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Abstract
Contrast Limited Histogram Equalisation moves the input

image histogram gently towards one which has a more uniform
distribution. Viewed as a tone mapping operation, CLHE gen-
erates a tone curve with bounded max and min slopes. It is this
boundedness which ensures that the processed images have more
detail but few artefacts. Outside of limiting contrast, recent im-
provements to histogram equalisation include constraining the
tone curve to make good whites and blacks and constraining the
tone curve to be smooth.

This paper makes three contributions. First, we show that
the CLHE formalism is not least-squares optimal but optimal-
ity can be achieved by reformulating the problem in a quadratic
programming framework. Second, we incorporate the additional
constraints of tone curve smoothness and good whites and blacks
in our quadratic programming CLHE framework. Third, experi-
ments demonstrate the utility of our method.

I - Introduction
A greyscale image consists of a single-channel where each

pixel value is a scalar that represents its display intensity. The
histogram can convey much information about an image and
what needs to be done to improve it. If the range of dark val-
ues in the histogram are large compared to the rest of the bright-
ness range then the image probably looks to dark and would need
brightening in order to see all the details. Another important ex-
ample, is when many brightnesses appear in a narrow band of
histogram bins. This can happen, for example when there is a
single dominant colour (e.g. a large area of sky) in the image.
Unlike the ‘brightening’ example, we probably do not want to
stretch the bins for the sky since doing so will introduce visual
detail that was not apparent and this would come across as un-
wanted noise.

Histogram Equalisation (HE) is a contrast enhancement
technique that brings out details within an image through ma-
nipulation of the associated grey level histogram. To understand
how HE works we need to formally consider how histograms
should be represented (and then manipulated). The number of
possible values in an image is dependent on numerical encod-
ing, although it is typical to assume 8-bit encoding and therefore
28=256 possible values. The histogram of an input greyscale im-
age can be usefully thought as a vector hi ∈ R256×1, with each
element in hi

k counting the occurrences of the kth pixel intensity
in the image. Rather than capturing raw counts of intensities we
normalise the histogram so that it sums to 1 (it is a probability
density function or PDF).

The goal of HE is to obtain a contrast-enhanced image with
an associated PDF wherein the probability of each pixel value
is equal, that is we map hi to h such that hk = 1/256 (remem-
bering we use normalised histograms and we are assuming 256
quantisation levels). We say that the image histogram is made
to be uniform. Intuitively, an image that uses all intensity lev-
els equally must make image detail more conspicuous. This in-

formal observation can be made more concrete by appealing to
information theory. It is well known that encoding brightnesses
in an image where the histogram is uniform requires more bits
in comparison to an image with a non-uniform histogram [11].
Or, in the parlance of information theory, a uniform histogram
has greater entropy (more information) than a histogram that is
non-uniform. How then is histogram equalisation implemented?
Well, the key observation to make is that there exists a unique
tone curve - a mapping from input to output brightnesses - that
results in the histogram of the output image being uniform.

We illustrate histogram equalisation in Figure 1. In Figure
1a we show an RGB colour image. From this image we cal-
culate its brightness histogram where brightness is calculated as
(R+G+B)/3. The brightness histogram of Figure 1a is shown in
1c. The tone curve which carries out histogram equalisation is
shown in Figure 1e. Applying this tone curve to the input bright-
nesses results in the histogram shown in 1d. Note this histogram
is not completely uniform as we must map all input values to the
same output values and a completely uniform output histogram
requires that the same input brightness must map to two different
output brightnesses[12]. The tone map in Figure 1e - applied to
each of the R, G, and B channels independently - when applied
to 1a results in image 1b. This tone map is the cumulative his-
togram (CDF, or cumulative distribution function) of the input
brightness histogram[13].

The image in Figure 1b is notably over-enhanced and not
preferred. In HE and related methods this over-enhancement can
often be attributed to large spikes in the histogram which, con-
comitantly, result in steep slopes in the tone curve. A conse-
quence of these high slopes is that neighbouring intensities in the
original image are mapped so far apart. This results in too much

Figure 1. Demonstration of HE intensity distribution manipulation with

flower image. (a) Original image. (c) Associated PDF. (b) Enhanced im-

age using HE. (d) Associated PDF. (e) Tone curve used for pixel mapping

obtained as cumulative sum of c.
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Figure 2. Comparison of boat using HE and CLHE. (a) Original image. (b) Enhanced using HE method. (c) Enhanced using CLHE method. Max and min

slopes of 2 and 0.5 respectively are used.

contrast. Equally when the slope is too low this can cause prob-
lems. For brighter values, the tone curve shown in Figure 1e is
almost flat. The meaning of the tone curve in this region is that
all bright values are pushed toward white. This means that some
fine detail that is apparent in the input, 1a, has been lost in the
histogram equalised image, 1b.

Contrast Limited Histogram Equalisation (CLHE) [4] is an
extension to the HE approach that tackles the problems of high
and low slopes. In CLHE, we seek to make the input brightness
histogram more uniform in a way where the slope of the tone
curve is bounded above and below. As we shall see, the link to
the cumulative histogram and the histogram itself is important in
how the CLHE method bounds the slope (see explanation in the
background section). We compare HE and CLHE in Figure 2.
Left, we have the input image. The histogram equalised image is
shown in the middle. The image has too much contrast. CLHE -
with max and min slopes of 2 and 0.5 respectively applied to the
tone curve, is shown on the right.

The output of CLHE meets the slope constraints but, ar-
guably, is still not perfect (we put this in italics as perfection in
image enhancement is a subjective term and is not well defined).
Compared with Figure 2b the white and black points are less
well defined. So, without going all the way to HE, we could bet-
ter define white and black in 2b and generate an even more pre-
ferred image. Additionally, CLHE does not say anything about
the 2nd derivative of the tone curve. Indeed, it often introduces
wiggly curves and this can manifest itself in output images as
low-frequency contouring artefacts. Recent work [3] has sought
to recast HE in an optimisation framework to address these issues
(it strives to both deliver a good white and black, and a smooth
tone curve). But the framework is disjoint from CLHE (does not
bound the slope).

This paper makes several contributions. First, we consider
what - over and above carrying out something like a slope limited
HE - CLHE is trying to achieve. We argue - due to the structure
of the algorithm (see next section) for a review - that it is trying
to find a least-squares optimal solution but falls short. Our first
contribution then is to place CLHE in an optimisation framework
that is least-squares optimal.

Next we extend [3] - the method which generates smooth
tone curves and better defined whites and blacks - so that it falls
within our new optimisation framework. In so doing we argue
that - at least for some bins - we need to relax the CLHE slope
bounds. Specifically, the tone curve should have a minimum
slope everywhere but it should be allowed to be slightly less than
this minimum at the darkest and brightest values.

Our whole optimisation is shown to be expressible in a
Quadratic Programming Framework. That is, we minimize an
objective function subject to linear constraints. That we write
our optimisation as a quadratic programme has two main advan-
tages. First, quadratic objective functions solved with respect to

linear constraints have a unique global optimum and this is found
by the QP algorithm [14]. Further this minimum can be found
rapidly[15].

Experiments demonstrate two main results. First that
the difference between CLHE and least-squares optimal CLHE
while in general small is systematically not 0. Second, within
the optimisation framework [3] - which is not contrast limited -
it is, unlike CLHE, difficult to limit the max and min slope (the
only recourse is to manually experiment with the parameters that
drive the method). Simply, our optimisation based extension to
CLHE (by incorporating [3]) - produces better images.

Other variants of HE are presented in [16]-[18], however
this paper focusses on formalising this histogram modification
algorithm in CLHE [4] and the optimisation framework of [3].

In section 2 we discuss the background for our work. Our
new extended and least-squares optimal CLHE is developed in
section 3. In section 4 we report experimental results. The paper
finishes in section 5.

II - Background
Now, let us review the CLHE algorithm. Let the histogram

of all the brightnesses in the input image hi = hist(I(x,y)) have
N bins and that we assume I(x,y) ∈ [0,1]. Further, we assume
that the sum of all the bins in hi is 1, ∑

N
j=1 hi

j = 1 (the histogram
is a probability distribution). As is well known (but see [13] for
a review) the cumulative histogram ci defines the tone map. The
cumulative histogram is defined as

ci
k =

k

∑
j=1

hi
j (1)

If we plot (1/N,2/N,3/N, · · · ,(N−1/N),1) against ci we
define the tone curve that maps the input image to the output
such that the histogram of output brightnesses is (almost) uni-
form. That is o(k/N) = ci

k the output brightness corresponding
to the input k/N (where k ∈ {1,2, · · · ,N}). As formulated the
slope of the brightness mapping function o() is relatively uncon-
strained. In fact at a given brightness level o′() is in the range
[0,N] (it can’t be negative as a cumulative histogram is, by defi-
nition, strictly increasing).

Let us consider the slope at a brightness level u ∈
{1/N/,2/N, · · · ,1}. The slope is simply the discrete derivative
and can be written as:

o′(u) =
ci

u∗N − ci
u∗N−1

1/N
=

hi
u∗N −hi

u∗N−1
1/N

(2)

Now, suppose we wish the minimum and maximum slope
to be m and M respectively. Mathematically, we write:

m≤
hi

u∗N −hi
u∗N−1

1/N
≤M (3)
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Rewriting, we see that

L = m/N ≤ hi
u∗N −hi

u∗N−1 ≤M/N =U (4)

That is, the input histogram as a whole must lie within the inter-
val [m/N,M/N] or [L,U ] where L and U denote the lower and
upper bound for the normalised histogram count (and L = m/N
and U = M/N).

In Figure 3, we show an input histogram with 3 bins. The
dashed lines are the L and U defined in Equation (4). CLHE
attempts to map the input histogram so that it falls within the
upper and lower bounds. With respect to Figure 3, CLHE returns
bin values delimited by the blue lines.

The CLHE algorithm is discussed in [4]. But, lets recapitu-
late the algorithm for the upper slope limit only:

Algorithm 1: Contrast Limited Histogram Equalisation

1. j = 0
2. h j = hi

3. j = j+1
4. h j = min(h j−1,U)

5. ∆ = ∑
N
k=1 h j−1

k −h j
k

6. h j = h j +∆/N
7. if |h j−h j−1|< ε then stop else goto 3

The CLHE algorithm operates iteratively. First, we clip all
the bin counts above the upper bound to equal this bound (see
step 4). Then the ‘Delta’ between the original and clipped his-
togram is redistributed evenly across all N bins. This means the
upper bound will be violated so we will need to re-clip, and then
continue in this fashion until step 7, is satisfied where the result-
ing histogram is with a criterion amount above the upper bound.
At this point h j is used to generate the tone curve that is applied
to enhance the original image. Because h j meets (more or less)
the upper bound U this means the corresponding tone curve’s
slope is less than the max slope M (more or less). Enforcing the
lower bound is carried out analogously i.e. we clip (max) values
below the lower bound and then redistribute by subtracting the
resulting Delta from all bins equally.

We state without proof that steps 4 and 6 - the clipping and
redistribution - are themselves ’least-squares optimal’. That is,
the operation of CLHE step-by-step attempts to find a new his-
togram (that obeys the upper bound) and is also close to the orig-
inal.

II.i - Histogram Modification by Optimisation
The recent literature on histogram modification has been

more explicit in formulating the problem as an optimisation. Like
CLHE, methods are developed to derive a new histogram from
the original which has properties - such as closeness to the uni-
form histogram - which result in the corresponding tone curve
obeying certain defined properties. For example, in ”Histogram-
based locality-preserving contrast enhancement” (HBLPCE) [1],
it is argued that the local shape of the histogram (derived from
the original, like CLHE) should be similar to the original and an
optimisation is performed to enforce this condition.

A more comprehensive framework for the optimisation ap-
proach to histogram modification is presented in [3]. There, an
objective function is constructed with several weighted penalty
terms that can be tuned to manipulate the characteristics of the
modified histogram. The optimisation is written in Equation (5).

min
h
||h−hi||2 +λ ||h−u||2 + γ||∇h||2 +α||Sh||2 (5)

The output of this optimisation is a histogram h that is close
the original input histogram hi and this closeness is captured
by the term ||h−hi||2. This optimisation is further conditioned
by three penalty terms (which add constraints on the histogram
that is derived). The penalty terms are weighted by three user
defined scalars λ , γ and α . The first penalty term, λ ||h−u||2
teaches that the derived histogram should be close to u, the uni-
form histogram. Remembering our discussion of CLHE which
maps an input histogram to be within upper and lower bounds
(and so also closer to the uniform histogram) this penalty term
plays an analogous role. Next, in γ||∇h||2, ∇ denotes the first
derivative operator, this constraint steers the optimisation to find
a histogram (and corresponding tone curve) that is/are smooth.

The last term, α||Sh|| requires more explanation. In [3],
it is argued that the tone curve should have a small gradient
(close to 0) for brightnesses close to 0 and 1. This enforces
a tone curve which is somewhat ‘s-shaped’ in design, and that
the input image is mapped to an output image that has good
blacks and whites. For this reason they call the third penalty
term “black-white stretching”. One way we could capture this
concept mathematically, would be to write a penalty terms as
α(∑b

k=1 h2
k +∑

N
k=w h2

k), where b and w respectively delimit a few
brightnesses close to 0 and 1. In fact this is exactly the meaning
of the third penalty term. As per our example, S denotes a N×N
diagonal matrix. The diagonal has 1’s for the first and last b and
N−w terms respectively and is otherwise all 0.

Notice that this minimization will not, in general, return a
new histogram h that either sums to 1 or satisfies the upper and
lower bounds as expressed in CLHE. A heuristic way to meet the
upper and lower bounds would be to increase the penalty term γ

(and maybe λ too). But, empirically we found this was hard to do
automatically and furthermore produced very smooth histograms
that had correspondingly overly smooth tone curves (where the
effect of the desired enhancement was lessened).

III - Method
While the CLHE algorithm successfully produces a modi-

fied histogram subject to the upper and lower bounds, one might
consider whether or not this output is the best we can do. In this
instance the best histogram would be one that obeys the bounds
whilst remaining as close as possible to the original. In Figure
3 we use a simple 3-binned histogram to demonstrate that the
CLHE formulation does indeed fail to uniformly converge to the
best output. With a starting histogram of [0.4, 0.6, 0] (shaded
regions), and an upper and lower bound of 0.5 and 0.2 respec-
tively, the CLHE (algorithm 1) output is [0.35, 0.45, 0.2], shown
as a solid blue line. The least squares optimal solution, shown
as a dashed red line, is [0.3, 0.5, 0.2]. Note that the third bin
in both modified histograms has a non-0 value despite the initial
value of 0 in the starting histogram, this is in compliance with
the minimum slope bound.

Now, let us present our method. Broadly, we wish to adopt
the optimisation framework of [3] - shown in Equation (5) and
- incorporate it with CLHE. There are three technical issues we
must address. First, we need to modify the optimisation to incor-
porate the upper and lower slope limits. Second, the optimisation
should also directly return a histogram that sums to 1. Lastly, we
need to modify the black-white stretch idea so that is can work
in a CLHE framework.
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Figure 3. Comparison of the CLHE algorithm and the least squares solu-

tion for a modified histogram. Max and min slopes of 0.5 and 0.2 respec-

tively are used. Starting values [0.4, 0.6, 0].

Least-squares optimal CLHE
Let us first directly rewrite CLHE as a constrained optimisa-

tion, where we use the same notation as Equation (5). As before
we assume the histogram has N bins.

minh ||h−hi||2 (6a)

s.t.


hk ≥ L , k = 1,2, · · · ,N
hk ≤U , k = 1,2, · · · ,N
∑

N
k=1 hk = 1

(6b)

The objective term in (6a) captures the idea that we wish
to find a histogram h which is as close as possible to an input
histogram hi as is possible in the least-squares sense. The con-
straints in (6b) define the properties the solution has to satisfy.
The first two terms refer to the upper and lower bounds. And the
third term stipulates that h should sum to 1. Both the input and
output histograms are probability density functions, they sum to
1.

Equation (6) has a quadratic objective function (6a) with
linear inequality and equality constraints. That is, it defines a
Quadratic Program. Not only do efficient algorithms exist for
solving quadratic programs [15] they are also guaranteed to find
the global optimum. Returning to Figure 3, the least-squares
solution (shown in red dashed lines) was found by solving the
quadratic program defined in Equation (6) (where N = 3 and
L = 0.2 and U = 0.5).

Least-squares optimal CLHE with additional con-
straints

Now we wish to extend the least-squares optimal optimisa-
tion to incorporate the constraints set forth in Equation (5). At
first glance the extension seems to be straightforward. After all,
Equation (5) minimizes a quadratic objective, so we might sim-
ply use Equation (5) instead of Equation (6a). Well this is true
to an extent. The optimisation in Equation (7) - using the linear
constraints Equation (6a) - can be found directly using quadratic
programming.

min
h
||h−hi||2 +λ ||h−u||2 (7)

However, the remaining two penalty terms (from Equation (5))
are not so simply transcribed. Lets consider the penalty term
γ||∇h||2. Here ∇ denotes the derivative operator. But, this is
conceptual and we need to make this concrete in order to imple-
ment the quadratic program.

Let us define the N×N difference matrix:

D =


−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


For our histogram the vector Dh denotes the discrete derivative
of h. Thus, we can add smoothness to our optimisations as:

min
h
||h−hi||2 +λ ||h−u||2 + γ||Dh||2 (8)

The final penalty term (“black white stretching” introduced in
Equation (5)) was α||Sh||2 where S is an N×N diagonal matrix
that is all 0 except for the first and last few terms along the diag-
onal. If the penalty term α is large the optimisation will attempt
to find a solution where the histogram is as close to 0 as possible
for the brightnesses close to black and close to white. This has
the effect of making a tone curve that is very flat near 0 and 1,
i.e making a tone curve which makes a good white and black (is
somewhat S-shaped in nature).

Of course, in our constrained quadratic programming
framework the minimum slope is implicitly defined by the lower
bound L. Empirically, we found that the lower slope limit is too
strong a constraint for black white stretching. That is, enforcing
the min slope from CLHE constraint directly can result in less
well defined whites and blacks than we might wish. Thus, we
suggest weakening the lower-slope limit for the first and last few
bins in the histogram. We found constraining the slope in the
white and black region to be 50% of the minimum slope limit
was usually sufficient to provide good visual results. Thus, our
final minimization, titled LSQCLHE, is written as:

minh ||h−hi||2 +λ ||h−u||2 + γ||Dh||2 +α||Sh||2 (9a)

s.t.


hk ≥ L/2 , k ∈ [1,b] or k ∈ [w,N]
hk ≥ L , k ∈ (b,w)
hk ≤U , k ∈ [1,N]

∑
N
k=1 hk = 1

(9b)

Note because L = m/N then L/2⇒ m/2 i.e. we divide the limit
of the minimum slope by 2 (for the brightness values near white
and black).

IV - Experiments
The example shown in Figure 3 illustrates that, for the toy

example shown, CLHE is not least-squares optimal. We wished
to investigate whether this result holds in general and if it holds,
how large is the discrepancy between the traditional CLHE and
the least-squares optimal CLHE we develop here.

We calculate the % deviation of the derived histogram h
(which meets the tone curve slope constraints) and the input his-
togram hi as ||hi − h|| / ||hi||,. We calculate this % error for
CLHE and least-squares optimal CLHE for all images in the Ko-
dak standard dataset [10]. For max and min slope parameters of
2 and 0.5 respectively we obtain the results shown in Table 1.

The results demonstrate that the difference between CLHE
and our least-squares optimal variant is modest. But, for every
image there is a discrepancy between the CLHE result and the
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% Error
Kodak Image #: Least-squares CLHE
1: stone building 28.72% 30.62%

2: red door 84.41% 84.62%
3: hats 32.55% 32.89%

4: portrait of girl in red 28.40% 30.46%
5: motocross bikes 19.15% 20.28%

6: sailboat at anchor 40.90% 41.01%
7: shuttered windows 45.20% 45.23%

8: market place 12.35% 12.65%
9: sailboats under spinnakers 42.04% 43.02%

10: off-shore sailboat race 37.68% 38.04%
11: sailboat at pier 59.51% 60.15%
12: couple on beach 55.29% 56.02%
13: mountain stream 20.10% 20.78%

14: white water rafters 20.67% 20.99%
15: girl with painted face 32.06% 32.90%

16: tropical key 27.06% 28.84%
17: monument 39.24% 39.92%

18: model in black dress 37.40% 37.93%
19: lighthouse in Maine 24.98% 25.96%

20: P51 Mustang 90.34% 90.43%
21: Portland Head Light 51.94% 52.80%

22: barn and pond 29.37% 31.07%
23: two macaws 26.77% 27.47%

24: mountain chalet 33.76% 35.17%
Average Difference: 0.81%

Table 1: Percentage Error for histograms obtained using
least-squares (Equation (6)), and CLHE (algorithm 1).
best result available. Further, while indicative of general perfor-
mance, it could be that there exist images where the performance
difference is greater. Crucially to make CLHE least-squares op-
timal we reformulated the problem as an optimisation. This al-
lows us to combine CLHE with the optimisation developed in
[3] (which is more advanced but still allows arbitrary slopes and
potentially arbitrary artefacts).

Next we compare images obtained through our new pro-
posed optimisation method, Equation (9), with those delivered
by [3] (which is the same optimisation but where the max and
min slopes are not controlled). In Figure 4, we compare three
images. Left, we have the input image. The images enhanced
with the proposed method are shown in the middle. On the right
we show images enhanced with the Equation (5). For our method
the max and min slope is 2 and 0.5 respectively (see Figure cap-
tion for penalty parameters used). The number of histogram bins
was 256.

The image in Figure 4c is clearly over-enhanced. Signifi-
cant detail is lost on the doorknob and the grains in the wood are
inconsistently brightened rendering the image unnatural. In 4b
the image is pleasing with enhanced details and does not present
with the inconsistent brightness problems of 4c. The max slope
constraints of CLHE has helped the optimisation of [3] to pro-
duce a pleasing output. The histograms obtained with both meth-
ods are shown in Figure 5. The maximum slope (see the dotted
grey line) is far exceeded without constraints and 54.18% of the
values in the PDF lie above this point (see shaded region in Fig-
ure 5).

The images in Figure 4e and 4f, and 4h and 4i, tell a similar
story. The images on the right exhibit contrast that is unnatural
and not preferred. Both regions contain a large and relatively
homogeneous sky region that exhibits noise artefacts when the
tone curve has too great a slope (for (f) look at the sky region in
the top right of the image). For our optimisation, the sky looks

good in (e) and (f) and overall the reproduction is pleasing.

We make two final remarks. First, that the non sloped lim-
ited optimisation [3] can generally be tuned to give good looking
outputs. But, the tuning (the setting of penalty terms) is very
image dependent. By incorporating min and max slopes the pre-
cise setting of the penalty terms is much less important. Second,
we have started carrying out preference experiments to test im-
age quality more systematically. The results will be reported in
the final paper. However, the initial results indicate that visually
CLHE and Quadratic Programming CLHE produce similar im-
ages (preferred over the original) for tone curves with a small
max slope and large min slope. In general, for the optimisation
approach reported in [3] adding in slope limits almost always
makes the processed image more preferred.

V - Conclusion
Histogram Equalisation (HE) is perhaps the oldest image

enhancement method. The input brightness histogram is mapped
to a uniform counterpart and in so doing the resulting image has
more information. The mapping function is a simple tone curve.
HE often fails because the tone curve can have arbitrarily high or
low slope. Contrast Limited Histogram Equalisation (CLHE) is a
method for moving the input histogram towards a uniform coun-
terpart such that the min and max slopes are bounded. CLHE,
in general, produces images that are more preferred. Other re-
cent advances in HE - where the slope of the tone curve is not
constrained - [3] include enforcing the output tone curve to be
smooth and somewhat S-shaped in nature (thereby generating
good whites and blacks).

In this paper we make 3 contributions. First, we develop
a Quadratic Programming version of CLHE which - in terms of
how CLHE works - is shown to be least-squares optimal. Sec-
ond, within this framework, we show that it is easy to add in
constraints on tone curve smoothness and to ensure the repro-
duced image has a well defined white and black. Thus, we arrive
at a unified contrast limited optimised HE. Finally, experiments
demonstrate the utility of our approach.
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