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Abstract
Most cameras still encode images in the small-gamut sRGB

color space. The reliance on sRGB is disappointing as mod-
ern display hardware and image-editing software are capable of
using wider-gamut color spaces. Converting a small-gamut im-
age to a wider-gamut is a challenging problem. Many devices
and software use colorimetric strategies that map colors from
the small gamut to their equivalent colors in the wider gamut.
This colorimetric approach avoids visual changes in the image
but leaves much of the target wide-gamut space unused. Non-
colorimetric approaches stretch or expand the small-gamut col-
ors to enhance image colors while risking color distortions. We
take a unique approach to gamut expansion by treating it as a
restoration problem. A key insight used in our approach is that
cameras internally encode images in a wide-gamut color space
(i.e., ProPhoto) before compressing and clipping the colors to
sRGB’s smaller gamut. Based on this insight, we use a software-
based camera ISP to generate a dataset of 5,000 image pairs of
images encoded in both sRGB and ProPhoto. This dataset en-
ables us to train a neural network to perform wide-gamut color
restoration. Our deep-learning strategy achieves significant im-
provements over existing solutions and produces color-rich im-
ages with few to no visual artifacts.

Introduction
Most digital cameras still encode their captured images in

the standard RGB (sRGB) color space [1]. Since sRGB’s in-
troduction, several wider gamut color spaces, such as Adobe
RGB [2], Display P31, and ProPhoto RGB [4], have been pro-
posed for use with improved display technology and image-
editing software. For a simple comparison, sRGB is capable of
encoding only ∼35% of all visible colors, the medium-gamut
Adobe RGB and Display P3 color spaces encode ∼50% of all
visible colors, and the wide-gamut ProPhoto color space encodes
∼90% of all visible colors.

A gamut conversion is required to map between color
spaces. Converting from wide-gamut to small-gamut color
spaces requires deciding how to contract and clip color values
to lie within a smaller gamut boundary. Conversely, the restora-
tion of a wide-gamut color space from a small-gamut one is more
challenging as the correct target colors in the wider gamut are
unknown (see Fig. 1). When converting an sRGB image to a
wider-gamut color space, most software and devices employ a
colorimetric strategy that strives for accurate color reproduction
in the target color space. This conservative approach avoids color
distortion, but leaves large regions in the wider-gamut unused.
Non-colorimetric gamut-expansion methods (also referred to as
saturation or perceptual intent methods), such as [5, 6, 7, 8], are
designed to stretch the input gamut colors to fit the target gamut

1Display P3 was introduced by Apple and is based on the DCI-P3
color space [3].
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Figure 1. (top) An input image encoded in its small-gamut sRGB color

space and its ground-truth wide-gamut ProPhoto. Gamuts of common color

spaces used on cameras (sRGB, Adobe RGB, Display P3, and ProPhoto)

are shown. (middle) Conversion of the sRGB image to ProPhoto using a

standard “colorimetric” conversion from Photoshop [10], a state-of-the-art

gamut expansion method [5], and our GamutNet result. (last) Heat maps of

per-pixel errors in terms of root-mean-squared-error (RMSE).

with the goal of enhancing the images and making them appear
more vivid. However, in terms of restoration, their results may
introduce unwanted color distortions.

We leverage an insight proposed in [9] which observed that
a camera’s image signal processor (ISP) units produce an internal
version of a captured image in the wide-gamut ProPhoto RGB
color space. This in-camera conversion of the raw-RGB sensor
image to the ProPhoto RGB color space allows cameras to per-
form photo enhancement in a color-rich representation. The con-
version to a gamut-limited output color space is applied as the
last step of the camera pipeline. Unfortunately, cameras do not
provide easy access to this wide-gamut image state. However,
it is possible to use a software ISP to mimic the camera’s hard-
ware. This allows access to an image in both its wide-gamut and
small-gamut color encoding. This access to paired small-gamut
and wide-gamut images enables the color space conversion prob-
lem to be cast as a restoration problem where known ground truth
(i.e., wide-gamut version) is available to learn a recovery model.
Contribution We describe an approach to leverage the in-
camera processing pipeline to produce a dataset of 5,000 image
pairs encoded in both the small-gamut sRGB and wide-gamut
ProPhoto RGB color spaces. Using this dataset, we train a deep
neural network, termed GamutNet, to restore sRGB image col-
ors back to their wide-gamut ProPhoto RGB representation. We
show that this deep-learning approach to color restoration can re-
duce errors by almost 50% over existing methods. Our dataset,
code, and trained model will be made publicly available.
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Figure 2. This figure illustrates a typical imaging pipeline implemented by a camera’s image signal processor (ISP) hardware. An essential step in the

pipeline is converting the sensor-specific raw-RGB colors to a perceptual color space based on CIE XYZ (i.e., ProPhoto). The ISP then enhances the wide-

gamut ProPhoto-encoded image. The enhanced ProPhoto image is finally converted to its output color space. While some cameras allow an option to save

the image in a medium-gamut color space, such as Adobe RGB or Display P3, most cameras default to sRGB. By emulating this camera pipeline, we can

obtain training data from pairs of the same images encoded in small-gamut sRGB and wide-gamut ProPhoto (highlighted in blue).

Preliminaries and Related Work
Addressing the gamut mismatch between different color

spaces and devices is a well-studied topic (e.g., [11, 12, 13, 14,
15, 16]) Methods to convert color values from one color space to
another can be categorized into two classes: (i) colorimetric re-
production and (ii) gamut matching. Colorimetric reproduction
includes absolute and media-relative colorimetric rendering in-
tents [17] that aim to reproduce the exact visual stimuli of the
image in the target color space. Gamut matching, on the other
hand, focuses on fully utilizing the color gamut of the target
space. Gamut matching methods are often referred to as per-
ceptual or saturation-rendering intents. These include gamut ex-
pansion methods (e.g., recent methods [7, 5]) that expand colors
to fit the target gamut based on local features (e.g., local contrast)
in the image.

Different from the discussed categories, the goal of our
method is to restore the small-gamut encoding of an image to
its wide-gamut encoding while maintaining colorimetric accu-
racy. In particular, we focus our attention on the saturated points
found in the small-gamut image. These saturated points represent
are potentially wide-gamut colors that were clipped to the small-
gamut boundary when converting from their original wide-gamut
encoding on the camera. Recovering these clipped color values
is mathematically an ill-posed problem.

As described earlier, the key insight leveraged in this work
is that the camera imaging pipeline internally encodes captured
images to the wide-gamut ProPhoto color space as part of the in-
ternal processing on the hardware image signal processor (ISP).
Specifically, one of the main tasks of an ISP is to convert the
sensor-specific raw-RGB image, defined by the sensor’s color
filter array’s spectral sensitivities, to a device-independent color
space based on CIE XYZ [18]. In fact, the ProPhoto color space
(initially called the Reference Output Medium Metric [ROMM]
color space [4]) was designed explicitly for this purpose. The
ProPhoto encoded image is subsequently enhanced by the ISP
and finally saved to sRGB, as shown in Fig. 2. Cameras do not
allow access to this internal image ProPhoto encoding; however,
it is possible to use a software-ISP to mimic this functionality.
As a result, we can produce a large dataset of ProPhoto encoded
and sRGB encoded image pairs.

Recent work [9] introduced a similar idea that embedded
a small number of samples from the ProPhoto image into the
saved sRGB image as a comment. This metadata was used to
estimate a mapping function that enables the mapping from the
sRGB colors to their corresponding ProPhoto values. We aim to
solve this problem without specialized metadata using a neural
network framework.

Deep Gamut Restoration
We begin by first providing an overview of our method, fol-

lowed by a description of generating images for our dataset. Fi-
nally, we provide details to the GamutNet architecture and its
training process.

Method Overview
Given an image encoded in the sRGB color space, denoted

as xsRGB ∈ RM×3, where M is the number of pixels, we want to
map it into a wide-gamut image, denoted as yProPhoto ∈ RM×3, in
the ProPhoto color space. Note that our goal is to produce an
image that is as colorimetrically accurate as possible in the wide-
gamut color space. The colors that are most problematic are
those that were out-of-gamut in the in-camera conversion from
ProPhoto to sRGB. The color values of these pixels had to be
clipped to the sRGB gamut boundary. As a result, we focus our
network’s capacity on these pixels and not the pixels with in-
gamut colors.

With this in mind, we apply a pre-defined 3×3 linear trans-
form to convert xsRGB to a clipped version of ProPhoto. This is
written as follows:

x̃ProPhoto =C x̄sRGB , (1)

where C ∈ R3×3 using the chromatic adaptation transform
CIECAT02 [19] and x̄sRGB represents the linearized sRGB values
after a de-gamma operation is performed on xsRGB. The matrix C
is applied to each RGB value in x̄sRGB.

This linear mapping converts all original in-gamut color val-
ues in a colorimetrically accurate manner. However, the colors
of pixels initially clipped to the sRGB gamut, are constrained
at the boundary of the sRGB gamut in the ProPhoto space (see
visualization in Fig. 3). We referred to this transformed image
as x̃ProPhoto. Our goal is to process these out-of-gamut pixels to
restore them to their original wide gamut value.

Out-of-gamut pixels Since the input sRGB image xsRGB was
generated through a conversion from its original ProPhoto en-
coding, we classify the pixels in xsRGB into two classes: (1) the
in-gamut pixels that were not clipped because they are inside the
sRGB gamut; and (2) the possibly out-of-gamut pixels that have
been potentially clipped down.

When the color of a pixel is on the sRGB gamut’s boundary,
the color may either be initially at the boundary or be clipped to
the boundary. Therefore, these pixels are regarded as potentially
out-of-gamut. We consider the pixels with one or more possi-
bly saturated values in their three RGB channels as potentially
out-of-gamut, with two exceptions of pure white and pure black
colors, which are preserved during the color space conversion.
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On the other hand, all non-saturated pixels—pixels with color
values in the exclusive range (0,255)—are considered in-gamut.

Based on this simple definition, we compute a binary out-
of-gamut mask for each input image to let our gamut mapping
network focus on learning how to restore the out-of-gamut pixels.

The out-of-gamut mask m is computed based on the input
sRGB image xsRGB as

m =

{
0 where xsRGB is black, white, or in-gamut

1 otherwise.
(2)

The task of our network is to restore the out-of-gamut colors
of pixels in the sRGB space to their original color in the ProPhoto
space with the help of the in-gamut neighbors. Since we have the
colorimetrically correct conversion for in-gamut pixels, our net-
work focuses on estimating the amount of the saturation of each
pixel instead of its original color, so we can add the estimated
saturation (or residual) to the linearly mapped ProPhoto image to
get the restored image—that is:

ˆ̄yProPhoto = m� fθ (x̃ProPhoto, inv(m))+ x̃ProPhoto, (3)

where fθ is our network, called GamutNet, with parameters θ ,
x̃ProPhoto is the input image linearly mapped to the ProPhoto space,
� indicates point-wise masking operation, and inv(·) indicates
binary mask inversion.

Given a dataset of N image pairs

D =
{(

x̃(i)ProPhoto, ȳ
(i)
ProPhoto

)}N

i=1
, (4)

we train our neural network by minimizing the L1 loss between
the estimated linear ProPhoto image and its ground-truth coun-
terpart, over the out-of-gamut pixels

min
θ

1
N

N

∑
i=1

∣∣∣m(i)�
(

ˆ̄y(i)ProPhoto− ȳ(i)ProPhoto

) ∣∣∣ , (5)

where |·| indicates the L1 norm. Fig. 3 shows our gamut mapping
framework and the architecture of GamutNet.

Dataset
To produce our dataset, we first gather a large number of

camera RAW images to be processed through a software camera
emulator. For this, we use RAW images from the MIT-Adobe
FiveK [20], NUS [21], Cube+ [22], and RAISE [23] datasets.
These datasets collectively represented 16,599 images captured
from different cameras and of a wide variety of scene content.

We use the Adobe Camera RAW SDK to serve as our soft-
ware ISP as done in [18]. The Adobe Camera RAW SDK mim-
ics the steps of a typical ISP. We can modify the SDK to out-
put the ProPhoto RGB after image enhancement and the final
sRGB image. Access to these internal image encodings in the
SDK is detailed in [18]. The image enhancement steps shown
in Fig. 2 control the photo-finishing applied to the image using a
combination of a 3D lookup table and a 1D lookup table. These
combined lookup tables form a particular “picture style.” In this
paper, we use both the Adobe Vivid picture style and Adobe Stan-
dard picture style to render the images. We can think of this as a
virtual camera that essentially integrates these two picture styles
into a meta style. In the end, we generated 33,198 pairs of input
(sRGB) and target (ProPhoto) images.

Before training, we need to exclude images that contain
only a few out-of-gamut pixels. We also want to avoid images

that result in overly saturated sRGB (i.e., most of the colors were
out of gamut). Images with only a few out-of-gamut pixels do
not provide sufficient information to train our model. Similarly,
overly saturated images force the network to learn without in-
gamut neighbors’ information. To cull such images, we compute
the ratio p of the number of the out-of-gamut pixels to the total
number of pixels of each image:

p = ns / (ng +ns) , (6)

where ns and ng are the number of the out-of-gamut pixels and
that of the in-gamut pixels of the image, respectively. After ex-
cluding images with p greater than 50%, we select 5,000 images
with the largest p to form our final dataset. We randomly split the
5,000 images into training, validation, and testing sets of 3,000,
1,000, and 1,000 images, respectively.

Network Architecture and Training
We designed our DNN network to predict the residual be-

tween our input clipped-ProPhoto (x̃ProPhoto) image and the target
image (ȳProPhoto). This means the residual represents the color
difference between the linear-sRGB colors transformed into the
ProPhoto color space with a clipped signal and its ProPhoto RGB
counterpart (the original signal). To help the network focus on
restoring the out-of-gamut-pixels’ values only with the in-gamut
pixels’ aid, we concatenate the inverted out-of-gamut mask to the
input image as illustrated in Fig. 3.

The out-of-gamut mask is also applied during the loss calcu-
lation to prevent the in-gamut pixels from contributing to the loss.
This is because colorimetrically, the in-gamut pixels in the input
image are almost identical to their counterpart in the ground-truth
image and yield negligible loss. Using the out-of-gamut mask,
we can filter out such trivial cases and focus our model on restor-
ing out-of-gamut color values in the wider-gamut ProPhoto color
space. We use L1 loss for optimization, which is commonly used
in many image restoration problems.

Results
We first evaluate our method’s ability to perform gamut

restoration from sRGB to ProPhoto. The evaluation uses the test-
ing partition of our dataset described in the “Dataset” section.
Note that all errors are reported only on the out-of-gamut colors.

ProPhoto Gamut Restoration
For our first evaluation, we compare our method with three

representative approaches for color space conversion. The first
is the recent gamut-extension method by Zamir et al. [5] that ex-
tends an image’s color gamut for use on wide-gamut displays.
This work performs an optimization procedure based on a novel
perception model applied to any target color space. We note that
the goal of Zamir et al.’s method is not accurate colorimetric re-
production. However, Zamir et al.’s work represents the state-of-
the-art in gamut expansion that serves as an approach that would
likely be used with modern displays.

The second approach we compare with is Adobe Photo-
shop’s color conversion utilities. In particular, we use Adobe
Photoshop’s absolute and relative colorimetric color conversion
utilities. These represent the most common strategy found in
other software or display devices to minimize colorimetric er-
rors. The difference between the two approaches is that for the
relative colorimetric approach, the white-point is shifted slightly
from D65 to D50 to match the white-point definition in ProPhoto.
The white-point shift has little effect on color values in the final
mapped image.
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Figure 3. An overview of our method. We first convert the input sRGB image into a linear “clipped”-ProPhoto image using a 3× 3 linear transformation;

we then compute the out-of-gamut mask; the “clipped”-ProPhoto image and mask are concatenated as input to GamutNet; GamutNet predicts the residual

pixel corrections and adds them to the input clipped ProPhoto image. Our L1 loss is computed between our recovered ProPhoto output and its corresponding

ground truth on the out-of-gamut pixels only. Our GamutNet architecture is shown in the bottom part. The out-of-gamut colors are shown in CIE-xy chromaticity

plots for the input and target. Note that the chromaticity plot is a projection of the 3D color values, and therefore some out-of-gamut pixels will fall inside the

2D-triangle of the gamut’s projection.

Table 1. This table shows the RMSE and ∆E00 results of color space conversion between sRGB and ProPhoto on 1,000 images
with known ProPhoto color values. Methods used are Zamir et al. [5] gamut-expansion, Photoshop’s color conversion feature
(absolute and relative colorimetric), a linear transform, and our GamutNet result.

RMSE ∆E00

Methods Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

Zamir et al. 9.533 4.405 6.730 10.127 6.101 3.836 5.720 8.315
Photoshop, Absolute 5.892 2.475 3.958 5.927 3.509 2.293 3.111 4.106
Photoshop, Relative 5.891 2.475 3.958 5.927 3.509 2.293 3.111 4.106
CIECAT02 5.289 2.083 3.383 5.243 3.244 2.061 2.861 3.867
Ours 2.812 1.319 1.719 2.500 2.209 1.141 1.611 2.514

Finally, for completeness, we also show the results of the
3×3 color space transform from linear-sRGB to linear-ProPhoto.
This last method serves as the input to our GamutNet method.

Table 1 shows the comparison of all methods in terms of
root mean squared error (RMSE) and ∆E00 computed over the
out-of-gamut pixels. ∆E00 is a color-based metric that accounts
for non-uniformity of perceptual color appearance. The lower the
∆E00 score, the more similar colors are considered perceptually.
The table shows the mean score over the 1,000 test images, the
top 25% quantile, the 50% quantile (medium), and the bottom
25% quantile for both RMSE and ∆E00. Our GamutNet approach
provides much better results for all metrics.

Subjective results are shown in Fig. 4. We also include
results from Apple’s ColorSync software [24]. Unlike Photo-
shop, we were not able to batch process the 1,000 test images
with ColorSync. As a result, we included examples from Col-
orSync for visual comparisons only in our figures and not in
Table 1. Fig. 4 shows several images each with the follow-
ing: input sRGB; Photoshop (relative colorimetric) conversion;
ColorSync’s conversion; our GamutNet conversion; and (5) the
ground-truth ProPhoto target. Below each image, we show a heat
map of the RMSE error ranging from [0-20] and a CIE-xy chro-

maticity diagram showing the out-of-gamut sRGB colors after
conversion. We can see that GamutNet gives the best quantita-
tive results on both metrics. The chromaticity diagram also re-
veals that GamutNet shifts the out-of-gamut colors to be much
more similar to their ground-truth positions.

Additional Evaluations
We trained and evaluated our model on an additional

dataset, Cube+ [22]. This dataset contains 1,707 images captured
by a single DSLR camera, a Canon EOS 550D. To render sRGB
and ProPhoto RGB images, we used a different picture style (i.e.,
photo-finishing style) than the dataset used in the previous setup.
Among the camera-matching styles, which are specific to a par-
ticular camera, we used the Landscape style, which fits well with
the contents of Cube+, which consists mostly of outdoor scenes.
After splitting the dataset, we trained our model with the same
settings as the previous setup. Table 2 shows the evaluation met-
rics computed on 341 test images from that dataset; again results
are computed for out-of-gamut pixels. Similar to the results using
our dataset from the main paper, our GamutNet yields more than
50% improvement compared to existing approaches in terms of
RMSE. We notice that the mean ∆E00 is a bit lower than on our
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Figure 4. Comparisons among the ProPhoto results of Zamir et al. [5] (gamut expansion), Photoshop [10], ColorSync [24], and our GamutNet. Heat maps of
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and ColorSync are applying similar colorimetric conversion. The GamutNet provides the best color space conversion.
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Table 2. This table shows the mean RMSE and ∆E00 of color
space conversion between sRGB and ProPhoto on an ad-
ditional dataset. Methods used are Zamir et al.’s gamut-
expansion [5], Photoshop’s color conversion feature (relative
colorimetric) [10], a linear transform, and our GamutNet.

Methods RMSE ∆E00

Zamir et al. 16.959 3.807
Photoshop 5.419 1.463
CIECAT02 5.631 1.621
Ours 2.608 1.364

Table 3. This table compares the results obtained by using
our models trained and evaluated in different scenarios. The
first and the last rows correspond to the control cases, and
the other is the experimental case used to assess our model’s
ability to generalize across datasets.

Trained on Evaluated on RMSE ∆E00

Main Main 2.812 2.209
Main Additional 3.121 1.696
Additional Additional 2.608 1.364

dataset. We believe this is because the test dataset includes many
images containing a relatively small number of saturated pixels.

To see how well our model generalizes, we evaluated the
model on the described additional dataset. This heterogeneous
evaluation is shown in the second row of Table 3. The other two
rows are included for comparison. Regarding the two cases eval-
uated on the additional dataset, the experimental case is worse
than the control case by 19.67% and 24.34% in terms of RMSE
and ∆E00, respectively, which is not a significant drop in perfor-
mance. Moreover, compared to the results of CIECAT02 (third
row in Table 2), which is the input, the experimental case is su-
perior by more than 44%. Although the mean ∆E00 is increased
by a fraction (∼ 0.075), it is perceptually insignificant.

Summary
We have presented a DNN-based approach, termed Gamut-

Net, to address wide-gamut color restoration from a small-gamut
encoding (sRGB). The proposed DNN approach is enabled by
the insight that cameras internally represent images in the wide-
gamut ProPhoto color space. Working from this insight, we pro-
duced a new dataset of 5,000 images encoded in the small-gamut
sRGB color space and the wide-gamut ProPhoto color space.
This sRGB/ProPhoto paired training data allows us to treat the
problem as one of restoration versus enhancement where we have
a ground-truth target signal to recover. We showed that Gamut-
Net can improve the colorimetric restoration by close to 50%.
Our code and dataset will be made publicly available.
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