavement.

• The 120 reflectance DUPont dataset [6]. This reflectance
set contain the spectra of colourful dyed material.

• The NATural dataset measured by Westland et al [14]
which comprises 404 measured spectra of plants, foliage
and flowers.

Results
For a Nikon D300s camera we numerically integrated RGBs

under D65. We also calculated the corresponding XYZs. We then
computed the least-squares fit taking the RGBs to XYZs. Given
the corresponding predicted and actual XYZs we calculated the
average ‘Delta E’ error [15] for our 4 data sets. Mean and 95
percentile errors are shown in Tables 1 and 2. Each row ‘means’
we calculate the best 3×3 matrix using the autocorrelation for that
surfaces’ reflectance set. We then test with all the reflectance sets
in turn (each testing dataset represents a column).

The averages over columns are shown in the rightmost col-
umn. These averages encode how well a reflectance set performs
when it is used to determine the colour correction transform. The
average over rows speaks to the difficulty of correcting a given
reflectance test set.

Intuitively, when we train and test with the same reflectance
set we should get the best results. This is true for all our data except
the OBJ dataset (Table 1). Here, training with the DUP set gives
the lowest error overall, on average 1.34 Delta E. The discrepancy
comes from the fact we find our 3×3 matrix by minimizing RMS
error and then calculate CIE Delta E. We see that the Dupont
reflectances are the hardest to colour correct (an average Delta E,
2.25).

In Table 2, we repeat the same experiment but tabulate the
95% percentile errors. As expected the 95% percentile errors are
significantly larger. Indeed, they are sufficiently large that the color
error of some patches could be noticeable in images. Note that
using the DUP dataset to compute the colour correction matrix
leads to the lowest average 95 percentile error for the datasets (see
third row). But, again, the Dupont reflectances themselves incur
the highest percentile error, on average.

MUN OBJ DUP NAT µ

DCMI: MUN 0.87 1.18 2.39 2.24 1.67
DCMI: OBJ 0.95 1.07 2.37 2.02 1.60
DCMI: DUP 0.89 1.21 2.39 2.39 1.72
DCMI: NAT 0.93 1.09 2.51 2.13 1.67
µ 0.91 1.14 2.41 2.20 1.66

Table 3: Cross validated colour correction using DCMI to train.
Mean Delta E.

MUN OBJ DUP NAT µ

DCMI: MUN 2.86 3.86 5.99 5.03 4.43
DCMI: OBJ 2.66 3.46 6.78 4.69 4.39
DCMI: DUP 2.79 3.81 6.47 5.49 4.64
DCMI: NAT 2.54 3.76 8.80 5.14 5.06
µ 2.71 3.72 7.01 5.09 4.72

Table 4: Cross validated colour correction using DCMI to train. 95
percentile Delta E.

MUN OBJ DUP NAT µ

MIP [12] 2.45 3.10 6.29 4.61 4.11
MK [13] 1.36 2.16 3.51 3.55 2.64

Table 5: Cross validated colour correction, using Maximum Ig-
norance with Positivity (MIP) and Minimal Knowledge (MK)
methods. Mean Delta E.

We now repeat this experiment where we train using the
DCMI assumption. We then test on the reflectance sets themselves.
Results of this procedure are shown in Tables 3 and 4.

In Table 3, encouragingly, we obtain similar results (indeed
several are lower). On average (for corresponding entries) the
error - already very low - remains low (about 15% higher) than
fitting with the actual reflectances. This is a very important result.
The DCMI models an infinite number of reflectances and is a
strict superset of all measured reflectances. And yet, adopting
this training set leads to very good performance on actual real
reflectances.

The 95% results are shown in Table 4. Again results are
comparable to training on the sample reflectance data sets.

Tables 5 and 6 report the mean and 95% results for the Max-
imum Ignorance with Positivity method [12] and the Minimal
Knowledge (MK) method [13] -we did not include Minimal Knowl-
edge II [16] as it requires the knowledge of all the spectra in the
dataset (while we theoretically only require those defining the
convex closure)-. In both cases, the colour correction results are
significantly worse than using our new DCMI. The MIP and MK
assumptions are too general (or weak) to account for the real trends
found in real data.

Finally, let us visualise the autocorrelations for the different
methods. In Figure 3 we can see all the autocorrelations for the
case of the Munsell dataset. In the first row we show the original
autocorrelation -left- and the autocorrelation computed by our new
DCMI -right-. On the Second row we show the autocorrelation for
the Maximum Ignorance Assumption -left- and the autocorrelation
obtained by the Minimal Knowledge (MK) method -right-. We can
see how our approach obtains an autocorrelation that resembles
the most to the Original one.
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Figure 3: Autocorrelations ( SSt

n ) for the Munsell dataset of the 4 different methods analized in the Results section. a) Original Reflectances
-Least Squares-; b) The autocorrelation computed by our DCMI assumption; c) The autocorrelation of the Maximum Ignorance Assumption;
d) The autocorrelation of the Minimal Knowledge method.

MUN OBJ DUP NAT µ

MIP [12] 6.21 7.47 21.46 9.33 11.12
MK [13] 3.49 5.12 10.18 6.99 6.44

Table 6: Cross validated colour correction, using Maximum Ig-
norance with Positivity (MIP) and Minimal Knowledge (MK)
methods. 95 percentile Delta E.

5. Conclusion
In this paper, we present a new maximum ignorance assump-

tions for reflectances. Our new DCMI (Discrete Cosine Maximi-
mum Ignorance) assumption calculates the min and max cofficients
of a set of real reflectances with respect to a Discrete cosine basis.
These coordinates delimit a bounding hypercube of the reflectance
set. We show that a least-squares regression depends only on the
autocorrelation of reflectances and this can be found for the DCMI
case by integrating over the hypercube.

Experiments show 3 main results. First, compared to the
prior art maximum ignorance assumptions, the DCMI is more
representative of real reflectance data. Second, when we use the
DCMI assumption to find the best 3×3 colour correction matrix,
we find almost as good colour correction performance for a testing
set (as when we use the testing set for training). Lastly, our work
sheds light on the frequently asked question: ”what reflectance set
should I use to train my colour correction algorithm”. The answer
is a superset which contains all real reflectances (that we are aware
of) but adds as few unseen reflectances as possible.
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