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Abstract
Previously improved color accuracy of a given digital camera

was achieved by carefully designing the spectral transmittance of
a color filter to be placed in front of the camera. Specifically, the
filter is designed in a way that the spectral sensitivities of the cam-
era after filtering are approximately linearly related to the color
matching functions (or tristimulus values) of the human visual
system. To avoid filters that absorbed too much light, the optimiza-
tion could incorporate a minimum per wavelength transmittance
constraint.

In this paper, we change the optimization so that the overall
filter transmittance is bounded, i.e. we solve for the filter that (for a
uniform white light) transmits (say) 50% of the light. Experiments
demonstrate that these filters continue to solve the color correction
problem (they make cameras much more colorimetric). Signifi-
cantly, the optimal filters by restraining the average transmittance
can deliver a further 10% improvement in terms of color accuracy
compared to the prior art of bounding the low transmittance.

1. Introduction
Digital cameras measure color of the real world scenes by

using three color channels, known as Red, Green and Blue. When
the RGB sensitivities of a camera are within a linear transform
from the CIE XYZ color matching functions [1], we say the camera
meets the so-called Luther condition [2] and it is colorimetric [3].

However, we are not aware of any typical cameras (for ex-
ample, in smartphones or single-lens reflex cameras) that are col-
orimetric [4, 5]. Rather, in typical signal processing pipelines,
the RGBs measured can only be approximately corrected to the
corresponding XYZ tristimulus values (or equivalently sRGB [6]).
Invariably, a simple 3×3 matrix is used for color correction.

Recently Finlayson and Zhu [7] presented a method that
designed a color filter that when placed in front of the camera,
makes the camera more colorimetric. The idea of placing a prefilter
and a camera is illustrated in Figure 1a. Explicitly, when we place a
filter in front of a camera, the effective camera responses functions
are equal to the original camera sensitivities multiplied by the
spectral transmittance of the filter on a per wavelength basis. For
example, given the spectral sensitivity curves of a camera (shown
in Figure 1b) and the spectral transmittance distribution of an
optimal filter obtained from the Luther-condition optimization
in [7] (plotted in Figure 1c), we can obtain the new effective
camera sensitivity set by per-wavelength multiplication as shown
in Figure 1d.

(a) a prefilter + camera (b) normalized camera sensitivities

(c) a filter without constraint (d) camera sensitivities after filtering

(e) a filter with constraint (f) camera sensitivities after filtering

Figure 1: (a) Illustration of the setting of a ‘prefilter + camera’, (b)
the spectral sensitivity curves of a Canon 40D camera normalized
at the maximum of each color channel, the spectral transmittance
distribution of optimal filters (c) without constraint and (e) with a
constraint of favg ≥ 75% (the dotted lines show the overall trans-
mittance of the filter). In (d) and (f) are the new effective camera
sensitivities after using the filters given in (c) and (e) respectively.

In [7], a filter is found such that the new sensitivity functions
of the ‘filter+camera’ system after an optimal linear transform is
closest to the XYZ color matching functions in the least-squares
sense (thereby optimizing the Luther condition). In Figure 1d,
clearly we can see that the camera using such a filter produces
much lower sensitivity responses. Although we can increase the
exposure time or set a higher ISO value to compensate for the loss
of light, unfortunately a camera with low sensitivity functions will
sometimes result in high noise levels (i.e. lower signal-to-noise
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ratio).
In a recent work, the noise issue in the prefilter design has

been studied by Vrhel [9]. Vrhel’s work shows that the filters
with higher overall transmittance values perform better in terms
of Signal-to-Noise Ratio (SNR). For the color filter, it is a trade-
off between the colorimetric measurement potential of a camera
and the amount of noise that is present in captured images (for a
given intensity of light). It is of great practical interest to design
color filters which can transmit more of the incoming light while
delivering improved colorimetric performance for digital cameras.

To avoid solving for a filter that has low transmittance, pre-
vious work [8] showed how to design filters that were required to
transmit a low-bound percentage of light at all wavelengths (e.g.
the filter transmittance has to be greater than 20% at any wave-
length). Again, there is a trade-off here: the higher the low bound,
the less well a filter can make a camera colorimetric.

In this paper we look at the filter transmittance in a different
way. Rather than placing a lower bound at each wavelength, we
instead focus on the overall transmittance (on average how much
of an incident uniform white light can be transmitted by a filter).
We place the constraint that the average light power transmitted by
the filter must be greater than a target percentage (e.g. 50%). We
formulate our problem subject to this transmittance constraint.

Significantly, compared to the boundedness constrained op-
timization [8], our new overall transmittance approach of filter
design returns filters that deliver a further 10% improvement in
color accuracy. Not only does this teach that the form of the op-
timization has a profound impact on the filters we solve but also
that there is a good deal of latitude in how filters might be de-
signed. This argues well for the fabrication of filters that might
make cameras more colorimetric.

Experiments demonstrate that we can find highly transmissive
filters that provide comparable colorimetric improvement for a
camera compared to the prior art of unconstrained optimal filters.

2. Background

Color Image Formation
The color of a pixel formed in a digital camera mainly de-

pends on three physical factors, i.e. the spectral power distribution
of the illuminant E(λ ), the reflectance factor of the object surface
S(λ ), and the spectral response curves of the camera, Qk(λ ) for
each color channel. The color of a pixel, under Lambertian surface
model, can be modelled as

ρk =
∫

ω

E(λ )S(λ )Qk(λ )dλ , k ∈ {R,G,B} (1)

where the variable λ is defined in the visible wavelength domain
ω and Qk(λ ) is the spectral sensitivity curve of channel k in the
camera, usually red-, green- and blue-channels.

It is useful to recast the continuous integration into the dis-
crete representation using matrices and vectors. Typically, for
imaging application, it is sufficient to sample a spectrum measured
within the visible wavelength range between 400 nm and 700 nm
for every 10 nm sampling interval.

For a collection of m surface color stimuli under a given
illuminant, the camera responses can be concisely readdressed as

P = ST diag(E) Q (2)

where the camera RGB values P is an m× 3 matrix, the object
reflectance S is a 31×m matrix, the illuminant diag(E) is a 31×31
diagonal matrix, and Q is a 31× 3 matrix denoting the camera
sensitivities over red-, green-, and blue-channels. The superscript
T denotes the matrix transpose.

Similarly, the color values observed by a standard observer
can be quantified as

X = ST diag(E) X (3)

where X is an m×3 matrix representing the observer color tristim-
uli and X is a 31×3 matrix denoting the CIE 1931 2° XYZ color
matching functions [1].

The Luther Condition
The Luther condition requires that the camera sensitivities

are within a linear transform from the CIE XYZ color matching
functions. Mathematically, we write

X = Q M (4)

where M is a full rank 3×3 matrix mapping camera sensitivities
to the visual color matches.

If the camera sensitivity curves meet the Luther condition,
we can easily prove that their tristimulus color responses are also
linear apart:

ST diag(E)X = ST diag(E)Q M ⇒ X = P M (5)

which makes the camera a colorimeter, i.e. the triplet color values
produced by the camera can be linearly related to that of the visual
tristimulus values.

Linear Color correction
The Luther condition places a very strong constraint on the

sensitivity functions of a camera and in practice, most cameras
do not satisfy the Luther condition. But, a 3× 3 linear color
correction matrix can be found that best maps the RGB responses
to the human visual tristimuli.

The best linear mapping matrix is solved as a least-square
regression:

M = P+X = (PT P)−1PT X (6)

where the superscript + and −1 denote respectively the Moore-
Penrose inverse [10] and the matrix inverse.

3. Filter Design

The Modified Luther Condition
Let V = [v1,v2,v3] denote a special linear combination of

X whose columns are orthonormal basis vectors, i.e. VT V = I3
(I3 is the identity matrix). Matrix V can be calculated from X
by the QR factorization or singular value decomposition [15].
Mathematically, we write X = VH where H is a full rank 3× 3
matrix.

By substituting into Equation (4), we can rewrite the Luther
condition as

VH = QM ⇒ V = QMH−1 (7)
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where the superscript −1 denotes the matrix inverse and MH−1

forms a new 3×3 matrix. This equation teaches us that the camera
sensitivities Q of which meets the Luther condition should also be
within a linear transform from the orthonormal basis V.

In this paper, we will choose to find a filter and a linear
transform that approximately maps Q to V (see the optimization
shown in Equation (12)) because previous work [12] has shown
that optimizing the least-squares Luther condition with respect
to the orthonormal basis is equivalent as finding the filter that
optimizes the Vora-Value [13].

The Vora-Value is a measure of goodness of the set of camera
sensitivities with respect to the human visual space. By defini-
tion, it calculates the geometric closeness of two vector spaces
spanned by the camera sensitivity functions (in our case the filtered
camera sensitivities) and the XYZ color matching functions. The
Vora-Value is independent of the basis in which the sensors are
described.

In the previous work [12], we found that the filter solved for
optimizing the Luther condition using the orthonormal basis of
the XYZ color matching functions (simultaneously optimizing the
Vora-Value) could provide better results than the original formation
of the Luther condition as in Equation (4). In fact, by orthonormal-
ization, we encourage the Luther optimization to optimize for the
Vora-Value. Hence we use the modified Luther condition as our
optimization criterion in this paper.

Filter Constraints
Physically, for a color filter, the filter transmittance must be

non-negative and no greater than 1 as

0≤ f (λ )≤ 1, λ ∈ ω (8)

where f (λ ) denotes the filter transmittance at a given wavelength
λ , defined on the domain of the visible spectrum ω .

Practically, a prefilter will inevitably absorb part of the incom-
ing light. Sometimes we can adjust the capture setting of a camera,
such as longer exposure time and higher ISO, so as to match the
light level of that when no filter is placed. But, in scenes where
there is movement we need to use a short exposure and then the
captured filtered image will be affected by relatively more noise
(compared to without using the filter). How much extra noise there
is depends on how much light is absorbed by the filter. In the
example in Figure 1c), the camera absorbs most of the light and so
the noise problem may be significant.

In this paper we wish to tackle the problem of the derived
filter absorbing too much light. In previous work [8], filters were
found that met a low bound on transmittance. Here we solve for
the filter that, in total, transmits a prescribed percentage of the total
light (or more).

We define the average transmittance percentage as:∫
ω

1 · f (λ ) dλ∫
ω

1 dλ
(9)

where we calculate the ratio between the amount of a uniform
white light (which has a value of 1 at any wavelength) a filter
transmits over the visible spectrum against that when no filter is
used.

Equivalently, in the discrete domain, the average percentage
transmittance is written as

1
31

f ·1 (10)

where · is the inner product between two vectors and 31 is the
number of sampling points between 400 nm and 700 nm.

We would like to make sure the average transmittance is larger
than a criterion amount favg:

1
31

f ·1≥ favg. (11)

The Luther-condition based Filter Optimization
Given the filter transmittance vector f and the camera spectral

sensitivity functions Q. When we place a filter in front of the
camera, the filtered camera sensitivity functions can be modeled
as diag(f)Q. Mathematically, by adopting the formula in Equation
(7) and incorporating the filter constraints in Equations (8) and
(11), we reformulate the Luther-condition based filter optimization
as

argmin
f, M

‖ diag(f)QM−V ‖2
F ,

s.t. 0≤ f≤ 1 and
1

31
f ·1≥ favg (12)

where ‖ ‖2
F denotes the square of the Frobenius norm (i.e. the sum

of the squares of all elements in the matrix). M is a 3×3 matrix
to be determined.

Solving the Minimization
The filter optimization presented in Equation (12) has no

closed-form solution. Fortunately, the filter matrix f and the cor-
rection matrix M can be solved iteratively using a technique called
the Alternating Least-Squares (ALS) regression. Promisingly, the
ALS method is guaranteed to converge (although not necessarily
to the global optimum) [14].

Initially, we solve for M by assuming a uniform filter f =
[1,1, · · · ,1]. Given this newly solved M, we update for the filter
solution. That is to say, we solve for matrix M by holding the filter
f fixed and alternatively using the newly solved matrix M to solve
for the filter f and the process will continue updating both matrices
in turn until it converges to a predefined error threshold.

Given a known filter vector, the correction matrix can be
solved by

M =
(

diag(f)Q
)+

V (13)

where + denotes the Moore-Penrose inverse [10].
Given a known M, the filter under constraint can be easily

converted to a Quadratic problem subject to linear constraints and
solved by the Quadratic programming [15].

4. Experiments and Results

The filter optimization is tested out on two representative
digital cameras from two well recognized camera manufacturers, a
Canon 40D and a Nikon D5100 digital single-lens reflex cameras,
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Figure 2: Spectral transmittance distributions of optimized filters
under different average transmittance constraints for Canon 40D.

with measured spectral sensitivities [16]. We solve for the best
filters for each of the testing cameras with gradually levelling up
the constraints of the average transmittance: from greater than
50%, 60%, 70%, 80%, 90%, to 100% (100% equivalently means
no filter is used) respectively. In the experiments, the algorithm
starts with an initial uniform filter of f = favg ∗ [1,1, · · · ,1]T , then
solves for a new 3×3 correction matrix M; given this newly solved
M, we recalculate the filter solution. The process goes on solving
these two unknown matrices in an alternative way. Empirically, the
algorithm converges quickly (here we use the stopping criterion:
the cost function error between two consecutive iterations is less
than 1e− 08). It usually takes less than 1 second to compute a
converged solution set of the optimal filter and the mapping matrix.

Table 1: ∆E∗ab statistics of the color corrected native camera, the
color corrected camera with the unconstrained filter, filters under
different average constraint levels ( favg), and filters under the low
transmittance bounds ( fmin) for a Canon 40D camera

Mean Median 95% Max

Native camera 1.72 1.03 5.12 28.39

no constraint ( favg = 15%) 0.38 0.20 1.23 9.86

favg ≥ 50% 0.44 0.24 1.43 11.73

favg ≥ 60% 0.54 0.30 1.74 13.83

favg ≥ 70% 0.73 0.38 2.33 18.18

favg ≥ 80% 0.97 0.56 3.12 20.82

favg ≥ 90% 1.27 0.78 4.06 21.82

fmin ≥ 24% ( favg = 50%) 0.55 0.31 1.80 12.52

fmin ≥ 43% ( favg = 70%) 0.86 0.50 2.74 17.68

fmin ≥ 77% ( favg = 90%) 1.41 0.81 4.30 24.45

The spectral transmittance distribution of the optimized filters
under these conditions are shown in Figures 2 and 3 for Canon and
Nikon cameras respectively. For reference, we also plot the best
Luther filter when no transmittance constraint is applied, i.e. we

Figure 3: Spectral transmittance distributions of optimized filters
under different average transmittance constraints for Nikon D5100.

run the original optimization as in [7] (see the dark line with a sharp
peak at the short wavelength end). Evidently, the unconstrained
filters for both cameras present much lower overall transmittance
(the transmittances over most of the wavelengths are less than 20%
with the mean transmittance of 15% for the Canon camera and
12% for the Nikon camera respectively).

Table 2: ∆E∗ab statistics of the color corrected native camera, the
color corrected camera with the unconstrained filter and filters
under average constraints ( favg), and filters under the low transmit-
tance bounds ( fmin) for a Nikon D5100 camera

Mean Median 95% Max

Native camera 1.66 0.90 5.30 27.66

no constraint ( favg = 12%) 0.81 0.48 2.70 11.87

favg ≥ 50% 0.85 0.53 2.85 14.98

favg ≥ 60% 0.86 0.53 2.88 13.41

favg ≥ 70% 0.92 0.57 3.03 12.87

favg ≥ 80% 1.07 0.66 3.60 16.07

favg ≥ 90% 1.28 0.77 4.19 18.83

fmin ≥ 26% ( favg = 50%) 0.92 0.57 3.10 13.47

fmin ≥ 43% ( favg = 70%) 0.96 0.60 3.20 14.32

fmin ≥ 75% ( favg = 90%) 1.41 0.80 4.46 22.29

More importantly, for the two tested cameras, the derived fil-
ters have similar shapes and, significantly, they have (dented) peaks
at about 490 nm and 680 nm spectrum. From the figures, we also
see that the transmittance values at these two peak wavelengths
are resistant to change compared to values at other wavelengths
when we increase the average transmittance level. The figures
demonstrate that the transmittance values at these peaks are crit-
ical for satisfying the Luther condition and consequently for the
performance of color measurement accuracy.

We also evaluate the performance of cameras after using a fil-
ter in the color measurement experiment in terms of the perceptual
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color errors (here we use the color difference metric in the CIELAB
color space [1]). The color correction experiments are performed
for a set of 102 illuminants and 1995 reflectance spectra [18]. We
calculate the RGBs and XYZs of all reflectance spectra under each
illuminant according to Equations (2) and (3), and find the best
3×3 correction matrices mapping RGBs to the ground-truth XYZs
before converted into CIELAB color space [19] to calculate the
difference between the reference and test color values. Then the
overall mean, median, 95-percentile and max of ∆E∗ab are averaged
over the all test lights.

The color measurement results are given in Table 1 for Canon
40D and Table 2 for Nikon D5100 cameras. As the baseline, we
calculate the color errors of the Native camera when no filter is
used, given in the first row. For comparison purpose, we also
show results of the best Luther filter in the second row when no
transmittance constraint is applied (its mean transmittance value is
given in the parentheses).

As expected, greater threshold of the average transmittance
will lead to less effective color accuracy. However, comparing the
results of 2nd and 3rd rows in Table 1, we see that a filter having an
average transmittance value of 50% has very close color accuracy
compared to the unconstrained filter whose average transmittance
is only 15%. The same trend occurs in the Nikon camera as we see
a filter having an average transmittance value of 60% has similar
performance of an unconstrained filter with the mean transmittance
of 12%. Even a filter having an average transmittance value as high
as 90% can significantly reduces color errors by about a quarter
compared to the results of the Native camera.

We also present filter results of the prior art when we apply a
lower bound on the filter transmittances. See the last three rows
of Table 1 and Table 2. Here, fmin ≥ 24% means that the filter
transmittance at all wavelengths must be no less than 24%. When
the lower bound is set to 24%, then the prior art optimization
returns a filter that has an overall transmittance of 50%. Thus, by
choosing the lower bound constraint carefully, we can compare
the colorimetric efficacy of the prior art filter optimization and the
approach we advocate in this paper.

We see that our new method offers a further 10% increase
in color accuracy, for both cameras (when compared at the same
overall transmittance level).

5. Conclusion

In this paper, we extend the Luther condition optimization to
improve a key property of the optimized filter – the overall trans-
missivity – by enforcing the filter to transmit at least half of the
incident light. The objective is to lessen the impact of noise in cam-
era signals while maintaining the colorimetric accuracy. We tested
on two representative digital cameras in the color measurement
test. Experimental results show that a filter transmits 50% of the
incident light can reduce nearly two-thirds to three-quarters of the
color errors compared to the native camera when no filter is used.
Promisingly, we can achieve comparable color accuracy improve-
ment using much higher transmissive filters (e.g. a filter transmit
70% of the light) compared to the case of an unconstrained Luther-
filter (a filter transmit 15% of the light). Moreover, the current
method can deliver a further 10% improvement in terms of color
accuracy compared to the prior art of restraining the minimum
transmittance.

For the further study, it is of great interest in investigating
the relation between the overall transmittance percentage of the
filter and the signal-to-noise (SNR) ratio in the color measurement
application. Or more effectively, we can adopt the SNR as the
optimization criterion of the filter design as in [9]. Additionally,
it is useful to take the smoothness of the filter into account (as
studied in [20, 21]) since it plays an important role when turning
our optimal filter into fabrication.
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