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Abstract

The aim of this work is automatic and efficient detection of
medically-relevant features from oral and dental hyperspectral
images by applying up-to-date deep learning convolutional neu-
ral network techniques. This will help dentists to identify and
classify unhealthy areas automatically and to prevent the pro-
gression of diseases. Hyperspectral imaging approach allows
one to do so without exposing the patient to ionizing X-ray radi-
ation. Spectral imaging provides information in the visible and
near-infrared wavelength ranges. The dataset used in this pa-
per contains 116 hyperspectral images from 18 patients taken
from different viewing angles. Image annotation (ground truth)
includes 38 classes in six different sub-groups assessed by dental
experts. Mask region-based convolutional neural network (Mask
R-CNN) is used as a deep learning model, for instance segmen-
tation of areas. Preliminary results show high potential and ac-
curacy for classification and segmentation of different classes.

Introduction

According to WHO statistics [1], oral and dental diseases
are the most common noncommunicable diseases which affect
peoples lives, causing them to suffer from discomfort, pain, and
even death. For instance, the Global Burden of Disease Study [2]
reports that dental caries of permanent teeth has affected half
of the worlds population (3.58 billion people), being the most
widely distributed condition assessed. Also, gum disease, which
can lead to tooth loss was as the 11th most widespread disease
in the world. It is essential to recognize signs of disease as early
as possible as dental treatment is expensive and sometimes not
affordable in low-and-middle-income countries. The goal of this
study is to help dentists to automatically recognize early-stage
signs of diseases from oral and dental spectral images. If diseases
are treated in their early stages, patients’ quality of life is im-
proved, and more severe medical complications can be avoided.

Non-imaging examination techniques include visual obser-
vation with a periodontal probe and a mirror, and a chemical indi-
cator for the demineralization process. Imaging methods include
optical coherence tomography (OCT) [3][4], X-ray [5], spec-
tral imaging [6][7][8], and dental photographs (Red/Green/Blue
(RGB) imaging) to record patients medical history. Current
methods are mainly used to detect caries or periodontitis.

Machine learning, deep learning, and hyperspectral imaging
applied for computer vision tasks showed high potential in dif-
ferent fields over the last years [9]. Although, only a few recent
neural network studies have concentrated on dental applications:
Lee et al. [10] have developed an algorithm based on convolu-
tional neural networks (CNN) for prediction and diagnosis of pe-
riodontally compromised teeth. Their dataset contains periapical
radiographic datasets captured by applying X-Ray imaging. lon-
izing radiation is not safe for patients and exposure should be
limited. Furthermore, a radiographic image is a grayscale im-
age with relatively limited amount of information. The system
of Jae-Hong Lee et al. works as a black box solving only the
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classification problem, without showing the actual location of the
disease. Another study of Jae-Hong Lee et al. [11] is related to
detection and diagnosis of dental caries using a deep learning-
based CNN algorithm. This study is similarly limited to peri-
apical radiographic datasets. While their algorithm can detect
and classify the image of teeth, it does not provide information
on caries location, which would be very important for treatment.
The authors of the next publication [12] applied deep learning for
instance segmentation of the teeth from X-ray images, no disease
classification or segmentation is done. The captured hyperspec-
tral dataset used in this work is unique; there is only one publicly
available dental dataset of X-ray images used for caries screen-
ing [13].

In this paper, we introduce a novel approach to oral and den-
tal image segmentation, which is a combination of hyperspectral
imaging and deep learning. Hyperspectral imaging applications
are widely used in forestry [14], agriculture and food quality con-
trol [15], urban remote sensing [16], and ecology monitoring by
remote sensing [17]. Hyperspectral sensors allow us to capture
the reflected or emitted electromagnetic energy from an image
scene over hundreds of narrow, contiguous spectral bands, from
visible to infrared wavelengths [18]. This provides us a possi-
bility to define the physical and chemical properties of scene ob-
jects and to detect or identify scene materials. The information
is stored in a hyperspectral cube: each layer in the cube repre-
sents a spectral band of narrow wavelength range and each pixel
contains a spectrum of a corresponding scene area. Thus, hyper-
spectral images contain significantly more information about the
objects in the image scene than grayscale or RGB images.

Medical image feature extraction is a complicated process
which requires a high-level specialist. In dentistry, accurate auto-
matic segmentation and classification of different intraoral areas
could enable identification of diseases with minimal human re-
sources. Moreover, automated image segmentation can be used
by non-experts, and also as an educational tool in dentistry.

Due to their outstanding predictive power, machine learn-
ing algorithms have become a key tool for modern hyperspectral
image analysis [19]. Deep learning is a part of machine learning
methods with deeper layer architecture inspired by neuroscience.
Deep neural networks lead in the fields of computer vision, im-
age processing, natural language processing, automatic speech
recognition, and fraud detection, providing top performance with
no need for manual feature extraction. Deep convolutional neural
networks (see Fig. 1) inspired by the mammalian visual cortex
system have rapidly become a state-of-the-art methodology for
medical image analysis [20]. CNN can find patterns in the image:
first few convolutional layers can identify low-level features like
lines and corners passing them to further layers. Then, the net-
work begins recognizing more complex patterns as shapes: this
provides excellent performance in most modern image recogni-
tion challenges [19].

CNN usually contains convolutional layers, pooling layers,
activation layers, and fully-connected layers. The main aim of
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Figure 1. CNN architecture. The initial input layer stores image pixels (left)
and output stores class scores (only the top 4 presented). CONV+RelLU lay-
ers compute dot-product between weights and local regions from an input,
then apply activation function max (0, x) element-wise. POOL layers down-
sample feature maps along the spatial dimensions. FC layers compute class
scores.

the convolutional layers is to perform filtering to find some pat-
terns. Pooling layer is used to reduce dimensionality. There are
two pooling layer types used: max-pooling to output maximum
value from some region; average-pooling to output average value
of some region. Activation layers change the input value using
some function to change the range; for example, ReLLU changes
negative values to zero. Fully connected layer neurons are con-
nected to all the neurons from another layer.

In this work, mask region-based convolutional neural net-
work (Mask R-CNN) [21] is used, for instance segmentation of
different dental areas like enamel, gum, and calculus. This net-
work is an extension of Faster R-CNN [22], adding a binary mask
classifier. Instance segmentation is relatively complicated task
aimed to detect all objects in the scene while also precisely seg-
menting each instance. Mask R-CNN developed by Facebook
Al Research (FAIR) outperformed all existing neural networks in
three tracks of the COCO suite of challenges [24], including in-
stance segmentation, bounding box object detection, person key-
point detection [21]. Implementation [23] of current network was
used for training on our dataset. It is based on Feature Pyramid
Network and a ResNet-101 [32] backbone. Examples of instance
segmentation of Mask R-CNN based on MS COCO dataset are
presented in Figure 2.

Figure 2. Mask R-CNN results on the COCO test set [24]. The results are
based on backbone ResNet-101. The bounding box, category prediction,
and class score are presented.

Practically, training of any CNN requires a relatively large
annotated dataset [28]. We used pre-trained weights for MS
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COCO challenge [24]. Although MS COCO dataset does not
contain dental images, it does contain many pictures of natural
scenes, which help to recognize the most common patterns. So,
we reused most parts of the pre-trained network, changed its out-
put layer and retrained the network on our dataset to detect re-
quired classes. This method is called transfer learning.

Materials and methods

Spectral images in the dataset used in this work were cap-
tured at the Computational Spectral Imaging Laboratory of the
University of Eastern Finland (Joensuu, Finland) and the Den-
tal School Clinic of the University of Eastern Finland (Kuopio,
Finland). The research ethical permission for the imaging was
issued by the Hospital District of Northern Savo (Kuopio, Fin-
land) and a fully informed written consent was acquired from
each patient prior to the imaging. Overall, the dataset contains
116 hyperspectral images of dental lesions acquired from 18 in-
dividual participants. The spectral imaging setup used for dataset
collection is shown in Figure 3.

Figure 3. The process of capturing hyperspectral images. Left: spectral
image capture of a neutral gray reference sample. Right: spectral image

capture of front teeth and gingiva. Images of the oral cavity and teeth were
taken from different viewing angles. List of objects: 1 - neutral gray refer-
ence sample; 2 - hyperspectral camera; 3 - illumination ring; 4 - lens; 5 -
construction; 6 - lip retractor.

Dental experts assessed the hyperspectral images and pro-
vided ground truth annotations. Annotations include 38 classes
in six different subgroups: technical issues, hard tissue and aug-
mentations, soft tissue, hard tissue issues, soft tissue issues, and
miscellaneous. Technical issues can be overlapped with other
subgroups. An example of rendered RGB image overlayed with
annotation masks can be found in Figure 4. The spectral cameras
used were Specim IQ (Specim, Spectral Imaging Ltd., Finland)
and CRi Nuance EX (PerkinElmer, Inc., USA). The former cap-
tures spectral images in the 400-1000 nm wavelength range and
the latter in the 450-950 nm range.

Mask R-CNN extends Faster R-CNN by adding a branch
for mask generation in parallel to classification and bounding
box regression branches (Fig. 5). Prediction of segmentation
masks is made by a small Fully Convolutional Network (FCN) on
each Region of Interest (Rol), adding only a small computational
overhead to Faster R-CNN. Faster R-CNN itself consists of two
steps: a) Region Proposal Network is an end-to-end FCN which
predicts rectangular object boundaries and prediction scores by
sliding over the feature map from the last shared convolutional
layer; b) parallel classification and bounding box extraction from
features extracted by RoiAlign from previously predicted object
boundaries 5.

The Mask R-CNN used in current research is implemented
on Python3, Tensorflow 1.8, and Keras [23]. Keras is an open-
source neural network library created for fast deployment of deep
neural networks which uses TensorFlow as it is backend engine
for tensor manipulations. ResNet-101 backbone was used as a
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Figure 4. The example of rendered RGB image overlayed with annotation
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Figure 5.
gion Proposal Network (RPN) is a fully convolutional network responsible
for rectangular object boundaries prediction. Region-based CNN (R-CNN)
generates candidate region proposals and feeds them into CNN. Then, par-
allel classification, bounding box detection, and mask generation are done.

Mask R-CNN architecture. Input is a 3-channel image. Re-

feature extractor for Mask R-CNN. Generally, CNN-like neu-
ral networks are rarely trained from scratch because it requires
a relatively large dataset. We used a pre-trained model on MS
COCO dataset. MS COCO includes 330k images (;,200k la-
beled), 1.5 million object instances, 80 object categories and 91
stuff categories used for object segmentation and recognition in
context [24]. This gives us a considerable variety of different
natural scenes and objects, which is essential to form filters for
low-level and high-level feature extractions. Transfer learning
technique is applied to the deep neural network to re-train the
last output layer for segmentation and classification of differ-
ent areas inside the mouth, while previous layers are responsible
for extracting low-level features. Grouping of different low-level
features leads to different class-representations.

Initial preprocessing of spectral images includes flat-field
correction [33] and feature scaling to range [0,1]. Flat field cor-
rection is applied to exclude the effect of illuminant and camera
by using the radiance of standard gray diffuse reference panel.
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The equation is used to compute the sample’s reflectance [25]:

_ DNs(x,y;4) = DNy (x,y;1)

Rs(x.y:4) = DNgr(x,y;A) — DNy (x,y; 1)

'Rgr(l) (1)

where R;(x,y; A) - the reflectance of imaged scene, DNs(x,y; 1) -
the intensity values of imaged scene, DN, (x,y; A) - the intensity
values of gray sample measurement data, DNy (x,y; A )- the inten-
sity of dark current data, R, (x,y; A) is the spectral reflectance of
the gray sample. Gaussian filtering is applied to eliminate the ef-
fect of uneven illumination. Poorly illuminated areas at the sides
of the oral cavity is a common issue for dental imaging, and it
is not yet solved. Due to relatively long capture time for Nuance
EX (approximately 1.5 min - 2 min), generalized Dual Bootstrap
Iterative Closest Point (GDBICP) [26] is used to to register spec-
tral bands misalignment to eliminate the effect of movement.

To apply two-dimensional Mask R-CNN on hyperspectral
images, we need to reduce the number of bands by choosing
the ones containing the most meaningful information. The pre-
trained network is trained on 3-channel RGB images. The image
dataset used for transfer learning should be resized to the same
spatial resolution, and all input images should have three chan-
nels to enable the use the pre-trained network.

Spatial resizing is performed by the system automatically to
1024 by 1024 px while preserving the aspect ratio. Zero-padding
is added at the top-bottom or left-right for non-square images.
The training process was done using 3.20 GHz Intel Core i7-8700
CPU, 16 GB RAM DDR4, GPU NVIDIA GeForce GTX 1080, 8
GB, on a Windows 10 operating system. Batch size is set to one
image due to the limited amount of GPU memory. Learning rate
is set to 0.001. Training of the full dataset takes approximately
9-13 minutes for one epoch, 100 steps per each epoch.

Results and discussion

Accurate, automatic instance segmentation would be a very
useful tool for the prevention of oral and dental diseases. Hyper-
spectral imaging allows us to see medically-relevant features that
can be challenging or even impossible to see using visual obser-
vation, or by using grayscale, RGB, or X-ray images. Combi-
nation of hyperspectral imaging and modern deep learning CNN
techniques gives us a possibility to tackle the issue in a com-
pletely new way, providing promising and precise results. More-
over, open-source deep learning libraries help to perform the re-
search in easier and faster way.

Mask R-CNN predicts boundary box, object class and
builds the mask for each detected object. The class score rep-
resents class prediction accuracy. Bounding boxes are not shown
on preliminary result images for simplicity and better visibility.
The accuracy of predicted mask is evaluated via Intersection over
Union (IoU) evaluation metric. IoU is a ratio between the area
of overlap between ground-truth labeled area and predicted mask
area by the area of union.

Spectral band selection with relevant features and Princi-
pal component analysis (PCA) were considered as dimensional-
ity reduction methods. PCA did not show any good result; av-
erage IoU score was lower than 5% even for well-represented
classes like enamel. The 3-channel images combined from PCA
inner product images (calculated using the three most significant
eigenvectors) are not similar to the MS COCO images, that could
be the reason why the algorithm failed.

A previous study [27] identifies 450 nm, 500 nm, and 600
nm bands as the most important features for calculus, gingiva,
erosion and caries detection. These bands were used to create
3-channel image dataset from captured hyperspectral images.

291



Enamel segmentation

1007088

200,083

1004082
1.0040.50

0971967
0.98/0.67

3371920083

1,00 /082 o
1.0040.84 099 /030

Attached gingiva segmentation

0.98/0.74

0957062

Figure 6.

=

!

0937078, ,0 199/ 054

Instance segmentation results of enamel and attached gingiva using Mask R-CNN. Ground truth annotation is marked as green, predictions

marked as red. Caption next to each segmented region represents class prediction score / loU score in range [0,1].

The segmentation results for a few classes (enamel, at-
tached gingiva) shows that the approach proposed in this paper
is promising (Fig. 6). For enamel: average class prediction accu-
racy is 99%, and IoU is 77%. For attached gingiva: average class
prediction accuracy is 96%, and IoU is 68%.

Further improvements can be done to increase the accuracy
of prediction. First, the lack of training data leads to poor seg-
mentation results. This issue could be solved by image augmen-
tation. There are different types of augmentations that can be
used to extend the size of the dataset: zooming (rescaling), rota-
tion, flipping (vertically, horizontally, diagonally) and shifting.

Conclusions

Oral and dental diseases are affecting people’s lives all over
the world. Early-stage detection and prevention is an impor-
tant issue not yet solved efficiently. Nowadays, periapical ra-
diographic X-ray imaging is one of the most used technology to
detect dental lesions, but this technique uses ionizing radiation
which can be harmful to the patient and provides only a limited
amount of information. Moreover, a highly trained dental expert
is required for disease identification.

In this paper, hyperspectral imaging and deep learning con-
volutional neural networks were applied to develop a novel ap-
proach, for instance segmentation and classification of different
areas-of-interest inside the mouth. The novelty of the proposed
method lies in the usage of non-destructive and effective tech-
nology for dental and oral spectral imaging as well as automated
image segmentation which can be used by non-experts as well as
for educational purposes. Preliminary results of predicted classes
(enamel, attached gingiva) proved the potential of the method
providing relatively high segmentation accuracy (average IoU
scores: 77% for enamel, 68% for attached gingiva). In the fu-
ture, the accuracy of prediction can be improved by expanding of
spectral image dataset both by capturing new spectral images and
by using augmentation techniques. Also, additional deep learn-
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ing methods will be tested to provide higher accuracy instance
segmentation results.
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