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Abstract 
This study proposes an illuminant estimation method that 

reproduces the original illuminant of a scene using a mobile 
display as a target. The original lighting environment of an auto 
white-balancing (AWB) photograph is obtained through reverse 
calibration, using the white point of a display in the photograph. 
This reproduces the photograph before AWB processed, and we 
can obtain the illuminant information using Gray World 
computation. The study consists of two sessions. In Session 1, we 
measured the display’s white points under varying illuminants to 
prove that display colors show limited changes under any light 
conditions. Then, in Session 2, we generated the estimations and 
assessed the performance of display-based illuminant estimation 
by comparing the result with the optically measured values in the 
real situation. Overall, the proposed method is a satisfactory 
way to estimate the less chromatic illuminants under 6300 K that 
we experience as indoor light in our daily lives. 

Introduction  
Although we look at objects under a variety of illuminants, 

their colors stay relatively constant, relative to the illuminant 
changes. It is due to color constancy that attempts to perceive 
pure object colors are minimized, regardless of the effects of the 
illuminant on the object [1]. In digital image processors, such as 
digital cameras or image editing software, color constancy is 
usually achieved through automatic white balancing (AWB).  

The majority of AWB algorithms follow a two-step process. 
The first step is illuminant estimation, which estimates or 
measures the illuminant at the time a picture was taken. Then, 
using the estimated illuminant information, a new image is 
generated, as if it had been taken under a standard illuminant.  

Among various algorithms, White Patch and Gray World 
are widely known solutions [2]. The Gray World algorithm 
assumes that the average color of a scene is achromatic under a 
standard illuminant. More specifically, it estimates the 
illuminant of a scene on the basis of the chroma of the average 
color of the scene, and corrects the color by changing the average 
color into an achromatic one. The White Patch algorithm claims 
that the brightest point of a scene reveals the actual color of the 
illuminant [3]. Thus, it performs white balancing of an image by 
transforming the color of the brightest point into white [4].  

Although these two methods offer robust and satisfactory 
AWB results for an overall scene, they confront a limitation in 
their ability to reproduce specific colors correctly [5]. To 
overcome this limitation, several studies have utilized a Macbeth 
Color Checker to ensure that the exact color values of 24 colors 
are known [6]. Once a picture was taken, together with the 
Macbeth Color Checker, it was much easier to estimate the 
original illuminant at the time the picture was taken and correct 
to perform white balancing.  

However, in practice, it is hardly possible to routinely 
include a standard color checker within a scene of a photograph 
or a video, unless it is an experimental set-up. Moreover, these 

methods show a dramatic worsening in good performance when 
a picture is taken under chromatic illuminants, such as stage 
lighting [7]. In other words, as the illuminant moves even further 
away from being a standard illuminant, it becomes difficult to 
estimate the original illuminant on a given image. This seeks to 
identify any practically useful targets that can be used to estimate 
even chromatic illuminants using pictures of everyday life.  

In this study, we propose a novel illuminant estimation 
method that deploys a mobile display as a target to estimate the 
illuminant of a scene. Because, unlike other object colors, a 
display is self-luminous, it always produces constant colors, 
regardless of the illuminant. In Figure 1, the white background 
in the smartphone display appears bluish, and this coloration may 
have occurred during the AWB process. If we return this bluish-
white to a more neutral white, we may obtain a more yellowish 
or orangish figure. Consequently, we can refer to the hue 
characteristics of a display in a calibrated image to estimate the 
hue characteristics of the illuminant at the time the original 
picture was taken.  

 

 
 
Figure 1 The white background in the smartphone display appears bluish, 
and this may have occurred during the AWB process. If we return this 
bluish-white to neutral-white, we may obtain a more yellowish or orangish 
figure. (Picture by © Marc Mueller).  

Moreover, a mobile display is a much more practical and 
useful target than a standard color checker, due to its prevalence 
in our daily lives. By incorporating this characteristic of a mobile 
display into the AWB process, we aim to propose a practical way 
of reproducing the original illuminant of a scene, thereby 
widening the space for further processing.  

This paper is structured as follows: first, it investigates the 
reliability of display as a target by measuring its color changes 
under various illuminants (Session 1); then it compares the 
performance of display-based illuminant estimation with the 
original photographs that have not undergone AWB (Session 2); 
last, paper discusses idea about applications of for the proposed 
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method and identifies limitations and issues that demand further 
study.  

Session 1. Display White Measurement  
The purpose of this session is to examine whether a 

display’s white chrominance is maintained or changed when 
illuminants vary. We photographed displays in an experimental 
room, where illuminants were manipulated by individually 
adjusting the intensity of the red (R), green (G), blue (B), and 
white (W) channels. The experimental room was colored either 
in white or light gray to best reflect the hue characteristics of the 
illuminant.  

Illuminants 
For the illuminants, we considered three categories: 

nuanced-white (9 kinds), chroma (12 kinds), and high-chroma (6 
kinds). The illuminance level was fixed to approximately 800 lx 
throughout the experiments.  

The first 9 illuminants were distinct nuanced-white 
illuminants that varied from 2,500 K to 18,000 K, which we tried 
to generate, according to the Planckian locus. The colorimetric 
values of each lighting condition were measured on the desk, 
using a Chroma Meter (Minolta CL 200A), as listed in Table 1; 
they are plotted as white-outlined dots in Figure 2. 

Table 1. The 9 kinds of nuanced-white illuminants. 
Illuminant 
category 

CCT [K] x y 

Nuanced-white 
(800 lux) 

3035 0.436 0.406 
3911 0.379 0.360 
5087 0.345 0.385 
6266 0.317 0.336 
8708 0.283 0.313 

10291 0.270 0.301 
11498 0.261 0.297 
15116 0.254 0.271 
21351 0.245 0.253 

 
Second, 12 kinds of chromatic illuminants were produced, 

covering a diverse hue range. Their dominant wavelength, 
relative to D65 white standard (6500K) and x-y coordinates, are 
presented in  

Table 2; they are plotted as gray-outlined dots in Figure 2. 

Table 2. The 12 kinds of chromatic illuminants. 
Illuminant 
category 

Dominant 
wavelength(nm) 

x y 

Chroma 
(800 lux) 

616.8 0.488 0.323 
573.1 0.413 0.463 
559.0 0.344 0.508 
529.8 0.230 0.576 
485.9 0.178 0.269 
478.8 0.164 0.186 
473.8 0.160 0.138 
466.6 0.156 0.083 
443.8 0.207 0.108 
445.0 0.206 0.108 

−563.3 0.251 0.127 
−550.6 0.316 0.174 

 
In addition, 6 kinds of highly chromatic illuminants were 

added, and they were vivid enough to reach the primary colors 

of the Adobe RGB gamut. The details are listed in Table 3; they 
are plotted as black-outlined dots in Figure 2. 

Table 3. The 6 kinds of highly chromatic illuminants. 
Illuminant 
category 

Dominant 
wavelength(nm) 

x y 

High 
Chroma 
(800 lux) 

619.7 0.602 0.314 
574.4 0.450 0.494 
530.6 0.195 0.695 
477.9 0.145 0.160 
464.3 0.140 0.043 

−563.3 0.239 0.091 

 

 
Figure 2 Plotting of 27 illuminants, which were used in experiments on the 
CIE 1931 XY color space. White-outlined dots were nuanced-white 
lightings, gray-outlined dots were chroma lightings, and black-outlined 
dots were high-chroma lightings. 

Displays in digital images 
Due to the surface reflectance, the color of a display surface 

may change slightly, depending on the ambient light. We had to 
take this into consideration, because we assumed the color 
properties of a luminous surface to be constant. To determine the 
influence of ambient lighting on the luminous surface, we placed 
devices under varying illuminants and took pictures of all 
simultaneously. Four kinds of smartphones were used, 
manufactured by the major global brands, were used;  the models 
were an iPhone 6, Galaxy S7, LG G5, and iPad 3, as illustrated 
in Figure 3. Each device displayed the Google search page. 
Under 27 kinds of illuminants, we fixed a camera position to take 
repeated pictures of the scene, as pictured in Figure 3. The 
iPhone 6S was tested, but not included in the analysis because 
that phone model operates the true-tone adjustment that varies 
the white points, depending on the hue characteristics of the 
ambient illuminant. We used a digital single-lens reflex camera, 
a Canon 100D, and all pictures were taken in the camera’s 
manual mode. Subsequently, the pictures were recorded as RAW 
files to avoid automatic calibration, including AWB.  
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Figure 3 Pictures were taken under 27 illuminants, and each picture 
contained the four devices: iPad 3, iPhone 6, Galaxy S7, and LG G5. The 
Google search page was displayed on all devices. The iPhone 6S was not 
included in the analysis because that phone model operates the true-tone 
adjustment that varies the white points depending on the hue 
characteristics of the ambient illuminant. 

After taking the 27 pictures, we measured how the Google 
search page was recorded within each picture. Using the pipette 
tool in Photoshop CC 2017, we selected the white background of 
the Google search page on each device (hereinafter, “white 
point”), and consequently, we collected 4 kinds of whites from 
every picture. In Table 4, we summarize the results, presenting 
the averaged R, G, B values of the white point of the devices 
pictured under the 27 kinds of illuminants. Obviously, the R, G, 
B values of white points were better maintained under the 
nuanced-white illuminants than those under the chromatic 
illuminants. Also, we observed that the standard deviation of 
blue ([B]) was often twice as big as that of R or G.  

Table 4. Average red (R), green (G), blue (B) values and 
standard deviation of white points of the four devices 
pictured together under the 27 kinds of illuminants (N=18, 9 
nuanced-white illuminants and 18 chromatic illuminants). 

Device Illuminants 
9 kinds of Nuanced 

whites 
[R, G, B] ± SD 

18 kinds of 
Chromatic lights 
[R, G, B] ± SD 

iPhone 6 [137, 144, 162] ±  
[2, 4, 5.5] 

[134, 142, 169] ±  
[6.3, 7, 9.3] 

Galaxy S7 [135, 153, 148] ±  
[4.3, 2.9, 2.7] 

[131, 151, 153] ±  
[4.9, 4.6, 11] 

LG G5 [109, 118, 127] ±  
[5.4, 2.5, 5.2] 

[104, 116, 142] ±  
[10, 8.5, 26] 

iPad 3 [113, 111, 113] ±  
[7.9, 4.1, 16] 

[100, 101, 142] ±  
[23, 23, 52] 

 
Nevertheless, we regarded the color changes, caused by the 

surface reflection of the ambient illuminant, as marginal. Among 
the four devices, the iPhone 6 seemed to maintain the color of 
the luminous surface most successfully, while the iPad 3 did the 
worst job at this. This indicates that the iPhone 6 is a better target 
than the iPad 3, in the context of estimating original illuminants, 
based on the display images. Accordingly, in Session 2, we used 
the iPhone 6 and iPad 3 as the best and worst devices, 
respectively, among the four, expecting a range of performance 
of the display image, based on the reverse calibration, to estimate 
the initial illuminant.  

Session 2. Illuminant Estimation Through 
Reverse Calibration 

To estimate the original illuminant, we conducted a reverse 
calibration, using the white point of the display in an image as a 
target, especially when the image was taken with the AWB 
procedure. We attempted to examine the performance of this 
display-based illuminant estimation by comparing it with the 
original illuminant.  

As with the images taken in Session 1, we employed the 
image data of iPhone 6 and iPad 3. As in Session 1, the images 
were recorded in the RAW format. We white balanced the RAW 
format images using the AWB option of Adobe Lightroom 5, as 
if the original images had been taken with AWB functions. 
Figure 4 presents an example of how an image taken in RAW 
mode is calibrated automatically, with the AWB option in Adobe 
Lightroom 5. In this way, we generated a total of 27 calibrated 
images.  

 

 
Figure 4 Pictures taken in a RAW mode (left) are transformed into an 
AWB applied image (right). Using Lightroom 5 Auto option for processing 
original image to auto white-balanced (AWB) image. 

Then, we performed a reverse calibration, using the color of 
the display surfaces in AWB images. The reverse calibration 
consisted of the following steps: first, we picked white points of 
the display in an AWB image and labeled them as Rafter AWB, Gafter AWB, 
and Bafter AWB; second, we referred to Table 4 to define Roriginal, Goriginal, 
and Boriginal and then calculated a gain matrix to transform the 
RGBafter AWB into the RGBoriginal. The following formula (1) describes 
the procedure to calculate a 3 by 3 gain matrix.  
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Finally, we applied the gain matrix to calibrate the AWB 

image in reverse, and globally. Figure 5 presents an example of 
a reverse calibration, using the iPhone 6. The reversed image 
appears orangish, indicating that the picture actually was taken 
under a low correlated color temperature (CCT).  

In this way, we obtained two sets of 27 reverse-calibrated 
images, based on the iPhone 6 and iPad 3. The computation was 
carried out using Matlab R2017. In Figure 6, RAW format 
images are compared with two reverse-calibrated images, based 
on the iPhone 6 and iPad 3 as the targets. Apparently, the reverse-
calibrated images generally follow the hue characteristics of the 
RAW format images, along various illuminants, which indicates 
that the method is practically applicable.  
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Figure 5 Reverse calibration process. ① Pick distorted white point on 
AWB image. ② Calculate gain matrix based on distorted white point and 
original white point. ③ Transfer whole pixels in AWB image with the gain 
matrix calculated in step 2. 

 
Figure 6 Pictures recorded in RAW format (left) presented with reversely 
calibrated images. For the reverse calibration, display surfaces of the 
iPhone 6 (center) and iPad 3 (right) were used as the targets.  

Discussion 
As shown in Figure 6, the method facilitated a satisfactory 

performance of estimating of the illuminant. In this study, we 
examined the performance of estimating the levels of illuminant 
more objectively. Also, we tried to compare the performance of 
reverse-calibrated images with that of RAW images. To obtain 
the information about the illuminant, based on a picture, we 
adopted the Gray World theory and applied the algorithm to both 
RAW and reverse-calibrated images. The computation was 
conducted using Matlab R2017. Consequently, the estimated 
illuminants from both images were compared with the actual 
illuminants, as measured with a Chroma Meter (Minolta CL 
200A). 

Table 5 compares the CCTs of estimated illuminants with 
regard to the 9 nuanced-white illuminants. In general, the 
estimated illuminants yielded lower CCTs than measured values, 
and this discrepancy widens as the measured CCT increases. A 
consideration of the differences between measured and estimated 
CCTs reveals that, on average, the values of such differences are 
2691 K, 4541 K, and 3783 K, as presented in Table 5. However, 
given the CCT range we experience in daily life, it is possible to 
scale down the observation range to 6266 K. In that case, the 
differences are far lower, showing 813 K, 1626 K, and 364 K, 
respectively, thereby demonstrating that the method is a 
plausible choice in the event that  a RAW-formatted image is 
unavailable. Moreover, in contrast to our negative speculation 
about using the iPad 3, due to its unstable surface reflection (see 
Table 4), the reverse calibration based on the image of the iPad 
3 display seems to perform quite accurately, particularly when 
the illuminant is below 6000 K.  

Table 5. The CCT of estimated illuminants from a RAW 
image and a reversely calibrated image based on the iPhone 
6 and iPad 3.  

Illuminant 
category 

CCT of illuminants [K] 
Measured Estimat

ed from 
RAW 

images 

Estimated from 
reverse- 

calibrated images  
iPhone 

6 
iPad3 

Nuanced
-white 
(800 lux) 

3035 2199 1913 2964 
3911 2926 2094 3563 
5087 3846 2898 4381 
6266 6075 4889 5935 
8708 6977 5611 6386 

10291 8229 6138 7009 
11498 8880 6520 6807 
15116 9790 6886 7094 
21351 12123 7444 7080 

Average difference 
from the 
measured CCT  
(all range) 

2691 4541 3783 

Average difference 
from the 
measured CCT  
(~6266 K) 

813 1626 364 

 
In the case of the chromatic illuminants, we identified the 

estimated illuminants’ dominant wavelength, relative to D65 
white standard (6500K). Table 6 demonstrates the comparative 
performances of the reverse calibration, based on the display 
images.  

Table 6. The dominant wavelength of each illuminant 
estimation for 12 chromatic and 6 highly chromatic 
illuminants. Gray shaded cells indicate substantially large 
errors. 

Illuminant 
category  

Dominant wavelength (nm) 
Measur

ed 
Estimated 

from 
RAW 

images 

Estimated from 
reverse-calibrated 

images 
iPhone6 iPad3 

Chroma 
(800 lux) 

616.8 611.8 623.1 615.4 
573.1 587.7 594.5 539.5 
559.0 574.4 580.0 541.7 
529.8 561.1 567.6 549.6 
485.9 537.8 548.9 492.0 
478.8 485.2 487.1 492.0 
473.8 476.5 478.3 491.7 
466.6 495.0 475.7 500.1 
443.8 471.0 470.5 497.0 
445.0 465.0 -560.8 518.2 

−563.3 -562.8 -541.9 529.1 
−550.6 -550.4 -541.6 591.9 

High 
Chroma 
(800 lux) 

619.7 611.8 623.1 611.8 
574.4 587.7 594.5 587.7 
530.6 574.4 580.0 574.4 
477.9 561.1 567.6 561.1 
464.3 537.8 548.9 537.8 

−563.3 485.2 487.1 485.2 
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Overall, the estimated dominant wavelength squares well 
with the measured values, but the performance deteriorates quite 
seriously in the purple range, particularly when the illuminant is 
highly saturated. The cells shaded in gray indicate that the 
proposed method is not be practical to estimate both purplish and 
vividly bluish illuminants. This may be due mainly to the fact 
that the recording of B was more unstable, relative to R or G 
when illuminants vary (Table 4). The results indicate that the 
display surface is highly affected by illuminants’ blue light 
changes and this negatively impacts the process of reverse 
calibration, which yields a lower-quality estimation. 

Also, this study has limited application to display devices 
that do not change their white points. We were aware of the true-
tone function, introduced by Apple upon the release of the 
iPhone 6S, and the fact that the true tone adjusts the white point 
of the display, according to the ambient lighting, to best serve 
color consistency. Recent empirical studies have suggested 
matching models between the white point of a display and 
chromatic characteristics of illuminants [8-10]. 

Nevertheless, at least for now, the proposed method is 
applicable to most everyday pictures. The method enables us to 
remotely estimate the local illuminant if a digital image with a 
display surface is available. We can easily investigate the local 
illuminant, using everyday pictures available in social media, 
because cameras usually proceed with AWB by default. In 
particular, as we determined on the basis of examination, the 
estimation is less correct when the method is applied to predict 
higher CCTs, of approximately 6000 K and above. However, the 
CCT of most indoor illuminants range from 2800 K to 6500 K, 
which means that the method can adequately cover the relevant 
CCT range in our everyday lives.  

Conclusion 
This study proposes a new way to estimate illuminants 

through reverse calibration of an AWB image, in which a display 
surface is contained. In Session 1, we observed the luminous 
surfaces of four devices, including three smartphones and one 
tablet PC, under 27 kinds of varying illuminants to make sure the 
hue characteristics of luminous surfaces appear constantly. In 

general, B values were less stable than R or G values, implying 
that the proposed method would perform more weakly when 
estimating higher CCTs or bluish illuminants. In Session 2, we 
conducted the reverse calibration and obtained the estimated 
illuminants. With regard to 9 kinds of nuanced-white 
illuminants, we applied the CCTs to measured and estimated 
illuminants, which revealed better estimation performance for 
the illuminants up to 6200 K. Also, with regard to 15 kinds of 
chromatic illuminants, we used the dominant wavelengths to 
determine the quality of the performance. The results showed 
that the method is more powerful for estimating the range 
between green and red than for the range between blue and 
purple. As an illuminant approached a primary color, the error 
increased. Nevertheless, the proposed method is capable of 
estimating the illuminant range that dominates in our daily lives, 
advocating its practical use to predict local illuminants where 
people use any display devices and take pictures with them. 
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