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Abstract
In the spectral reconstruction (SR) problem, reflectance

and/or radiance spectra are recovered from RGB images. Most
of the prior art only attempts to solve this problem for fixed expo-
sure conditions, and this limits the usefulness of these approaches
(they can work inside the lab but not in the real world). In this
paper, we seek methods that work well even when exposure is un-
known or varies across an image, namely ‘exposure invariance’.
We begin by re-examining three main approaches - regression,
sparse coding and Deep Neural Networks (DNN) - from a vary-
ing exposure viewpoint. All three of these approaches are pre-
dominantly implemented assuming a fixed capturing condition.
However, the leading sparse coding approach (which is almost
the best approach overall) is shown to be exposure-invariant, and
this teaches that exposure invariance need not come at the cost of
poorer overall performance. This result in turn encouraged us to
revisit the regression approach. Remarkably, we show that a very
simple root-polynomial regression model - which by construction
is exposure-invariant - provides competitive performance without
any of the complexity inherent in sparse coding or DNNs.

1. Introduction
Spectral information of the scenes is useful in a wide range

of applications [15, 4, 13]. Consequently, various imaging tech-

nologies have been developed to capture high resolution spectra at

each pixel of a scene, namely the hyperspectral image. However,

these devices are costly and/or bulky and suffer from long inte-

gration times, which means they cannot be used for scenes where

objects move.

Spectral reconstruction (SR) - also known as spectral esti-
mation and spectral super-resolution in the literature - is an al-

ternative approach to acquiring hyperspectral information. In SR
we attempt to find a mapping which relates fewer-channel sen-

sor responses and high resolution spectra. More precisely, for an

RGB camera, the SR problem refers to finding a mapping from

each RGB in the image to the corresponding reflectance and/or

radiance spectrum.

A simple model of image formation can be written as:

xi =
∫

Ω
l(λ )r(λ )si(λ )dλ , (1)

where xi, l(λ ) , r(λ ) and si(λ ) stand for the i-th camera response,

the light’s spectral power distribution, the surface reflectance of

the object and the i-th camera sensitivity function. Ω denotes the

visible spectrum. With respect to this nomenclature, the spectral

reconstruction problem can be written as:

SR(x)≈
{

r(λ ) (reflectance recovery)

l(λ )r(λ ) (radiance recovery)
(2)

Figure 1. Illustration of spectral reconstruction (SR). The red line in the

graph is the true radiance. The mapping from the RGB to the dotted blue line

shows the estimated radiance.

where SR(·) denotes a spectral recovery algorithm/function. For

one of the images from the hyperspectral data set in [2], we illus-

trate the SR problem in Figure 1.

Mapping an RGB to the corresponding continuous func-

tion of wavelength, either r(λ ) or l(λ )r(λ ) (respectively the re-

flectance spectrum and the colour signal or spectral radiance)

seems like a hard problem. Yet, it is not as insoluble as one

might first suppose. Indeed, the literature from 40 or 50 years ago

to-date contains many papers which present methods for solving

the problem. The early work concentrated on developing low-

dimensional physics-based models for reflectance. Starting with

Maloney and Wandell [14], there are many works that charac-

terise reflctances by a 3-dimensional linear model: assuming the

illumination spectrum is known, there is a unique 3-dimensional

linear transformation mapping RGBs to spectra. Slightly better

reflectance recovery was made possible as the problem was posed

a least-squares regression to be solved, see [11, 7, 8], or regarded

as a Bayesian estimation problem [5, 16].

In the recent literature, the leading approaches for SR are

sparse coding [2, 1] and (usually deep) Neural Network solutions

[17, 12, 20], with the idea of simple regression having been aban-

doned due to its simplicity (the problem is too complex, right?)

and that it seems to recover spectra less well. We put leading in

italics because one of the contributions of this paper is to rehabil-

itate the regression approach (and cast doubt on the reasons why

it was abandoned).

However, whatever approach is used, we notice that the cur-

rent experimental evaluation framework assumes the capturing

condition of the training images is identical to the test images.

Yet, the real world may be darker or brighter according to the cap-

turing settings and/or the viewing conditions: the exposure varies

between image captures. The exposure also varies within an im-

age, e.g. the same physical object can be more or less well ex-

posed in different parts of the scene. In regard to these concerns,
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Figure 2. Non exposure-invariant (top) and exposure-invariant SR (bottom)

a key contribution of this paper is to consider spectral reconstruc-

tion when the exposure varies.

In Figure 2, we illustrate both the problem and a solution

we develop in this paper. The solid lines in the figure show

the same ground-truth radiance spectra scaled by a brightness

factor, i.e. an exposure difference. While the two SR models

were calibrated for the longer exposure condition (exposure = 1),

the reconstructed spectra (marked as empty triangles) show that

non-exposure-invariant polynomial regression (top panel) gets a

poorer spectral recovery when the exposure is reduced.

The ‘solution’, which will be later introduced in section 3,

is another contribution of this paper: root-polynomial spectral re-

construction. Root-polynomials by construction scales with in-

tensity [9] while general polynomials do not. As shown in the

bottom panel of Figure 2, the corresponding recovery for the

root-polynomial method is equally good when exposure varies.

Moreover, the experimental results in section 4 will demon-

strate that root-polynomial regression provides competitive per-

formance compared to even more complex SR methods.

2. Background

2.1. Regression-based Models
Let us denote a single radiance spectrum in the image as a

discrete vector r j and the corresponding RGB as x j, where we as-

sume the former is sampled at k points across the visible spectrum.

Here and throughout the paper we assume the visible spectrum

runs from 400 to 700 nanometres and we use a 10 nm sampling

distance, so k = 31 and r j is a 31-vector.

Recall Equation (2), the aim of SR is to map the RGB to the

radiance spectrum: x j �→ r j . The simplest form of mapping is to

conduct a linear transformation by a 31×3 matrix, denoted as the

regression matrix M, such that Mx j ≈ r j . To solve for M, in the

least-squares sense, the following expression is to be minimized,

given m training pairs of RGBs and spectra:

MLR = arg min
M

( m

∑
j=1

||r j −Mx j||22 + γ||M||2F
)
, (3)

where LR denotes linear regression. Here γ is a user defined pa-

rameter as a penalty term. When γ = 0 the regression is simple
least-squares. Sometimes the predictions by a regression are un-
stable. That is, regarding the SR problem, small perturbations

in RGBs can lead to large changes in the recovered spectra. The

aforementioned penalty term γ ‘regularises’ the solution in effect

making the regression stable. More details can be found in [11]

and [21].

Equation (3) is solved in closed form:

MLR = RT X(XT X+ γI3×3)
−1 (4)

where respectively X and R are m× 3 and m× 31 matrices (the

rows are respectively matched RGBs and spectra) and I3×3 is a

3×3 identity matrix.

A simple way to include non-linearity to the regression

model is to apply the polynomial transformation to the camera re-

sponse [7], namely the polynomial regression (PR). For an RGB

camera, the 2nd , 3rd and 4th degree polynomial feature vectors are

defined as follows:

Φ2(x) =

(
R,G,B,R2,G2,B2,RG,GB,RB

)T

Φ3(x) =

(
R,G,B,R2,G2,B2,RG,GB,RB,

R3,G3,B3,RG2,GB2,RB2,GR2,BG2,BR2,RGB
)T

Φ4(x) =

(
R,G,B,R2,G2,B2,RG,GB,RB,

R3,G3,B3,RG2,GB2,RB2,GR2,BG2,BR2,RGB,

R4,G4,B4,R3G,R3B,G3R,G3B,B3R,B3G,

R2G2,G2B2,R2B2,R2GB,G2RB,B2RG
)T

.

(5)

The regression problem of PR is defined analogously to Equation

(3):

Mo
PR = arg min

M

( m

∑
j=1

||r j −MΦo(x j)||22 + γ||M||2F
)
, (6)

where the superscript o denotes the order of the polynomial used.

The solution of Equation (6) is written in closed form as:

Mo
PR = RT XΦo(XT

Φo XΦo + γIn×n)
−1 (7)

where the i-th row of XΦo is the polynomial expansion of the i-
th camera RGB response, and n is the number of terms of the

polynomial expansion.
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2.2. Sparse Coding

The basic idea behind sparse coding approach is that all spec-

tra can either be found in or as linear combinations of a small dic-

tionary of spectra. Let us suppose the spectral dictionary (Dr) is

composed of M radiance spectra:

Dr = [r1 r2 ... rM ] . (8)

The corresponding RGBs of all items in Dr forms an RGB dictio-

nary:

Dx = [x1 x2 ... xM ] . (9)

Now let w denote an M-dimensional weight vector. Since

image formation is linear (see Equation (1)), applying the weights

to Dr (making a derived spectrum) implies the corresponding

RGB of the derived spectrum can be constructed by applying the

same weights to Dx :

Drw = r′ ⇒ x′ = Dxw . (10)

It is assumed that the weights in w are all positive and sum up to 1

and furthermore w is sparse. ‘Sparse’ means that we expect most

of the terms in the weight vector to be zero (or very small), such

that the fit to a given RGB would only involve a small number of

basis vectors.

Sparse coding SR operates in two stages. In pre-processing,

the spectral dictionary Dr is found (and its optimisation can be

laborious). In the second stage we ‘look up’ the dictionary to map

RGBs to spectra and this processing is generally faster. The look-

up processing in turn operates in three steps. First, the ‘neigh-

bours’ of the concerned RGB response in Dx are found. Second,

the combination of the neighbours which matches the RGB is cal-

culated. This combination is then applied to the spectral dictio-

nary Dr to recover the spectral estimate.

2.3 Neural Networks

Neural Networks are well-known for their capability of de-

termining non-linear mappings from input to output vectors. Shal-

low networks [19, 18, 17] were proposed to find the mapping

SR : R
3 �→ R

31 which is defined on input of a single camera re-

sponse vector. More recent approaches consider an image patch

as one training/testing sample, for which deep networks such as

Convolutional Neural Network (CNN) and Generative Adversar-

ial Network (GAN) are popular solutions to the problem.

In the recent NTIRE 2018 Challenge on Spectral Reconstruc-
tion from RGB Images [3], it was reported that all leading models

involved implementation of Deep Neural Networks. We select the

CNN-based HSCNN-D and HSCNN-R models (1st and 2nd place

entries in the challenge) [20, 3] for testing in this paper.

A detailed presentation of the various networks is not possi-

ble in the restricted space of this paper. But, it is worth remarking

that they are often parameterized by millions of parameters and

are thus much more complex than regression-based methods.

3. Proposed Method

3.1 Exposure Invariance
Suppose we change the exposure: the amount of light enter-

ing the camera (at a pixel). We model this by applying a scaling

factor ξ to Equation (1):

ξ xi = ξ
∫

Ω
l(λ )r(λ )si(λ )dλ . (11)

This exposure scaling ξ is used to represent anything in the im-

age formation process which affects intensity. Examples include

changing the exposure time or the aperture size when an image

is captured. Equivalently, the illumination prevailing in the scene

could become brighter and darker. Of particular concern to this

paper is the idea that the same physical reflectance could appear

in different parts of the same scene at different intensities: when

two spectra are the same up to a scaling factor, the corresponding

RGBs will be related by the same factor and any spectral recovery

should also be similarly related.

Abstractly, the SR problem - of which we have given exam-

ples of regression, sparse coding and Neural Networks - requires

us to find a mapping function SR(·) that maps image RGB to the

corresponding radiance spectrum:

SR(x j)≈ r j . (12)

An SR method is exposure-invariant if and only if

SR(ξ x j)≈ ξ r j . (13)

3.2 Are Existing Spectral Recovery Methods In-
variant to Exposure?

Let us consider the three approaches presented in section 2.

It is well known that a straightforward linear transformation is

scale-invariant. However, linear regression delivers poor spectral

reconstruction. For fixed viewing conditions, polynomial regres-

sion can better recover spectra from RGBs (a fact we verify in

section 4). But, as discussed in [9] a polynomial regression does

not scale with exposure (and as per the example shown in Figure

2 we get different recovery performance for two RGBs which are

a scaling apart).

Interestingly, whether or not sparse coding is exposure-

invariant depends mostly on how we predict RGBs as a sparse

function of the dictionary. Suppose, for example, for a given

query RGB xq we find the three nearest neighbours in Dx which

are the closest in terms of their angular distance to xq. Then, if ir-

respective of the exposure we still find the same three neighbours

for ξ xq, it follows that we will recover the same spectrum scaled

by ξ . The leading sparse coding method, called A+ [1], turns

out to be exposure-invariant. This result encouraged us to revisit

the regression approach and our exposure-invariant regression is

presented in the next section.

Neural Network solutions to SR, similar to polynomial re-

gression, are also not exposure-invariant. Consider the typical

architecture of a single neuron:

a′ = g(wT a+b) , (14)

where a, w and b are the inputs, weights and bias, g(·) is called the

activation function and a′ is the output from the neuron. Here g(·)
could be a sigmoid function or linear rectification. The offset term

alone indicates the neuron will not scale with exposure, i.e. if the

input is ξ a the output will not be ξ a′. Even when b= 0, the use of
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common non-linear activation functions (sigmoid, tanh or radial-

basis functions) leads to that the neuron output does not scale with

the magnitude of the input. Note that the linear rectification is,

in fact, scale-invariant when b = 0, but its power of including

non-linearity to the network highly depends on the non-zero bias

terms. Given this view at the level of a single neuron, we can

expect that deep networks - of whatever architectures - can hardly

be exposure-invariant by construction.

3.3. Root-Polynomial Spectral Reconstruction
As the early CNN model was proposed to deal with the SR

problem [10], Aeschbacher et al. [1] defended the sparse coding

models reported in [2, 1], showing that they can reach comparable

performance to the CNN solution. It was argued in the very paper

that sparse coding models have the advantage over deeply learned

CNN models in terms of time efficiency for training and runtime,

clarity of relations between parameters, the amount of training

data required and the robustness to overfitting. In the previous

part of this paper, we have added another considering factor - ex-

posure invariance, which introduces one more significant advan-

tage of those shallow-learned models (linear regression and A+).

Still, speaking of model complexity and efficiency, regression-

based approaches are the most fundamental and the simplest. To

further improve the performance of linear regression while retain-

ing its exposure-invariant property, we introduce a new polyno-

mial fitting model for SR: Root-polynomial Regression (RPR).

The proposed method is an extension from the work of Fin-

layson et al. [9] on root-polynomial regression for colour cor-

rection. While the colour correction problem considers the map-

ping from the device-dependent polynomial feature to device-

independent tristimulus values CIEXYZ (or display RGB), the SR
problem seeks to estimate radiance spectra.

In Equation (5) we used the nomenclature Φ to denote the

‘polynomials’, here we denote root-polynomials as Φ̂:

Φ̂2(x) =

(
R,G,B,

√
RG,

√
GB,

√
RB

)T

Φ̂3(x) =

(
R,G,B,

√
RG,

√
GB,

√
RB,

3
√

RG2,
3
√

GB2,
3
√

RB2,
3
√

GR2,
3
√

BG2,
3
√

BR2,
3
√

RGB
)T

Φ̂4(x) =

(
R,G,B,

√
RG,

√
GB,

√
RB,

3
√

RG2,
3
√

GB2,
3
√

RB2,
3
√

GR2,
3
√

BG2,
3
√

BR2,
3
√

RGB,
4
√

R3G,
4
√

R3B,
4
√

G3R,
4
√

G3B,
4
√

B3R,
4
√

B3G,

4
√

R2GB,
4
√

G2RB,
4
√

B2RG
)T

.

(15)

It is clear that Φ̂o(ξ x) = ξ Φ̂o(x) and so root-polynomial regres-

sion is exposure-invariant [9].

Note that compared with PR, the number of polynomial

terms decreases for RPR: the 2nd , 3rd and 4th degree polynomial

features for PR have 9, 19 and 34 terms, while for RPR the num-

bers are reduced to 6, 13 and 22 terms, respectively.

The closed-form solution of RPR can be calculated analo-

gously to Equation (6) and (7):

Mo
RPR = arg min

M

( m

∑
j=1

||r j −MΦ̂o(x j)||22 + γ||M||2F
)
, (16)

and

Mo
RPR = RT XΦ̂o(XT

Φ̂o XΦ̂o + γIn×n)
−1 (17)

where the i-th row of XΦ̂o is the root-polynomial expansion of the

i-th camera RGB response.

Finally, we allow a small extension to the RPR model where

we regress based on a small neighbourhood of pixels. Let us de-

note the root-polynomial expansion at a pixel (u,v) as XΦ̂o(u,v).
Assuming a 3×3 pixel neighbourhood, we have 9 pixel locations

(u−1,v−1),(u−1,v), · · · ,(u+1,v),(u+1,v+1) with 9 expan-

sions of the form XΦ̂o(u,v). We simply stack these 9 vectors one

after another, for the whole training data set, giving a combined

neighbourhood representation denoted as X3×3
Φ̂o , which we use to

substitute for XΦ̂o in Equation (17). For instance, per-pixel 2nd

order root-polynomial regression matrix M2
RPR is 31× 6. When

a 3× 3 neighbourhood is considered, the regression matrix be-

comes 31×54. This additional variation of the model is to move

the regression idea (even so gently) toward Deep Neural Networks

(whose power is in large part derived from the spatial processing

of images).

4. Experiments

Table 1. List of tested models

Model Approach Exposure
invariant?

HSCNN-D CNN no
HSCNN-R CNN no
A+ (1x1) Sparse Coding yes
A+ (3x3) Sparse Coding yes
LR Regression yes
PR6 Regression no
RPR6 (1x1) Regression yes
RPR6 (3x3) Regression yes

We are going to evaluate spectral recovery for the 8 algo-

rithms listed in Table 1. Note that for both PR and RPR mod-

els, 6th order feature mapping were selected, abbreviated as PR6
and RPR6, respectively. RPR6 (3×3) denotes the 6th order root-

polynomial regression in a 3 × 3 neighborhood. Likewise, for

the A+ algorithm [1] we also include per-pixel (1× 1) and per-

neighbourhood (3×3) versions.

The hyperspectral image database used for the experiments

was ICVL data set [2] (Date of Access: 14 Jan. 2019), which con-

tains 201 hyperspectral images including both indoor and outdoor

scenes. The spectral dimension of all spectral data was discretized

with 10 nm intervals within the visible range [400,700] nm (i.e.
all spectra are 31-vectors). The corresponding RGB images were

simulated by integrating the hyperspectral images with the CIE

1964 color matching functions [6]. All models were tested with

original, half and double exposure scalings, which were applied
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Table 2. Mean and 95-percentile hyperspectral image reconstruction error in MRAE and MAngE under original, half and double
exposure settings (i.e. Exposure = 1, 0.5 and 2). Best results are shown in bold. Note that HSCNN-D and HSCNN-R model are
excluded from comparison.

Model
MRAE MAngE (deg.)

Exposure = 1 Exposure = 0.5 Exposure = 2 Exposure = 1 Exposure = 0.5 Exposure = 2
Mean 95pt. Mean 95pt. Mean 95pt. Mean 95pt. Mean 95pt. Mean 95pt.

HSCNN-D 0.0118 0.0161 0.1470 0.2359 0.0577 0.0965 0.78 1.27 7.03 9.25 3.56 6.38

HSCNN-R 0.0130 0.0189 0.1791 0.3655 0.0575 0.0967 0.86 1.42 6.43 8.23 3.52 6.35

A+ (1x1) 0.0385 0.0800 0.0385 0.0800 0.0385 0.0800 2.38 5.16 2.38 5.16 2.38 5.16
A+ (3x3) 0.0432 0.0839 0.0432 0.0839 0.0432 0.0839 2.67 5.31 2.67 5.31 2.67 5.31

LR 0.0624 0.1214 0.0624 0.1214 0.0624 0.1214 3.79 7.47 3.79 7.47 3.79 7.47

PR6 0.0195 0.0296 0.0960 0.1197 0.1300 0.3695 1.46 2.50 5.50 6.69 4.89 9.07

RPR6 (1x1) 0.0470 0.0983 0.0470 0.0983 0.0470 0.0983 2.88 5.68 2.88 5.68 2.88 5.68

RPR6 (3x3) 0.0471 0.0973 0.0471 0.0973 0.0471 0.0973 2.87 5.57 2.87 5.57 2.87 5.57

to the ground-truth hyperspectral data during the testing stage but

not in the training stage (same trained models were tested for dif-

ferent exposure settings). The Tikhonov regularisation factors in

all regression models are found by grid search in logarithmic scale

on validation data.

The experiments were conducted with 2-fold cross valida-

tion; except for the CNN models, the pre-trained networks pro-

vided in [20] were directly used. Since the whole ICVL data

set was part of their training set (as reported in [3]), the results

of HSCNN-D and HSCNN-R shown in this paper are only for

demonstrating how they perform in presence of exposure scaling

and should not be compared to the other results.

4.1. Exposure-Invariant Metrics
As pointed out in [3], various metrics have appeared in the

literature for evaluating the performance of SR models. Some of

which even have multiple definitions (e.g. RMSE in [1] and [10]).

In this paper we aim to compare the model performance under

different scene exposures; consequently, the error metrics should

not depend on the overall intensity of the pair of spectra that are

being compared. The metrics defined below are used.

• Mean Relative Absolute Error

MRAE =
1

N ∑
i

∣
∣
∣
∣

∣
∣
∣
∣
ri − r̂i

ri

∣
∣
∣
∣

∣
∣
∣
∣
1

(18)

• Mean Angular Error (unit: degree)

MAngE =
1

N ∑
i

angle(ri, r̂i) (19)

Above, ri and r̂i denote the i-th ground-truth and estimated spec-

tra. In (18), the division in MRAE is component-wise and the

absolute deviation (L1 norm) is calculated. In (19) the mean spec-

tral angular error is calculated. Both error measures are calculated

per image of N spectra.

4.2. Results and Discussion
The performance statistics in Table 2 show several results.

First, for fixed exposure the CNN approach works well. The root-

polynomial approach introduced in this paper works better than

linear regression but not as good as the best sparse coding model

and straightforward polynomial regression: the polynomial re-

gression performs the best overall. If we allow exposure to vary,

then the exposure-fixed CNN models work poorly. Indeed, they

seem highly tuned to fixed exposure condition. Remarkably, those

exposure invariant models, including linear, root-polynomial re-

gression and sparse coding, works much better than polynomial

regression and most possibly the CNN solutions - the leading

models under fixed exposure. Lastly, it appears that incorporating

small neighbourhood information into root-polynomial regression

and A+ does not help.

In Figure 3, we show the error maps in terms of Relative Ab-

solute Error (i.e. MRAE without the pixel-wise averaging) for a

single image under 3 exposures recovered by the 8 selected SR
models. The exposure invariance of root-polynomial, linear re-

gression and A+ is clear, while the fact that the CNN approaches

are highly tuned to the exposure condition is also evident.

We admit the possibility that Deep Neural Networks might

be retrained in an exposure-invariant way, e.g. by adding exposure

variation to the training regime. We also remark that the recovery

error for the root-polynomial method is still good when exposure

conditions are held fixed. Indeed, the angular error is less than

3 degrees on average. It could be that a 3 degree error is suffi-

cient for tasks such as material recognition. Testing both of these

hypotheses is for future research.

5. Conclusion
Spectral reconstruction (SR) algorithms attempt to map

RGBs to corresponding spectra. Many of the early SR algorithms

were based on regression, but these have apparently been super-

seded by more advanced statistical approaches including sparse

coding techniques and most recently by Deep Neural Networks

(DNN). DNNs seem to provide a step change in performance.

In this paper we threw exposure variation into the mix. We

asked how tuned existing techniques were to the exposure con-

ditions: if we scale RGBs by 0.5 (a physically accurate simula-

tion of dimming the light intensity by 50%) would existing meth-

ods still work? We make two important contributions. First we

show that the performance of many legacy methods are highly

dependent on exposure. For example, two of the best DNN ap-

proaches work poorly when exposure changes. Second, we re-

propose the root-polynomial regression [9] technique - used in

the colour correction literature - to the problem of spectral re-
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Figure 3. Relative Absolute Error heat maps for all testing models under original (top row), half (middle row) and double exposure (bottom row).

construction. As exposure changes, this proposed model sets the

forefront of regression-based approach.
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