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Abstract. Different whiteboard image degradations highly reduce
the legibility of pen-stroke content as well as the overall quality
of the images. Consequently, different researchers addressed the
problem through different image enhancement techniques. Most of
the state-of-the-art approaches applied common image processing
techniques such as background foreground segmentation, text
extraction, contrast and color enhancements and white balancing.
However, such types of conventional enhancement methods are
incapable of recovering severely degraded pen-stroke contents
and produce artifacts in the presence of complex pen-stroke
illustrations. In order to surmount such problems, the authors
have proposed a deep learning based solution. They have
contributed a new whiteboard image data set and adopted two
deep convolutional neural network architectures for whiteboard
image quality enhancement applications. Their different evaluations
of the trained models demonstrated their superior performances
over the conventional methods. c© 2019 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2019.63.4.040404]

1. INTRODUCTION
Whiteboards are known to be very important illustration
tools for different types of communications. With the recent
and rapid technological advancements, people increasingly
communicate over the internet. Individuals currently also
prefer to take a picture of whiteboard contents or pre-
sentation slides over the conventional hard-copy paper
notes. Most people, however, utilize their personal mobile
phones, computers and very affordable streaming solutions.
Therefore, the quality of their experiences will mostly be
limited by the capabilities of such technologies.

Many of the camera technologies, which are affordable
and being utilized by many, are known to have limited
qualities. Themajority of thewebcam and videoconferencing
cameras, in particular, have inadequate dynamic range,
smaller color gamut and lower resolution [1]. The bandwidth
and other architectural limitations of the current streaming
networks additionally add on the degradations of the
streaming content [2, 3]. Usually, it is the whiteboard
regions of such content whose qualities are highly degraded.
Several factors, such as specular reflections (due to the
reflective nature of the whiteboard materials), non-uniform
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illuminations (because of the unprofessional room lightings),
shadows, occlusions, and related others, are known to
contribute on the matter [4].

Consequently, over the past years, several whiteboard
image enhancement approaches have been proposed by
several researchers. The greater number of the proposed
solutions were only intended to detect and extract hand-
written texts, by filtering and subtracting the respective
whiteboard backgrounds [5–8]. Few other researchers, on
the other hand, were rather interested in the enhancement
of the different quality attributes of all whiteboard image
contents [9, 10]. Almost all thesemethods, with the exception
of one recent method considering the naturalness of the
whiteboard background appearances [4], set the background
of the whiteboard images to white and enhance the color and
contrasts of the pen-stroke content.

Many of the state-of-the-art methods mostly create
appealing results for their intended applications. However, in
the presence of more severe whiteboard image degradations
(such as specular reflections, overexposed regions and color
tints or white-balancing problems) and pen-stroke contents
(like filled polygons or other shapes of illustrations), most
methods fail to generate enhanced results and additionally
introduce visible artifacts. The methods, also by design,
do not have a capacity to restore the degraded or lost
pen-stroke content details. However, the majority of the
existing whiteboard image and video archives are highly
distorted and, hence, more efficient and comprehensive
enhancement solutions are required.

In this regard, we have explored enhancement ap-
proaches which can inclusively restore almost all types of
whiteboard image distortions. From our inspection, we were
able to determine that adaptation of some of the deep
learning (DL) approaches to whiteboard image enhancement
purposes could be the most effective solution. In the past,
different DL approaches have been used for many other
applications [11–13]. However, up to the time of writing, we
did not come across any DL based whiteboard image quality
enhancement solutions.

Therefore, in this work, we have proposed two deep con-
volutional neural network architectures which are adapted
from two common image denoising (Fully convolutional and
deconvolutional [14]) and image segmentation (UNet [15])
architectures. We have adopted and trained the two archi-
tectures and evaluated their performances for whiteboard
image quality enhancement applications. The results of the
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two architectures are also evaluated with respect to the best
performing conventional state-of-the-art whiteboard image
enhancement algorithms.

Moreover, to train the proposedmodels, finding suitable
whiteboard image data sets was very challenging. Therefore,
we have created our own data set by collecting quality
whiteboard images through various sources and simulating
the different whiteboard image quality degradations. More
detailed information on our data set generation processes is
given in the coming sections.

In general, the novel contributions of this work contains:

• The generation of a new whiteboard image data set for
image quality enhancement purposes,
• The introduction of deep learning approaches for
whiteboard image quality enhancement applications,
and
• The evaluation of the conventional whiteboard image
quality enhancement approaches related to deep learn-
ing approaches.

2. RELATEDWORK
In this work, we are introducing DL approaches for the
application of whiteboard image quality enhancements.
Over the years, several other enhancement approaches have
been also introduced. Therefore, a brief review of the
state-of-the-art on related topics is presented as follows.

2.1 Whiteboard Image Quality Enhancement Methods
Researchers from various research communities have been
addressing the whiteboard image quality degradation prob-
lems, caused by different limitations of the acquisition and
streaming technologies [4]. However, instead of enhance-
ments, most of the proposed solutions were designed for
text recognition and extraction purposes. Most solutions
consisted of different ways of hand written text detection [5],
segmentation [6, 7], andwhiteboard content classification [8]
algorithms. Some are multiple frame based enhancement
approaches, which are proposed with the intention of
recovering occluded information and removal of redundant
data by propagating and discarding information from
consecutive frames of whiteboard videos [16, 17].

In case of solutions for whiteboard image quality
enhancements, the number of prior methods are very
limited [4, 9, 10, 18, 19]. Increasing the visibility of pen-stroke
content through different color and contrast enhancement
approaches was themain goal formost of these enhancement
methods. Some of the methods enhance the color saturation
of pen strokes, while processing the background of the white-
board to be completely white [18, 19]. Others, on the other
hand, preserved the natural appearance of the whiteboard
images by applying different white-balancing, saturation
correction and contrast enhancement techniques [4, 9, 10].

Nevertheless, currently available whiteboard image/
video archives consist of very low quality whiteboard con-
tents [20, 21]. The pen-stroke content of such whiteboards
are mostly visually undiscernible due to the low image

resolution, non-uniform illumination, specular highlights,
overexposure, and other related problems [4]. Therefore,
in the presence of such severe quality degradations, most
of the described enhancement solutions fail to recover
important details. The methods mostly use median filter [9,
10, 18, 19] or polynomial surface fitting based techniques [4]
to estimate the background color of whiteboard images.
We have noticed such techniques producing different
processing artifacts, mainly in the presence of more complex
pen-stroke content (such as filled polygons or other types of
shaped illustrations). Therefore, more holistic and powerful
whiteboard image enhancement solutions, with a capability
of restoring severely degraded and more complex pen-stroke
contents, are highly required.

2.2 Whiteboard Image Quality Attributes
As described in the previous section, most state-of-the-art
whiteboard image enhancement approaches emphasize on
producing more legible whiteboard contents [9, 10, 18, 19].
As a result, most of their results tend to have unnatural
whiteboard appearances. Few other approaches, nonetheless,
aim to preserve the natural appearance of real world
whiteboards [4]. However, up to the time of writing, there is
no standard specification of whiteboard image quality, which
are expected from the various enhancement approaches.
Observers’ expectations as well as the relationship among
the legibility of pen-stroke content and the naturalness of
the resulted whiteboards, with respect to the overall image
quality, are not very well investigated.

Related to natural image researches, overall image
quality is usually assessed by the twomost defining attributes,
the usefulness (legibility) and the naturalness [22–25] of
images. According to prior natural image studies, increasing
the saturation, brightness as well as contrast of image
contents, to a certain amount, showed an improved legality
and naturalness scores. Increasing the values beyond that
point, contrarily, reduced the naturalness of the results.
However, in most scenarios, observers preferred more
colorful and contrasted images, despite their unnatural
appearances [22–24, 26]. On the other hand, manipulations
of images’ color temperature and hue deteriorate the
naturalness as well as the overall image quality [22, 26].

In our application, the most vital contents of whiteboard
images are the pen strokes. Hence, in addition to color and
contrast attributes, the whiteboard image legibility is also
expected to be affected by other text related factors such as,
the character spacings, the thickness of the pen strokes, as
well as the typefaces and sizes of characters. Related studies
for hand/computer written characters on other emissive and
reflective medias (very different from whiteboards) showed
the not excessively bold or light characters with bigger
open counters and easily recognizable shapes to be more
legible [27, 28]. Other studies on background–text relations,
additionally, showed how positive contrast (emanated from
white characters which are written on dark backgrounds)
hinders the discernibility of contents than that of the negative
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contrast (resulted from dark characters written on white
backgrounds) [29, 30].

Concerning whiteboard image quality, we have also
recently conducted a series of perceptual studies assessing
many whiteboard related quality factors [31]. The effects of
several whiteboard image background processing together
with color, contrast, and brightness enhancements on the
legibility, naturalness, as well as the general quality of
whiteboard images have been investigated. The conclusions
of our study highly resemble those of the prior natural image
studies that we have described in the previous paragraphs.
Our findings indicate the enhancement of legibility with
increased saturation and contrast of pen-stroke contents.
Degradation of naturalness is also observed with most
of our evaluated background enhancements. But, when it
comes to overall whiteboard image quality, observers tend
to prefer more legible pen-stroke content even with the
most unnatural looking whiteboard backgrounds. Generally,
all these image quality studies showed that there is always
a compromise to be made depending on the intended
application.

2.3 Deep Learning for Image Quality Enhancements
Unlike the other conventional image enhancement tech-
niques, Deep learning (DL) techniques are gaining a
lot of attention in the last couple of decades [32, 33].
DL approaches are outperforming state-of-the-art machine
learning approaches in many computer vision related appli-
cations [34]. The most common DL based computer vision
applications include image classification, object recognition
and scene understanding, motion tracking, human pose
estimation and action recognition, and related others.
Similarly, the color imaging community recently have also
been using DL techniques for applications like blind image
quality evaluation, perceptual modeling and different image
enhancement purposes [35–37]. This rapid integration of
DL techniques in many research fields is mainly a result of
different factors such as, the availability of large data sets, the
advancements of parallel GPU computing, the introduction
of powerful programming frameworks, and many other
algorithmic revolutions [38–40].

Regarding image quality enhancement, the amount of
proposed DL based solutions, up to the time of writing, are
very limited. The most common enhancement applications
of DL techniques that we have come across so far include:
dehazing [12, 13], image denoising [14, 41, 42], enhancement
of underexposed [43] and low resolution images [37, 44],
and white balancing [45–47]. Most of these methods use
autoencoders like end-to-end trainable DL architectures,
which mainly comprises two connected encoding and
decoding networks. The encoding as well as decoding parts
of the architectures are, in turn, formed by a combination
of two or more Convolutional, Deconvolutional, Pooling,
Upsampling, or other regularization layers [42]. Some image
denoising methods additionally include skip connections
between intermediate encoding and decoding layers, for
better preservation of important image details [14].

In addition to the DL architectures, the most common
concern amongmany image quality enhancementmethods is
the availability of training data. Finding high quality ground
truth images for many image degradation problems is very
challenging. In consequence, most DL based enhancement
techniques generate and use synthetic data sets for the train-
ing and evaluation of their DL networks [41, 43]. Even so, in
some color imaging problems the modeling and simulation
of common degradations could be even more challenging.
In such cases, real acquisitions of different degradations
and ideal scenarios or more complex unsupervised DL
techniques are required. Moreover, due to processor speed
and memory limitations, most DL solutions reduce the
spatial resolutions of their data set images to be less than
or equal to 256× 256. This restriction, however, will have
a negative effect on the end results of image enhancement
applications of fine contents (such as whiteboards).

So far, we were not able to find any DL based
approaches designed particularly for whiteboard image
enhancement purposes. Our search for any open synthetic
or real whiteboard image data sets for quality enhancement
purposes was not successful either. The only whiteboard
image data set that we could find was the whiteboard image
class of the open image data set [20, 21]. However, the open
image data set is prepared for object recognition applications
with only 1000 degradedwhiteboard images (with no ground
truth undegraded images) and their labeled bounding boxes.

Therefore, for a complete andmore accurate whiteboard
image enhancement applications, a new data set which
can completely represent the real whiteboard image quality
degradation problems is very essential. Along with the data
set, for a better-quality enhancement as well as restoration
and preservation of pen-stroke content, an efficient DL
model needs to be introduced.

3. METHOD
As it is explained in the previous sections, different
conventional approaches of the state-of-the-art whiteboard
image quality enhancement are unable to recover highly
degraded whiteboard image contents. The different DL
techniques, which have been effectively applied for various
other types of image enhancement applications, have also
been briefly stated. However, up to this time, the problem
of enhancing severely degraded whiteboard images is not
properly addressed. Consequently, we have proposed DL
approaches for efficient enhancement of such whiteboard
images. For the implementation, we have created our own
data set and adopted two proper deep convolutional neural
network architectures.

3.1 Data Set Generation
The accuracy of any DL model is known to be determined
by the underlying data set. For reasonable approximation of
the unknown input to output mapping function, the amount
and types of the data set content need to be well distributed.
Related to whiteboard image quality enhancement applica-
tions, this type of well-organized data set is not currently
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available. Therefore, for representingmost whiteboard image
degradation scenarios, we have generated a novel whiteboard
image data set.

To create the data set, we have first collected high quality
whiteboard images from different sources and synthetically
simulated different quality degradations. Our attempt for
the acquisition of high quality whiteboard images through
professional camera and studio setup was unsuccessful
due to our limited access to powerful and diffuse light
sources (which can uniformly illuminate different sizes
of whiteboard surfaces). Also, the content distributions of
images, created only in a single studio room and with a
small set of hand writing styles, would not be an accurate
representative of most real whiteboard image archives.
Instead, we have collected our ground truth images through
the internet, our colleagues, and friends.

However, we needed to set whiteboard image quality
criteria for the selection of the ground truth images. To
that end, we have followed our previous study of perceptual
whiteboard image quality attributes [31]. According to our
study, observers mostly choose whiteboard images which
have very white, uniform, and bright backgrounds together
with more saturated and highly contrasted pen-stroke
content. Also, when evaluating overall whiteboard image
quality, observers showed leaning preferences toward content
legibility rather than the naturalness of the whiteboard back-
grounds. Meanwhile, we have noticed strong resemblance of
the most preferred whiteboard images, from our previous
study [31], to the whiteboard images created from interactive
electronic whiteboards, tablets, and laptop computers. We
have found the electronically created whiteboard images to
be the most perceptually legible. For this reason, we have
decided to collect and use such types of whiteboard images
as our ground truth data set and, up to the time of writing,
we managed to collect 340 images of resolution 512× 512.

The collected ground truth images are then syntheti-
cally degraded to simulate the most common whiteboard
image degradations that we had encountered in our past
experiences [4, 31]. In total, various combinations of the
following seven forms of quality degradations are applied on
each ground truth image (Figure 1a). Sample images of the
different degradations, from our data set, are given in Fig. 1.

1. Noise: For representing the different noise artifacts of low
qualitywhiteboard images, we have added a combination
of Gaussian and Salt and pepper noises. We have used
the mean value of 0.5 and variance of 0.01 for the
Gaussian white noise. Whereas, the noise density value
of 0.02 is used for the Salt and pepper noises, which will
approximately affect 20% of the image pixels (Fig. 1e).

2. Non-uniform illumination: Also, to create more re-
alistic non-uniform illuminations, we have chosen to
extract and apply the illuminations of real whiteboard
images (Fig. 1b). The illumination approximation of
the non-uniformly illuminated real whiteboard images
Lap is computed as Lap = By × Sp × Bx . The discrete
orthogonal basis functions of By ,Sp, and Bx are in turn

(a) Ground truth (b) N + B (c) N + C + J

(d) N + D + J (e) N + No (f ) S + J

Figure 1. Example data set images for demonstrating the different
whiteboard image degradations, applied on each ground truth image.
The abbreviations N, B, C, J, D, S, and No stand for the types of applied
degradations, which are Non-uniform illumination, Blurring, Color tint,
JPEG compression, Desaturation, Specularity, and Noise, respectively.

computed from the luminance values Lreal of the source
image Ireal according to Matthew et al. [48]. Finally,
the luminance channel of our simulated image Lsim
is created from that of the ground truth image Lg
as Lsim = Lg −max(Lg )+ Lap.

3. Gaussian Blur: We have also simulated the common
blurring artifact of different imaging devices by applying
Gaussian blur [49].We have filtered the imageswith a 3D
Gaussian smoothing kernel of size 2× (2× σ)+ 1 and
standard deviation of σ = 3 (Fig. 1b).

4. Image Compression: Often most streaming contents
are highly compressed due to low network bandwidth
and faster transmission purposes [3]. As a result,
compression artifacts are very common among video-
conferencing whiteboards. To represent this issue in
our data set, we applied JPEG compressions with three
different quality levels (20%, 50%, and 100%) [50].

5. Specular highlights: Moreover, the luminance values of
the data set images are further modified, using Eq. (1),
for generating different specular highlights. The mean
µ and variance ν parameters of the multivariate normal
probability density function, Eq. (1), were varied to
generate highlights at different spatial positions andwith
different extents (Fig. 1f).

Lsim =
1√

|µ|(2π)2
e−0.5(Lg−ν)µ−1(Lg−ν) (1)

6. Color desaturation: Considering many limitations of
conventional digital cameras, we have additionally
included one representation of their color clipping and
color desaturation issues. The representative degraded
images (Fig. 1d) are created by reducing the saturation
values of the corresponding ground truth images with
various scaling factors. For this work, we have only
included images with 40% saturation reduction.
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7. Color tint: The other common whiteboard image quality
degradation source is the white-balancing steps of the
acquisition processes. Whiteboard images captured with
the wrong or without white balancing, usually, appear
to have color tints similar to the illumination colors
(Fig. 1c). Therefore, to incorporate such effects, we have
first estimated the illuminants Ag of our ground truth
images Ig following the principal component analysis
method [51]. The simulated images with different
color tints Isim are then created using different colored
illuminants Anew , Isim = (Ig/Ag ) × Anew . Totally, four
color tints (Reddish, Greenish, Bluish, and Yellowish) are
included in our data set.

In general, around 43 combinations of these quality
degradation are used on each quality image of our data set
(a combination of noise and 2 non-uniform illuminations,
2 blurred non-uniform illuminations, 3 types of specular
highlights each compressed with 3 JPEG compression levels,
color desaturated 2 non-uniform illuminations with three
levels JPEG compression, and 2 non-uniform illuminations
combined with the 4 types of color tints and 3 JPEG
compression levels). In total, our current generated data set
contains 14620 pairs of low quality (degraded) and high
quality (ground truth) whiteboard images of 512 × 512
resolutions. The data set is further divided into training
(11870 pairs), validation (1820 pairs), and test (699 pairs)
sets of images for training and evaluation purposes.

3.2 Architectures of the Proposed Convolutional Neural
Networks
Most of the DL based image enhancement methods,
described in the prior sections, use different Autoencoder
like DL architectures for more effective end-to-end and
supervised learning. We also believe, with our new data
set, that the same type of architectures could be effectively
adopted to the applications of whiteboard image quality
enhancements. Therefore, in this work, we have created
and thoroughly evaluated two DL architectures by following
methods like Mao et al. [14] and Ronneberger et al. [15].

The frameworks of the two evaluated architectures,
shown in Figure 2, contain two connected encoding and
decoding networks. The encoder network is mainly used
to map the input into its latent representation, by applying
different sets of convolutional, downsampling, and other
regularization operations. The decoder networks, on the
other hand, is used to reconstruct the latent representation
back to the enhanced form of the input data [42]. Similar to
the state-of-the-art DL networks, the kernel sizes of all our
convolution and deconvolution layers are set to be 3× 3 for
their proven excellent performances.

Most image denoising DL algorithms follow some
form of fully convolutional and deconvolutional architec-
tures (with no downsampling and upsampling operations),
Fig. 2(a). Most methods prefer such architectures for their
capabilities of important image detail preservation. It is said
that application of different downsampling and upsampling
operations usually result in important information loss [14].

(a) Full convolution deconvolution architecture

(b) UNet architecture (taken from [15])

Figure 2. The proposed deep convolutional neural network architectures.

However, such types of DL networks are also known
for their high computational costs. Therefore, we have
added another efficient and alternative architecture, shown
in Fig. 2(b). The architecture is created by adopting
the UNet segmentation model [15] and replacing their
segmentation maps by our ground truth images. Unlike
the fully convolutional and deconvolutional architecture,
the UNet encoding and decoding networks include several
downsampling and upsampling layers, together with many
other convolutional operations. The down and upsampling
operations mostly help for avoiding overfitting and reducing
the overall computational cost. However, to compensate for
the information losses due to the downsampling operations,
some skip connections (among the corresponding encoder
and decoder layers) are required. Skip connections, once in
every couple of hidden layers, are valuable in recovering
important image information (by forward information
passing) and finding local minimum (by backward gradient
passing).

3.3 Training Procedures
The above-mentioned networks are implemented, trained,
and evaluated using tensorflow and Keras frameworks.
For learning the end-to-end mapping from the degraded
whiteboard images to the ground truth original images,
the weights of the individual architectures are trained on
our proposed data set. The encoder and decoder networks
of both architectures are trained by minimizing the cross-
entropy (log) loss of the network predictions from the ground
truth images. Among different tested learning parameters,
the moving windowAdadelta optimizer (of all its parameters
set to default) produces better results for our two proposed
architectures.
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Table I. Model evaluations of the two proposed architectures.

Models Unet Fully Conv. And Deconv.

Data set Loss RMSE Loss RMSE
Test 0.0400 0.00046 0.0423 0.00084
Training 0.0407 0.00044 0.0433 0.00088
Validation 0.0429 0.00046 0.0428 0.00088
Training time (1 epoch) 286 sec. 1266 sec.
Converges after 303 epochs 145 epochs

We have trained our networks with early stopping cross-
validation mechanism, on Linux computer with GeForce
RTX 2080 GPU. As it can be seen from the summary
information (provided in Table I) of our training processes
of the fully convolutional–deconvolutional and the UNet
models, the processes terminated after 145 and 303 epochs,
respectively. We have stopped the training of the two models
by setting the baseline validation loss criteria of the early
stopping algorithm to a value of 0.043, which leads to high
quality enhanced whiteboard images.

4. EVALUATION ANDDISCUSSION
After selecting the best performing trainingmechanisms and
their corresponding parameters, described in the previous
paragraphs, our models were finally trained with the early
stopping criteria of baseline validation loss set to 0.043. The
final training loss and accuracy values of the two models
along with the summary of their execution time are given in
Table. I. Both models were able to achieve the termination
criteria at the very different number of epochs and with
high variability of execution speeds. This type of learning
difference is understandable due to different hidden layer
operations that constructed the two models.

The presented fully convolutional and deconvolutional
model have a total of 376, 326 trainable parameters and
takes around 1266 seconds for training a single epoch of our
training data set. The UNet model, on the other hand, only
takes around 286 seconds with its 1,962,659 total trainable
parameters, for the same amount of epoch training. The
higher computational time of the fully convolutional and
deconvolutional model is due to smaller batch sizes we used

(a) iCID Evaluation (b) S-CIELAB Evaluation

Figure 3. ANOVA multiple comparison results of the mean strengths of
the iCID and S-CIELAB metrics results.

for the training. The model’s higher memory requirement
forced us to reduce the batch size to only 5 images (than the
16 batch size used during the training process of the UNet
model).

To assess the generalization and predictive capabilities of
both models, we have additionally evaluated the computed
loss and root mean square error values of the final best
models (Table I) on the three sets of our data set. In all cases,
our trained UNet model shows higher accuracies.

The evaluation results demonstrate that using networks
like the evaluated fully convolutional and deconvolutional
model will help increase the accuracy of the models’
enhancement results. However, deeper versions of such DL
networks may lead to reduced performances on unseen
whiteboard images due to overfitting. The very highmemory
space complexity of such architectures is also a critical
issue. To elevate these and other related problems, UNet
like architectures with several various sized downsampling
and upsampling operations are recommended. As shown in
our evaluation results, the UNet model greatly improved
the computational complexity of the model with higher
accuracy values. The possible information loss, because of the
downsampling process, can be effectively reduced through
various skip connections, as shown in Fig. 2(b). Higher
number of skip connections mostly helps to retain most of
the original information.

In addition to our model evaluations, we have fur-
thermore verified the proposed models’ whiteboard image
quality enhancement capabilities, in comparison to the
conventional models. To represent most of the conventional
methods, we have selected the best performing whiteboard
enhancement method of our prior whiteboard image quality

Table II. Full reference image quality evaluations of the enhancement methods with our test set images. The ground truth test set images of the generated data set were used as our
quality references.

Methods SSIM CID iCID S-CIELAB
mean std. mean std. mean std. mean std.

Input 0.6919 0.1564 0.5608 0.1026 0.4368 0.1517 122.7556 9.4663
Prior method 0.9012 0.1341 0.1268 0.1322 0.1237 0.1228 97.3365 13.6304
Conv. Deconv. 0.9881 0.0116 0.0216 0.0311 0.0292 0.0278 57.4867 27.4462
UNet 0.9914 0.0086 0.0125 0.0194 0.0208 0.0206 58.0957 17.0345
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(a) Input 1 (b) Input 2

(c) UNet 1 (d) UNet 2

(e) Conv. Deconv. 1 (f ) Conv. Deconv. 2

(g) Prior 1 (h) Prior 2

(i) Ground truth 1 ( j) Ground truth 2

Figure 4. Sample enhancement results of the evaluated methods for the
test set images of our data set.

evaluation [31]. In total, we have assessed the results of
three whiteboard image quality enhancement methods, the

Prior method [31], Fully convolutional and deconvolutional
(which we abbreviate as Conv. Deconv.), and the UNet
models. The comparison is performed on the 699 test images
of our data set (which are never used to train the twomodels)
as well as other real whiteboard images.

The enhancement results of the three methods, for all
699 degraded test images, are first generated and their quality
differences from the ground truth images are calculated.
We have used the structural similarity index metric (SSIM),
S-CIELab color difference, color-image-difference (CID),
and improved color-image-difference (iCID) image quality
metrics for the evaluation of the structural as well as
spatial color similarities of the enhanced and reference
images [52–54]. The averages as well as the standard
deviations of the image quality differences of our evaluation
results are provided in Table II. We have also presented, in
Figure 4, two sample image results of the evaluated methods
(from the 699 test images), for additional visual assessment
purposes.

The image quality results (given in Table II), show
the higher performances of the proposed UNet and Conv.
Deconv. based models than the prior enhancement method.
The two DL based models, in all the computed image
qualitymetrics, gives better average quality results withmuch
lower variances among the 699 test images. Our additional
analysis of variances among the evaluated methods, through
one-way ANOVA computations, resulted in a p-value = 0
for all considered image quality metrics. The statistical
significance of the two DL based models’ improvements
over the degraded images as well as the prior conventional
enhancement method results are also clearly visible in the
multiple comparison plots of the mean image quality values,
given in Figure 3.

For further visual assessment purposes, we have addi-
tionally provided example test set (Fig. 4) and captured real
world whiteboard (Figure 5) image results. One can see, from
results like Fig. 5, and Fig. 4, that the DL based models
were able to restore more complex and filled pen-stroke
content which were severely degraded. The conventional
prior enhancement methods, on the other hand, failed
to accurately recover such types of whiteboard contents.
Also, most pen strokes which are located under specular
highlight regions or very noisy backgrounds were more
accurately and legibly recovered by our DL based methods
than the conventional prior method. The two models,
similarly, surpasses the conventional method in terms of
color restoration accuracy.

In general, the two proposed DL approaches showed
very promising results in terms of recovering severely
degraded whiteboard image contents. Pen-stroke contents
under specular regions, noise, compression, or other difficult
degradation conditions are made to be effectively recovered.
The processing artifact problems of prior enhancement
methods, discussed in the related work sections, are also
eliminated with the proposed DL techniques.
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(a) Input 1 (b) Input 2

(c) UNet 1 (d) UNet 2

(e) Conv. Deconv. 1 (f ) Conv. Deconv. 2

(g) Prior 1 (h) Prior 2

Figure 5. Sample enhancement results of the evaluated methods on real
whiteboard images.

5. FUTUREWORK
For most DL based approaches, it is always preferable to
have as many data set images as possible. We also do not
believe the previously presented combinations of the seven
quality degradations to completely represent all scenarios of
existing whiteboard image quality problems. For example,
current trained models do not effectively handle whiteboard
images with motion degradations and different translational
and rotational motion displacements of pen-stroke contents
need to be considered in the future. Therefore, we will be
regularly adding more ground truth images as well as new
forms of whiteboard image degradation simulations.

It should also be noted that setting the early stopping
criteria of the training process to lower values and increasing
the resolution of the data set images could lead to more
accurate models. With future access to a more powerful
GPU computers, it will be highly recommended to train the
presented models with much lower minimum loss criteria as
well as higher resolution image data set.

6. CONCLUSION
In this work, we have considered the application of
deep learning approaches for whiteboard image quality
enhancement applications. The different problems of the
conventional whiteboard image enhancement techniques
were targeted to be resolved. Particularly, we have proposed
two deep convolutional neural network architectures with
our new generated whiteboard image data set for degraded
whiteboard image enhancement purposes. Our overall
training and evaluation results of the proposed deep learning
models showedus that shallowerDL architectures, with some
downsampling and upsampling operations and additionally
compensated by skip connections, will immensely improve
the models’ efficiency as well as quality enhancement
performances. The proposed deep learning models, trained
on our currently available data set, showed superior perfor-
mances, specially for whiteboard regions with more complex
pen-stroke contents and severe degradations.We also believe
that, with increased resolution and number of data set images
and more longer training time, the current performances of
the proposed model can be improved much further.
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