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Abstract
Omnidirectional or 360-degree images are becoming very

popular in many applications and several challenges are raised

because of both the nature and the representation of the data.

Quality assessment is one of them from two different points of

view: objectively or subjectively. In this paper, we propose to

study the performance of different metrics belonging to various

categories including simple mathematical metrics, humand per-

ception based metrics and spherically optimized metrics. The

performance of these metrics is measured using different tools

such as PLCC, SROCC, KROCC and RMSE based on the only

publically available database from Nanjing university. The re-

sults show that the metric that are considered as optimized for

360 degrees images are not providing the best correlation with

the human judgement of the quality.

Introduction
For the past decade, visual media has made great efforts to

provide innovative technologies that make the viewer experience

more and more realistic. A classic example is 3D image/video

technologies providing an additional dimension i.e. depth. More

recently, emerging technologies such as Virtual Reality (VR) and

Augmented Reality (AR) are seen as a further step towards an

immersive experience, currently known as immersive Media.

Recent advances in acquisition devices, graphics process-

ing performance and interactive display systems such as HMDs

(head mounted devices) have contributed to the rapid deployment

of virtual reality applications. One of the most important VR ap-

plications to mention is based on omnidirectional or 360-degree

images. The latter gives the user the feeling of being part of the

visualized scene.

Various technologies can be used to capture a 360-degree

image, such as multi-camera array requiring an additional imag-

ing step to obtain a spherical signal, or 360 multi-lenses imaging

systems. The omnidirectional content viewed with HMD devices

positions the viewer in the center of the sphere, allowing him to

freely change his point of view by simply moving his head in

the desired direction. Depending on the viewing direction of the

user, a part of the spherical surface is made visible. The latter

represents a small part of the whole picture/video and is called

field of view (FoV) or viewport.

360 imaging is relatively a new field and will require an

important effort in order to reach stability in terms of comfort,

immersiveness and quality. The latter aspect is vital in order to

guarantee a good experience for the user. However, the field for

360 images/videos is still in its infancy and may benefit from the

large experience gained by the community in 2D and 3D qual-

ity assessment (objective and subjective). Indeed the last decade

witnessed hundreds of works related to this topic. This activ-

ity is due to the interest of the scientific community in having

tools allowing to measure accurately the fidelity of a given algo-

rithm. Moreover, the diversity of content types (2D, S-3D, LDR,

HDR, . . . ), applications (multimedia, medical, security, . . . ), im-

pairment natures (blocking, blurring, ringing, color shift, . . . ),

created new needs to be addressed. Hence, 360 and stereoscopic

360 are new challenges for the community.

This paper aims at benchmarking a set of quality metrics

from the literature, initially developed for 2D images, on this new

type of content. The expectation from such a study is to conclude

about the usability of the metrics for 360 degrees content. There-

fore, several metrics are selected either for their efficiency or for

their widespread use in the community. To date several reviews,

surveys and chapters have been published regarding image qual-

ity metrics for different application fields [1, 2, 3, 4, 5, 6, 7, 8].

With the increase of the activity around the 360 content, some

attempts have been made to adapt well known metrics such as

the PSNR to the specific characteristics of 360. A selection from

these proposals is added to the set of metrics used in this bench-

mark. Finally, a benchmark cannot be performed without the

availability of databases providing opinion scores of observers.

The latter aspect is one of the weaknesses of this field because

only a few databases exist. Furthermore, there no commonly ac-

cepted paradigm to run subjective testing using such a new con-

tent and such new devices.

The remainder of this paper is organized as follows: section

2 provide a description of the used quality metrics together with

the database allowing to conduct performance evaluation. Sec-

tion 3 provides the benchmark’s results and discusses the perfor-

mance of each metric for the different types of content. Finally,

this paper ends with some conclusions and open questions re-

garding 360 quality assessment.

Image quality metrics
By browsing the literature one can notice that some metrics,

namely MSE, PSNR, SSIM [15], IFC [9], VIF [23], VSNR [10],

are often used as anchors to demonstrate the efficiency of a pro-

posed metric. For this study, we intended to cover a large panel

of categories of metrics, including the best performing ones. We

thus opted for signal-based, structural similarity, feature simi-

larity, information fidelity metrics in addition to a perceptually

weighted metric and a visual difference predictor. In addition,

we included the first attempts to fit the metrics with this new type

of content and whose are mostly used in the compression field.

Signal fidelity metrics: MAE, PSNR, MSE and
PAMSE

The mean absolute error (MAE) is one of the simplest met-

rics. It calculates the residual between the reference and the im-

paired images for every pixel, taking only the absolute value of

each so that negative and positive residuals do not cancel out.

MAE describes the typical magnitude of the residuals and is for-

mulated as:

MAE(I, I′) =
1

N
|I − I′|, (1)
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with I and I′ are two images being compared and N is the number

of pixels.

Peak Signal-to-Noise Ratio (PSNR) is undoubtedly the

most widely used metric to date even with the advent of an im-

pressive number of metrics. It is very popular especially because

of the simplicity of its description, its good understandability and

low complexity. PSNR comes originally from the signal process-

ing community and aims at assessing fidelity thanks to the ratio

between the maximum possible power of a signal and the power

of corrupting noise affecting it. PSNR has been widely used for

the evaluation of image compression algorithms where the origi-

nal signal is the unaltered image and the impairments introduced

by codecs represent the noise.

PSNR is expressed in terms of the logarithmic decibel (dB)

scale based on the mean square error (MSE) as described below.

PSNR = 10 log10
I2
max

MSE
(2)

where Imax is the maximum possible value of a pixel, and

MSE represents:

MSE =
1

W ×H

W

∑
x=1

H

∑
y=1

[I(x,y)− I′(x,y)]2 (3)

with I and I′ are two images being compared, I(x,y) is the

value of the pixel (its luminance) and W (resp. H) is the width

(resp. height) of the images. For 8-bit images, Imax is 255.

Hence, PSNR equation can be written:

PSNR = 20 log10
255√
MSE

(4)

There is no standard formulation of PSNR for multi-channel (e.g.

RGB) or multi-view (e.g. stereoscopic) images. Several authors

use either an average of MSEs over all channels / views or an

average of individual PSNRs.

Typical values of PSNR for lossy compression range be-

tween 30 and 50 dB where higher values indicate better fidelity.

However, one must be very careful when interpreting results be-

cause their validity highly depends on the content, the compared

algorithms and the spatial or spectral distribution of the noise

[11]. Moreover, two impaired images may obtain the same PSNR

value while their visual inspection indicates an important differ-

ence of quality. For instance, if the same noise is applied with a

uniform spatial distribution on an image or concentrated on one

object of interest, this will provide the same PSNR value while

the perceptual impact is incomparable. Therefore, the perceptual

validity of PSNR is very disputable and several studies demon-

strated its inefficiency on specific impairments.

By having a close look at the PSNR formula, on can notice

that MSE is playing an important role in this inefficiency. Wang

and Bovik conducted a very important study entitled “Mean

Squared Error: Love It or Leave It?” where they demonstrated

the lacking efficiency of this metric while being confident that it

has many years ahead of it [12].

For the selection of patches, we apply a recently devel-

oped metric, called the perceptual-fidelity aware mean squared

error (PAMSE) [13] to find the best matched patches. PAMSE

is a Gaussian-smoothed MSE that is computationally efficient

in comparison to other metrics. The PAMSE approximates a

weighted sum of the gradient of MSE, the Laplacian of MSE,

and MSE itself. It is formulated as follows:

PAMSE(I, I′) =
1

N
‖h⊗ (I − I′)‖2

2
, (5)

where h is a Gaussian smooth filter and N is the number of pixels.

MS-SSIM: Multi-Scale Structural Similarity Index
Metric

Structural similarity has been proposed as a computational

way to overcome the drawbacks of traditional perceptual image

quality metrics. The latter are often based on several stages mim-

icking the HVS behavior like: 1) the pre-processing stage tak-

ing into account the low-pass filtering performed by the eye, 2)

the channel decomposition stage reproducing the operations per-

formed at the visual cortex, 3) the error normalization process

providing the ability to weight the error in each channel and fi-

nally 4) the error pooling stage combining the whole information

into a single score per pixel or per image. Despite the complex

structure of these metrics, their performance may be debatable in

comparison with their computational cost.

The Structural Similarity Index Metric (SSIM) proposed by

Wang et al. [15] has taken an important place in the quality

evaluation community and beyond, thanks to the very interest-

ing tradeoff between complexity and correlation with the human

judgement. However, it is quite difficult to achieve the unanim-

ity of users when dealing with this metric. Indeed, it is somehow

difficult to interpret results when two impaired images are close

in terms of quality leading to similar conclusions as for PSNR

about the usability. Moreover, as reported by the authors them-

selves, SSIM is a single-scale metric while the viewing condi-

tions are varying. To cope with this limitation, an extension of

this metric called Multi-Scale SSIM (MS-SSIM) has been pro-

posed [14]. The extension inherits all the features introduced in

the single-scale version. To avoid redundancy, we focused here

only on the extended version of the structural similarity.

The MS-SSIM metric takes as input the reference and im-

paired images and compares two features called contrast c and

structure s defined by:

c(I, I′) =
2σIσI′ + c1

σ2
I +σ2

I′ + c1

, (6)

s(I, I′) =
σII′ + c2

σI +σI′ + c2
, (7)

where σ∗ and σ∗∗ represent the variance and the covariance

of the luminance, respectively. c∗ are constants used for compu-

tation stability.

This processing of scale 1 is iterated at every scale and mov-

ing from scale to scale is performed by applying a low-pass filter

and downsampling the filtered image by a factor of 2 until scale

M. While contrast and structure are computed at each scale, an-

other feature called luminance l is computed only on the smallest

scale (M) as described below:

lM(I, I′) =
2µI µI′ + c3

µ2
I +µ2

I′ + c3

. (8)

where µ∗ is the luminance mean. The MS-SSIM score is

obtained by computing and combining the aforementioned fea-

tures on local image patches i at different scales j, as described

by equation 9.

MS−SSIMi = [lM(Ii, I
′
i )]

αM

M

∏
j=1

[c(I j,i, I
′
j,i)]

β j [s(I j,i, I
′
j,i)]

γ j (9)

Exponents αM , β j and γ j are used to adjust the relative im-

portance of the different features. The weighting values are ob-

tained by means of a psycho-physical study conducted with a

panel of ten observers. These local scores are then averaged into

a single score per image.
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FSIM: Feature Similarity Index Metric
It is known that the HVS is attracted by low-level features,

such as edges or zero-crossings, on a given image. This is due

to the important information conveyed by the most salient fea-

ture helping in the scene interpretation task. Therefore, any no-

ticeable change on an image will be naturally expressed by the

discussed features. Based on these observations, Zhang et al.

proposed to exploit two important features namely phase con-

gruency (PC) and gradient magnitude (GM) [16]. The former,

PC, raised from the idea that features are considered as notice-

able at points where the phase is maximal for the Fourier com-

ponents. This is confirmed by physiological and psychophysical

studies on how the mammalian visual system detects and iden-

tifies salient features in an image. The latter feature, i.e. GM,

is used to cope with the fact that PC is contrast invariant while

the HVS is sensitive to image local contrast and this important

feature has to be taken into account.

Based on the above description, Zhang et al. formulated

their proposed metric, based on phase congruency and gradient

magnitude, as given by equation 10.

FSIM =
∑i Si ·PCmax

i

∑i PCmax
i

(10)

where ∑i represents a summation over local image patches

i; PCmax
i = max(PCIi

,PCI′i
) and Si = [SPCi

]α [SGMi
]β is the

weighted combination of PC and GM similarities between the

original image patch Ii and the impaired one I′i . While α and β
may be used to give more importance to one feature or the other,

the author made the choice to give them an equal importance.

Similarity between PCs (SPC) and GMs (SGM) are expressed as

given below:

SPC =
2PCI ·PCI′ + c1

PC2
I +PC2

I′ + c1

, (11)

SG =
2GMI ·GMI′ + c2

GM2
I +GM2

I′ + c2

. (12)

Finally, the feature GM =
√

G2
x +G2

y is computed using

horizontal and vertical gradients by an operator such as Sobel,

Prewitt or Scharr; the latter behaves slightly better as reported

by the authors. PC meanwhile is expressed as the ratio between

the local energy Eθ j
along orientation θ j and the local amplitude

An,θ j
on scale n and orientation θ j as shown below:

PC =
∑ j Eθ j

c3 +∑n ∑ j An,θ j

(13)

Constants c∗ are used for computation stability.

Visual information fidelity: VIF
Based on the information theory, Sheikh et al. proposed

a visual fidelity metric for image quality assessment [23]. It is

seen as a measure allowing to quantify the level of information

that can be extracted by the brain from a given scene. Hence, the

metric rely on natural scene statistics (NSS), HVS properties and

a distortion model. This metric comes from the extension of a

previous work by the same authors [9] in which they proposed an

information theoretic criterion for image fidelity based on NSS.

The assumption behind the VIF metric is that the random

field (RF) from a wavelet decomposition subband of an image,

RFI′ , can be defined as:

RFI′ = G.RFI +V (14)

where RFI is the random field of the subband from the ref-

erence image, G is a deterministic scale gain field, and V is a

stationary additive zero-mean Gaussian noise random field.

We have chosen to shorten the description of this metric be-

cause its mathematic demonstration is long and can hardly be

summarized. The reader can refer to papers [9, 23] for a com-

plete description and demonstration. Finally, this metric is rather

efficient but its main drawback is that the provided information

is a single score and not a map gathering the spatial distribution

of the perceived distortion.

Gradient Magnitude Similarity Deviation (GMSD)
The Gradient Magnitude Similarity Deviation metric

(GMSD) has emerged as a highly efficient model for post-

compression quality analysis [19]. Like many other full ref-

erence quality metrics, it computes image quality in two steps.

First, a Local Quality Map (LQM) is computed by locally com-

paring original and impaired images. The overall quality is then

determined from the LQM by using a pooling strategy. Several

choices exist for the pooling strategy where the simplest is the av-

erage one. However, since different parts of the image contribute

differently to image quality, a weighted pooling strategy yields

better results. GMSD employs standard deviation for obtaining

the overall quality score from the similarity map.

Visual difference predictor (VDP): HDR-VDP-2
The VDP-like metrics follow a bottom-up approach when

comparing the input images, i.e. original and impaired, in gen-

eral. The framework of these predictors is highly based on the

simulation of several processes happening in the HVS. The VDP

metric introduced by Scott Daly [18] was interesting because of

the proposed HVS simulation rather than its efficiency. It is only

applicable to low-dynamic range (LDR) images and its complex-

ity was a real issue at that time. An extension of VDP to higher

dynamic range, called HDR-VDP, has been proposed by Mantiuk

et al. [20, 21]. It operates on the full range of luminance, but can-

not be applied to strongly distorted images, since it is considered

as a near-threshold metric. Unfortunately, both discussed met-

rics have not been rigorously experimented and calibrated using

psychophysical experiments.

Despite its name, HDR-VDP-2 is considered as a break-

through solution in comparison to the aforementioned metrics

[24]. It provides three types of maps and relies on both a compre-

hensive model of the HVS characteristics and a sound extension

to a broad range of viewing conditions. Hence, the visual dif-

ference predictor models the optical and retinal pathway taking

into account 1) the light scattering happening at various levels,

especially with HDR scenes, and 2) the spectral sensitivity of

rods and LMS cones in addition to the luminance masking effect

due to their regulation of the incoming light. At a higher level of

the HVS, HDR-VDP-2 considers the overall noise affecting each

subband of the multi-scale decomposition as an accumulation of:

1) a signal independent noise obtained from the contrast sensi-

tivity function measurements, and 2) a signal dependent noise

related to contrast masking.

In this paper, we used the output Q described by equation 15

which comes from the pooling strategy proposed by the authors.

Q =
1

F.O

F

∑
f=1

O

∑
o=1

w f log

(

1

I

I

∑
i=1

D2[ f ,o](i)+ ε

)

, (15)

where i is the pixel index and I is their total number. D[ f ,o]
is the noise-normalized signal difference for the f th spatial fre-
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(a) Snowfield, Forest, Apartment, Desert, Telestudio

(b) Darkroom,Parlour, Brightroom, Brickhouse, Chamber

(c) Seaside, Fair, Race, Stadium, Pavilion

Figure 1: Thumbnails of the 15 original 4K images in the database.

quency band and oth orientation, w f is the per-band weighting

and ε = 10−5 is used to avoid computation instabilities.

Recently, an extension named HDR-VDP-2.2 has been pro-

posed where the main changes lie in the improvement of the

frequency-based pooling considered as a constrained optimiza-

tion problem [22]. We used this extension for the purpose of this

study since it showed the best performance.

Spherical extensions of PSNR
Because of the progress of 360 image coding approaches,

the compression community defined or exploited several exten-

sions of the PSNR with the aim to account for the specificity of

omnidirectional images [26].

Weighted spherical PSNR (WS-PSNR)
For computing WS-PSNR, squared error of each pixel (i, j)

of the tested frames is weighted by the scaling factor w(i, j) cor-

responding to the ratio between the tested projection and the

unit spherical surface. The distribution of w(i, j) is illustrated

in Fig. 2 for ERP projection. For a reference frame R and tested

frame T, WS-PSNR is calculated as:

WS−PSNR = ∑w(i, j)(R(i, j)−T (i, j))2 (16)

Figure 2: Spatial distribution of weight for WS-PSNR for ERP

projections.

Spherical PSNR w/o interpolation (S-PSNR-NN)
Calculate PSNR based on a set of points uniformly sam-

pled on the sphere. To find the sample value at the corresponding

position on the projection plane, nearest neighbor rounding is ap-

plied. The two inputs to the metric calculation can have different

resolutions and/or projection formats

Spherical PSNR with interpolation (S-PSNR-I)
Calculate PSNR based on a set of points uniformly sampled

on the sphere. To find the sample value at the corresponding po-

sition on the projection plane, bicubic interpolation is applied.

The two inputs to the metric calculation can have different reso-

lutions and/or projection formats

Experiments
This section describes the testing conditions including

the database and associated subjective experiments. In order

to compare the performance of the different metrics on the

used database, the definition of the used performance metrics

(SROCC, PLCC, KROCC and RMSE) are given. Finally, this

section gives the results and discusses the usability of the met-

rics depending on the resolution and quality factors.

Testing conditions
For these experiments, we used the 360 image database

from Nanjing university [25]. It is composed of 15 images of 4k

resolution in bmp format. In order to increase the reference im-

ages and the testing conditions, images were used with four dif-

ferent resolutions using the bi-cubic interpolation: 4096× 2160

(4K), 2560×1440 (2K), 1920×1080 (1K) et 1280×720 (720p).

Images are then distorted using JPEG compression with three

quality factor 100 (high), 60 (medium), and 25 (low).

The test protocol used the HTC Vive HMD, a personal com-

puter with a CPU i7-6700K, GPU nvidia gtx 1070. The ACR

Single Stimulus methodology was adopted. Subjects were asked

to freely navigate in the 360 environment. Images (resolution 4k

to 720p and a quality factor from 100 to 25)are shown in a ran-

dom way. The exposition time is fixed to 20s with gray image

shown during 5s between the tests. Scores are collected orally

on a continuous scale [0,100]. These scores are then normalized

using Z-scores and averaged per image.

Performance metrics
Pearson’s correlation coefficient (PLCC)

Pearson’s correlation coefficient r [27] is used for data on

the interval or ratio scales, and is based on the concept of covari-

ance. When an X , Y sample are correlated they can be said to

covary; or they vary in similar patterns.

The product-moment r statistic is given by :

PLCC =
n∑n

i=0 XiYi − (∑n
i=0 Xi)(∑n

i=0 Yi)
√

(
[

n∑n
i=0 X2

i − (∑n
i=0 Xi)2

][

n∑n
i=0 Y 2

i − (∑n
i=0 Yi)2

]

)
(17)

where n is the number of pairs of scores. The degree of

freedom is d f = n2.
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Spearman rank order correlation (SROCC)
The Spearman rank correlation coefficient [29], rs (or

Spearman’s rho), is used with ordinal data and is based on ranked

scores. Spearman’s rho is the nonparametric analog to Pearson’s

r.

The process for Spearman’s correlation first requires rank-

ing the X and Y scores: the analysis is then performed on the

ranks of the scores, and not the scores themselves. The paired

ranks are then subtracted to get the values of d, which are then

squared to eliminate the minus sign. If there is a strong rela-

tionship between X and Y then paired values should have similar

ranks. The test statistic is given by :

SROCC = 1− 6∑n
i=0 d2

i

n(n2 −1)
(18)

Kendall rank order correlation (KROCC)
The Kendall correlation coefficient can be computed as the

difference between two probabilities related to the same and in-

verse order of both lists [28].

KROCC = 2.
P−Q

n(n−1)
(19)

where P corresponds to the score pairs corresponding to the

same image located in the same order and Q in the reverse one.

Root Mean Square Error (RMSE)
The root mean square error (RMSE) indicates the accuracy

and precision of the model and is expressed in the original units

of measure. Accurate prediction capability is indicated by a

small RMSE.

RMSE =

√

1

n
∑
N

(X −Y )2 (20)

results and discussion
The results obtained on the whole database can be found on

Table 1. It gives the correlation coefficients and RMSE on all im-

ages. One can notice that the best metric in this case is by far S-

PSNR-NN, followed by FSIMc which is not optimized for spher-

ical content. Besides this couple of metrics, most of the other se-

lected metrics are behaving similarly except HDR-VDP-2 which

is giving very bad results. These results are relatively surprising

because one would have expected that spherical-optimized met-

rics will appear among the top ones. The fact of having FSIMc as

the second best is also surprising. Besides, this result shows that

color is having an interesting impact on the performance when

comparing the results with FSIM.

Table 2 gives more detailed results depending on the used

resolution. For 4K, MS− SSIM provides the best performance

whatever the used coefficient. It is followed by GMSD and

FSIMc. The performance are relatively good for almost all the

metrics. The least performing metric is HDR−V DP− 2. Nev-

ertheless even though the performance of the spherically-based

metrics are average, they do not appear among the best metric.

This is questioning because it should perform better because it

is taking into account the geometrical aspect. The same conclu-

sion/ranking does not hold for 2K. The results are mixed. For

instance, PLCC and RMSE considers FSIMc as the best while

SROCC/KROCC consider PAMSE. Again the spherical-based

metrics are not ranking well. The results for 1K is also different

Table 1: Performance metric on the whole database.

Metrics PLCC SROCC KROCC RMSE

MAE 0.485 0.434 0.297 11.819

VIFp 0.449 0.43 0.294 12.08

PAMSE 0.486 0.467 0.32 11.813

GMSD 0.493 0.465 0.318 11.763

SSIM 0.513 0.46 0.315 11.605

MS-SSIM 0.457 0.412 0.278 12.022

FSIM 0.692 0.667 0.487 9.753

FSIMc 0.716 0.685 0.504 9.437

PSNR 0.478 0.486 0.335 11.872

WS-PSNR 0.47 0.494 0.344 11.971

S-PSNR-NN 0.751 0.723 0.548 8.917

S-PSNR-I 0.585 0.526 0.386 10.962

HDR-VDP-2 0.235 0.227 0.148 13.136

because it almost considers GMLD as the best. At 720p, FSIM-c

is again the best while MAE is incredibly low.

Table 3 gives the performance results per quality factor.

While the compression quality is high, surprisingly S-PSNR-NN

is ranking the best. However for the medium and low quality fac-

tors, FSIMc is considered as the best whatever is the performance

metric. Nevertheless, the results of S-PSNR-N are still showing

very good correlation. The other metrics are performing rela-

tively low except FSIM and S-PSNR-I. WS-PSNR provide very

bad results compared to the other spherically-based metrics.

Conclusion
In this paper, the aim was to benchmark 13 quality metrics

from the literature, most of them initially developed for 2D im-

ages, on a 360-deg images database. The selected metrics cover a

large spectrum in terms of quality assessment categories. The re-

sults obtained on a publicly available database have lead to rather

surprising conclusions. For instance, the metrics optimized for

such a content are not providing the good results. The results

vary depending on the resolution and the quality factor. How-

ever, if one is requested to give a recommendation, FSIM −C

would represent the best tradeoff for the used database. This

initial work highlighted the difficulty of finding appropriate met-

rics for 360. Hence, as a future work, a comprehensive database

should be built by taking into account the different characteristics

of such media. Besides, novel approaches that are fully dedicated

to 360 are needed instead of weighting existing metrics.
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