

Color Space Transformation using Neural Networks
Lindsay MacDonald, University College London, UK and Katarina Mayer, ESET, Bratislava, Slovakia

Abstract
We investigated how well a multilayer neural network could

implement the mapping between two trichromatic color spaces,
specifically from camera R,G,B to tristimulus X,Y,Z. For training
the network, a set of 800,000 synthetic reflectance spectra was
generated. For testing the network, a set of 8,714 real reflectance
spectra was collated from instrumental measurements on textiles,
paints and natural materials. Various network architectures were
tested, with both linear and sigmoidal activations. Results show that
over 85% of all test samples had color errors of less than 1.0 ΔE2000
units, much more accurate than could be achieved by regression.

1. Introduction
The signals produced by a digital camera are encoded at each

pixel position in the image as red, green and blue (R,G,B). The
relationship between the scene’s reflected light and each signal
depends on the spectral sensitivity of the corresponding channel.
Human color vision, on the other hand, responds according to the
sensitivity of the retinal photoreceptors (‘cone cells’) in long,
medium and short (L,M,S) wavebands. The light reflected from the
object, as it reaches the camera or observer, is a continuous
distribution of power as a function of wavelength over the visible
spectrum 380–780 nm. Both camera and observer apply a projective
mapping from N to 3 dimensions, but because their primaries (i.e.
spectral basis functions) are different there is no simple way of
defining correspondence between the two triplets of signals (Fig. 1).

Figure 1. Correspondence of color signals from a camera and observer.

This is restatement of input device characterization, i.e. the
process of establishing the relationship between the color of an
object seen by a human observer, usually expressed in CIE
tristimulus values, and signals generated by the camera. We seek to
represent the camera signals as a function of color: (R,G,B) = f
(X,Y,Z). There is generally no analytical function available, and
neither set of spectral sensitivity functions can be represented as a
linear combination of the other. Hence an approximation is
frequently used, by fitting the data with a low-order polynomial
through a regression procedure.

A large dataset of 8,714 reflectance spectra was collated from
readily available spectral reflectance measurement sets [1] over the
wavelength range 380 to 780 nm, and interpolated to 1 nm intervals

by the Matlab function interp1 with the cubic spline option.
Measurement data was at intervals of 10nm or less. Where the
original wavelength range was smaller, for example with no data
provided below 400 nm or above 700 nm, the reflectance was set to
zero. R,G,B and X,Y,Z triplets corresponding to all reflectance
spectra were calculated at 1nm wavelength intervals, multiplying by
the spectral power distribution of the D65 illuminant, and the
interpolated sensitivity curves for the Nikon D200 digital camera [3]
and the tristimulus functions of the CIE 2° Standard Observer, as
plotted in Fig. 2. All calculations were performed in Matlab over the
wavelength range [380,780] nm, using data vectors with 401
elements. Computed values for R,G,B were normalized to the range
[0,1], while X,Y,Z values were normalized to Yw = 100.

Figure 2. Spectral sensitivity functions of: (left) Nikon D200 camera; and

(right) the CIE 2° Standard Observer.

As a baseline for the accuracy of the color transform, a
regression procedure was employed to find coefficients 𝑚 that
would minimize error in the X,Y,Z domain over the full dataset:

𝑋 𝑚 𝑅 𝑚 𝐺 𝑚 𝐵
𝑌 𝑚 𝑅 𝑚 𝐺 𝑚 𝐵 (1)
𝑍 𝑚 𝑅 𝑚 𝐺 𝑚 𝐵

where 𝑅 , 𝐺 , 𝐵 are normalized signal values from the camera
sensors for each sample. The system of equations can be written
more compactly in matrix form as:

𝑿 𝒀 𝒁 𝑹 𝑮 𝑩 𝐌 (2)

where for n wavelength intervals, X X1 … Xn T is the nx1
response vector (and similar for 𝒀 and 𝒁), 𝑹 = [𝑅 1… 𝑅 n] is the
nx1 signal vector (and similar for 𝑮 and 𝑩) and the 3x3 matrix 𝐌 =
[𝑚] contains the coefficients.

A regression fitting over the full set of 8,714 real samples
yielded the matrix:

𝐌𝐑
74.32 29.43 3.26
41.36 104.61 6.87
13.79 4.52 154.76

 (3)

The distribution of color errors is shown in Fig. 3, with mean
of 1.68 ΔE*ab. This is considered a good performance, but note that
more than 50% of errors are above the visibility threshold (assuming
JND = 1.0) and over 5% of color errors exceed 5 ΔE*ab.

© 2019 Society for Imaging Science and Technology

15327th Color and Imaging Conference Final Program and Proceedings

https://doi.org/10.2352/issn.2169-2629.2019.27.29

To validate the fitting procedure, the collated dataset was
partitioned by random selection into two subsets, each containing
4,357 samples. A matrix was computed by regression fitting over
the first subset, and applied to the other subset to obtain the predicted
X,Y,Z values. The performance of this linear fitting of camera R,G,B
to tristimulus X,Y,Z was evaluated by converting both the reference
color and estimated color of each sample to L*a*b* and calculating
the color difference as ΔE*ab. The distribution of errors for fitting
was very similar to that for testing with median 1.05 (1.03), mean
1.71 (1.67), and 95th percentile 5.47 (5.24).

Figure 3. Distribution of color errors (ΔE*ab) from fitting of 3x3 matrix to a set

of X,Y,Z triplets derived from 8,714 samples of real (measured) reflectances.

Error statistics for second- and third-order polynomial fitting to
all real data are shown in Table 1. These represent the baseline of
performance that can be achieved by conventional means, using
transforms of colorimetric values (in this case R,G,B to X,Y,Z).

Table 1. Error statistics for regression fitting of real samples
Polynomial order 1 2 3

Median 1.04 0.90 0.80
Mean 1.68 1.37 1.12

95th percentile 5.38 4.20 3.18
Maximum 14.86 14.48 10.91

% errors above visual
threshold 51.27 45.31 39.79

In a recent study by Jackman et al of camera characterization

in a machine vision application, conversion of RGB into L*a*b* was
achieved by combining a linear color space transform and multiple
regression methods. They found that it was possible to predict
L*a*b* color coordinates with errors less than 2.2 ΔE*ab units by
transforming the R,G,B color components into new variables that
better reflected the structure of the L*a*b* color space. Color
features derived by this system were able to discriminate between
three classes of ham with 100% correct classification, whereas color
features measured on a conventional colorimeter were not [6].

 A problem with regression is that the transformation should be
optimized over all reflectance spectra that could be encountered. If
the usage is always limited to a specific population of materials or
objects, for example photographic prints or paints or textiles made
with known dyes, it may be sufficient to take a selection of test
samples from that population. But for a digital camera that could be
used for any real-world materials, it is not sufficient to train it on a
small number of samples with a limited range of reflectance spectra,
e.g. by using a standard color test target, and then expect the
transform to predict accurately all possible spectra.

Figure 4. Four generating functions for synthetic spectra: (top left) Gaussian;

(top right) logistic; (bottom left) sine; (bottom right) piece-wise linear ramp.

2. Synthetic reflectance spectra
To simulate the widest possible range of reflectance spectra

that might be encountered by a camera, a set of synthetic spectra was
generated. They were constrained to be continuous, single-valued
functions of wavelength at 1 nm intervals over the range 380 to 780
nm, with a maximum slope (first derivative) not exceeding ±0.024
nm-1. The latter limit was derived from analysis of real spectra,
which showed that the first derivatives fall largely within the range
from -0.01 to +0.02 nm-1. These gradient values can be related to the
cross-sectional area of the color gamut [2].

Figure 5. Cross-sections of (left) a*-b* plane and (right) L*-b* plane of color

gamut of 8,714 real (colored) and 20,000 synthetic (grey) spectra in CIELAB

space for the D65 illuminant.

The synthetic reflectance spectra were based on eight
generating functions: Gaussian, inverted Gaussian, logistic, inverted
logistic, sine, upward ramp, downward ramp, sum of three
Gaussians, and piecewise linear (Fig. 4). The central wavelength 𝜆
and width parameter 𝑘 were randomized to produce a family of
100,000 curves for each function, giving 800,000 synthetic spectra
in total. Central wavelengths ranged over the visible spectrum from
400 to 700 nm, with the full range of reflectance factors [0,1]. Limits

154 Society for Imaging Science and Technology

were set on the slope and width parameters to restrict the maximum
slope of the curves in all cases within the range ±0.024 per 1 nm
interval, based on an analysis of the reflectance of naturally
occurring materials [1]. L*a*b* coordinates of all real and synthetic
spectra were calculated for the D65 illuminant (Fig. 5). The real
samples fit within cuboidal bounds of approximately 10<L*<95, -
60<a*<70 and -55<b*<105. The synthetic spectra, however, fill a
much larger volume of 0<L*<100, -130<a*<135 and -125<b*<140.
They are more demanding, therefore, as a test of the robustness of
any color transformation.

Regression was applied, as described in the previous section,
fitting the corresponding R,G,B and X,Y,Z triplets derived from the
full set of 800,000 synthetic spectra, giving the matrix:

𝐌𝐒
78.23 31.50 4.30
36.23 102.02 9.77
16.83 3.16 157.16

 (4)

Comparison with 𝐌𝐑 in Eq. (3) shows that the blue component
was slightly under-represented in the real samples. The fitting errors
were larger because of the greater variance of the synthetic dataset,
and higher orders of polynomial did not improve performance,
actually causing the median error to increase (Table 2).

Table 2. Error statistics for fitting of synthetic spectra
Polynomial order 1 2 3

Median 1.43 1.45 1.53
Mean 3.08 2.95 2.52

95th percentile 11.26 10.40 8.00
Maximum 73.37 70.16 63.78

% errors above v.t. 58.08 58.59 61.51

The polynomial transforms derived from fitting the synthetic

spectra were tested on corresponding triplets derived from the real
(measured) reflectance spectra. The results in Table 3 are slightly
worse than for fitting on the real reflectance data alone (Table 1).
But because the synthetic spectra densely sample the whole space of
realistic reflectance spectra (within the given constraints) the
transformations can be regarded as independent of any particular set
of samples. Thus the matrix 𝐌𝐒 could be considered optimal for the
given camera (Nikon D200) and illuminant (D65) over all possible
reflective surfaces that might be encountered.

Table 3. Error statistics for testing with real samples
Polynomial order 1 2 3

Median 1.11 1.06 1.01
Mean 1.83 1.74 1.41

95th percentile 5.76 5.43 3.85
Maximum 14.02 11.72 9.51

% errors above v.t. 52.81 51.76 50.46

3. Neural networks
An earlier study by Fdhal et al. [4] trained a neural network to

convert R,G,B to L*,a*,b* in the context of ICC output profile
generation for an Epson inkjet printer. The network had an input and
output layer, each with 3 nodes, and one hidden layer with 360
nodes. The training dataset had 909 samples and the test set had 256
samples. The mean and maximum errors (ΔE*ab) achieved by the
network were claimed to be 0.28 and 2.29 respectively. One reason
for the smallness of these values may have been that the samples

were limited to a printed test chart, the color gamut of which
occupied a relatively small volume in color space.

We have studied whether a neural network of any topology can
produce better results for the two-way color transformation between
R,G,B and X,Y,Z than a system of polynomials fitted by regression.
The network was trained using the 800,000 synthetic reflectance
spectra, as described in Section 2, and was tested using the dataset
of 8,714 real reflectance spectra. A previous project for processing
R,G,B signals from a color laser scanner [1] had demonstrated that
some performance improvement over regression could be achieved
by an adaptive color lookup table (CLUT) method, and we wanted
to see what could be achieved by a deep learning network.

Figure 6. Schematic representation of a fully-connected network with three

hidden layers.

Initially, we decided on a network with nonlinear activations.
To identify the optimal architecture of our network, we ran a grid
search over the space of plausible parameter values as follows:

• Activations: {sigmoid, relu, tanh}
• Number of nodes: {3, 21, 54, 77, 96, 114, 132}
• Optimizer selection {adam, sgd, rmsprop, adagrad, adadelta}
• Kernel initializer {'uniform', 'lecun_uniform', 'normal', 'zero',

'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform’}
• Batch size {50, 100, 150, 200, 250}
• Epochs {25, 50, 75, 100, 125}

In the first round of grid search we considered a network
architecture with just one hidden layer, with number of nodes
ranging from 3 to 132. The optimal number of nodes selected by the
algorithm was 21 but the fit was not very impressive with R2 of 0.982
and ΔE*ab around 1.46. We repeated this procedure for the number
of nodes in the second hidden layer, and the algorithm selected 77
nodes as optimal. The performance was R2 of 0.995 and ΔE*ab just
below 1.0, much better than with only one hidden layer. Finally, we
checked whether a third hidden layer would improve our results
(trying out the same values). The algorithm selected 21 nodes. Next
we used grid search to select the activations, optimizer, kernel
initializer, number of epochs and batch size. The best architecture
was a network with 3 nodes in both input and output layers and three
hidden layers with 21, 77 and 21 nodes respectively (Fig. 6). Other
optimal parameters were as follows: activation function: sigmoid;
optimizer: adam; kernel initializer: uniform; batch size: 50. We
trained the network over 50 epochs using back-propagation, i.e. an
algorithm for learning the weights at each node.

The data derived from synthetic spectra was scaled by a min-
max scaler to vary between 0 and 1. Before training the model, we
split the synthetic data into a training set (80%) and cross-validation
set (20%) using stratified sampling, so that each generating function
was equally represented in the training process.

15527th Color and Imaging Conference Final Program and Proceedings

4. Results for sigmoidal network
The network with sigmoid activations was trained, taking

R,G,B triplets as input and producing X,Y,Z triplets as output. We
trained two models: the first using ΔE*ab and the second using
ΔE2000 as a loss function. From the results listed in Table 4, it is clear
that errors are smaller when the model is optimized over ∆E2000
rather than ∆E*. Both the mean error and its standard deviation are
lower in this case. Differences between the two distributions are
visually compared in Fig. 7. The model optimized over ∆E2000 has
smaller errors and 85% of the error distribution is below the nominal
visibility threshold (just noticeable difference) of ∆E2000 = 1.0,
compared with 68% in the case of the model optimized over ∆E*ab.
These results are significantly better than those of regression
methods, as reported in Tables 1 and 3.

Table 4. Error statistics for network trained by two methods
Loss function ∆E*ab ∆E2000
Error metric ∆E*ab ∆E2000 ∆E*ab ∆E2000

Mean 1.048 0.886 0.699 0.580
Std dev 0.776 0.716 0.563 0.494

Minimum 0.042 0.029 0.028 0.022
1st quartile (25%) 0.549 0.362 0.335 0.254
2nd quartile (50%) 0.866 0.707 0.579 0.453
3rd quartile (75%) 1.247 1.156 0.827 0.737

Maximum 8.860 10.602 5.322 5.002
% errors below v.t. 60% 68% 82% 85%

Figure 7. Occurrence of errors for two forms of optimization

5. Scalability and noise performance
Despite the symmetrical architecture of our chosen network,

commutativity of this model is not automatic, meaning that A→B
does not imply B→A. Once the model has been trained, it works
only in that direction, i.e. R,G,B → X,Y,Z. Simply swapping inputs
with outputs leads to suboptimal performance of the model with
correlation R2 = 0.7189 and mean ∆E2000 = 0.9468. However the
model with identical architecture can be retrained with inputs
swapped for outputs, leading to an equally tight fit: R2 = 0.9986 and
mean ∆E2000 = 0.5980.

Ideally the data should be scalable, meaning that any scaling
factor applied to the input data should cause the output data to
change by the same factor (at least within the operating range of the
input and output values). For camera characterization this is equi-
valent to linear tracking of exposure, which does not hold true for
most non-linear characterizations [5]. For scaling factors in range
[0,1] our sigmoidal network gives approximate linearity (Fig. 8).

Figure 8. Ratio of output/input vs input scaling factor for X,Y,Z

Replotting the difference using the Bland-Altman convention
[10] (defined as [prediction with scaled data] / [prediction with
original data] - scaling factor) vs scaling factor shows a substantial
scatter of results (Fig. 9). The behavior of the three output channels
(X,Y,Z) is similar but not identical.

Figure 9. Ratio of output/input vs input scaling factor for X,Y,Z

We added Gaussian noise to each R,G,B observation, i.e.

random noise from a normal distribution with mean 0 and variance
1, with amplitude multiplied by 0.05 to simulate a signal-to-noise
ratio of 20:1. Fig. 10 shows noised difference = [model prediction
with noised data – model prediction with original data] vs noise.

Figure 10. Differences vs Gaussian noise amplitude for X,Y,Z

∆E2000 error value

∆E* error value

156 Society for Imaging Science and Technology

6. Linear neural network
The network with sigmoid activations gives the smallest color

errors for the training and test datasets, but performs poorly for
scaling of the data and in the presence of noise. We therefore sought
to find an alternative network with linear activations by running a
grid search over the space of plausible parameter values as follows:

• Number of nodes in each layer {3,33,63,93,123,153,183,213}
• Optimizer selection {adam, sgd, rmsprop, adagrad, adadelta}
• Kernel initializer {'uniform', 'lecun_uniform', 'normal', 'zero',

'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform’}
• Batch size {50, 100, 150, 200, 250}
• Epochs {25, 50, 75, 100, 125}

The first round of search resulted in 63 as the optimal number
of nodes and, even if all other hyper-parameters were selected
optimally, the network could not be trained to achieve a fit with R2
above 0.98. Hence another hidden layer was added, in which the
optimal number of nodes was found by grid search to be 33. The
search was repeated for other numbers of nodes around 63 and 33,
but did not further improve performance. In each search, the model
fit was evaluated using KFold cross-validation with cv=3 folds,
meaning that the training data was split into 3 parts and a model was
fitted to each. The optimality was determined by averaging the
model’s performance on these 3 folds. The network was trained over
50 epochs with a callback, so that at each epoch of the training
procedure, the model was saved only if it was the best so far. Thus
the resulting model was the one that performed best on the validation
dataset (not necessarily the one trained in epoch 50). The final
selected linear network has four layers with 3-63-33-3 nodes.

Table 5. Performance of sigmoidal and linear networks
 Sigmoidal Linear
 Loss R2 Loss R2

Training set 0.7532 0.9984 0.9586 0.9974
Validation set 0.7490 0.9985 0.9610 0.9974

Test set 0.5802 0.9985 0.6617 0.9978

The performance of the linear network is poorer than that of the

sigmoidal network, in terms of both greater mean loss (ΔE2000) and
lower coefficient of correlation (Table 5). But this is compensated
by the very much better scalability, with a reduction of the standard
deviation by factors of at least 10x (Table 6). The linear model is
also quite stable for scaling factors above 1, even greater than 10,
and more resistant to the presence of noise (Fig. 11).

Table 6. Difference errors for scaling of sigmoidal network
 Sigmoidal Linear
 Mean Std dev Mean Std dev

X -0.001127 0.008851 -0.000521 0.000836
Y -0.001798 0.006540 -0.000225 0.000382
Z -0.000523 0.009126 0.000428 0.000643

Figure 11. Differences vs Gaussian noise amplitude for X,Y,Z (linear model)

7. Discussion
We chose a network architecture with three hidden layers rather

than one very wide hidden layer, as was used in [4]. With our
training data, one hidden layer was not sufficient to achieve a good
fit. Two hidden layers performed better but the best results were
achieved with three hidden layers. Four or more hidden layers led to
over-fitting. We tried four types of activation functions: linear, relu
(rectified linear unit), tanh and sigmoid. Of the four, sigmoid
activations achieved the best fit in the training. Linear activations
led to comparatively slower learning of the network and the results
eventually stopped improving despite many learning epochs,
suggesting that the relationship between inputs and outputs is
nonlinear. Relu activations led to faster learning during initial
epochs but later to over-fitting. Tanh activations performed only
slightly worse than sigmoid activations. Our summary conclusions
are that sigmoid activations enable the best error performance but
that linear activations enable the best scalability.

When the logistic function was removed, giving linear input to
each node, the model did not fit the data so well. It achieved rather
good correlation, with R2 = 0.9976, but the losses were higher than
in the selected model and, to make matters worse, there were clear
signs that the model was trying to memorize training data and did
not generalize even to cross-validation data. We conclude that, in
general, the nonlinearity introduced by the sigmoid helps the model
to train better and, more importantly, to generalize better. In effect
the linear input has to clip over-range values to min or max, whereas
the sigmoid avoids this problem by its asymptotes.

The sigmoid model architecture we selected has 3 nodes in the
input layer, followed by 21, 77, and 21 nodes respectively in the
subsequent hidden layers, and 3 nodes in the output layer (Fig. 6).
Since we have used a fully-connected dense network, the model has
3482 parameters to be estimated: 4x21 (between the input and first
hidden layer, where 4 stands for 3 inputs plus 1 bias unit), 22x77
parameters between the first and second hidden layers, 78x21
parameters between the second and third hidden layers and finally
22x3 parameters in the output layer.

The optimal architecture of a network depends on how well the
models fit the data. The empirical procedure is to start with simple
models and continue to make them more sophisticated until their
performance is satisfactory. While there has been some research on
using data characteristics to determine the network architecture [8],
there is still no standard approach in deep learning, and the
performance of such models is not yet very stable.

 The minimum size of the training dataset was investigated by
fixing the model architecture to 3-21-77-21-3 and iteratively
reducing the number of training samples in units of 8,000 (choosing
equal-sized random samples from the training data derived from
synthetic reflectance spectra). The performance of the network,
measured as the percentage of test sample errors below the visibility
threshold of ΔE2000 = 1.0), is plotted against the number of training
samples in Fig. 12, showing that the performance is maintained
down to about 100,000 training samples. Only below this number
does the performance fall away. The noise in the graph arises from
the random weight initialization in the training phase of the network.

The networks were trained over 50 epochs. We experimented
with different numbers of epochs and stopped training when the
performance stopped improving. If training were to continue beyond
this point, the model would not learn more about the relationships
within the data, but just start to memorize the training set [11].

15727th Color and Imaging Conference Final Program and Proceedings

Figure 12. Performance of sigmoidal model vs number of training samples

It is not obvious that any meaning can be inferred from the
estimated weights applied to the data passed at each layer. Deep
learning models are known as ‘black-box models’ for good reason,
because their internal structure is concealed, and it is difficult to
interpret how the model does what it does and why it works. Since
we have so many nodes in so many layers, it is almost impossible to
assign any meaning to what is happening at each layer. The beauty
of a neural network (as opposed to a linear regression model, for
example) is that it’s the model that decides which features in the data
to use, by assigning weights. In a regression you need to say only:
use first-, second- or third-order, fit the data and estimate all the
coefficients. But when training a neural network, the model itself
creates the features, or variables, it uses by linear or nonlinear
transformations of the inputs and their combinations.

It is interesting to speculate on what the topology of our
network suggests about color vision and human neural processing.
The dense five-layer interconnected network with sigmoidal
activations is not unlike the layered organization of neurons in the
retina (literally a neural network). It is reckoned that for a human
observer the total number of discernible colors is approximately 2
million [9]. This is a measure of the span of the retinal mapping from
an infinite number of incoming spectra to the perceived triplets
encoded in a luminance-chrominance domain (akin to Yuv) in the
optic nerve to the visual cortex. So if we can say that a certain
network architecture (numbers of layers and nodes) is necessary and
sufficient to encompass this level of complexity then we have
established something about retinal neuronal architecture.

The number of possible pathways through our neural network
is the product of the number of nodes at each layer. For the sigmoidal
network architecture it is 3x21x77x21x3 = 305,613 and this is one
measure of the complexity of the network. But this number of
training data items is not necessarily needed, because the number of
paths is not crucial. A more reasonable indicator is the number of
parameters (weights on the connections between nodes), which in
our case is 3,482 (with biases), but in general the measure of
complexity depends on the problem [7].

Our models do not use any convolutional layers, because the
color stimulus at each point in the scene is assumed to be
independent of its neighbors. In real environments, the retinal array
is viewing the whole scene, so the colors of neighboring regions
have an effect on perception. Retinal neurons are interconnected
through multiple layers of the network, particularly at the amacrine
and ganglion levels. For example, in the well-known phenomenon
of simultaneous contrast the effect is to increase local color contrast
between center and surround. Hence a spatial aggregating process,
implemented in image processing by convolution, is required.

In computer vision algorithms, convolution is often employed
to identify features in the scene, and to decrease the number of
parameters the model has to learn. In machine learning,
convolutional networks are justified by the efficiency of estimation
[12]. In a dense network all weights are independent (so many more
parameters need to be estimated), whereas in a convolutional
network the weights of neighboring pixels in each convolution are
assumed to be the same, no matter where in the picture the
convolution filter is moved. Thus dense networks are much less
efficient because they have many more degrees of freedom. In very
large problems, it is not possible to use dense networks because of
limits on the computational power available.

In conclusion, we have shown that a dense neural network can
give very good performance in mapping from a camera R,G,B
domain to a device-independent X,Y,Z domain. The key to its
success is the availability of a very large training dataset, generated
from synthetic reflectance spectra that span the gamut of all
physically realizable colors. The training and testing datasets used
in this study were computed from the spectral sensitivity of the
Nikon D200 camera to generate R,G,B and from the Standard
Observer and D65 illuminant to generate X,Y,Z. Any other camera,
observer and illuminant could be used to compute corresponding
datasets, but these would be metamers of the data for the reflectance
samples. We assert that the performance of the neural network
would be little affected by these parameters.

References
1. MacDonald, L.W. (2012) ‘Colour Laser Scanner Characterisation by

Enhanced LUT’, Proc. 6th IS&T European Conf. on Colour in
Graphics, Imaging and Vision (CGIV), Amsterdam, 137-142.

2. Buchsbaum, G. and Gottschalk, A. (1984) Chromaticity coordinates
of frequency-limited functions, J. Opt. Soc. Am. A, 1(8):885-887.

3. MacDonald, L.W. (2015) Determining Camera Spectral Responsivity
with Multispectral Transmission Filters, Proc. IS&T Color Imaging
Conf., Darmstadt, 12-17.

4. Fdhal, N., Kyan, M., Androutsos, D. and Sharma, A. (2009) Color
space transformation from RGB to CIELAB using neural networks,
Proc. Pacific-Rim Conf. on Multimedia, pp. 1011-1017. Springer,
Berlin.

5. Vazquez-Corral, J., Connah, D. and Bertalmío, M. (2014) Perceptual
color characterization of cameras. Sensors, 14(12):23205-23229.

6. Jackman, P., Sun, D.W. and El Masry, G. (2012) Robust color
calibration of an imaging system using a color space transform and
advanced regression modelling. Meat science, 91(4):402-407.

7. Brownlee, J. (2017) How Much Training Data is Required for
Machine Learning? Machine Learning Process.
https://machinelearningmastery.com/much-training-data-required-
machine-learning/

8. Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A. and Nori,
A. (2019) Adaptive Neural Trees. Proc. 7th Intl. Conf. on Learning
Representations (ICLR). arXiv preprint 1807.06699.

9. Pointer, M.R. and Attridge, G.G. (1998) The number of discernible
colours. Color Research & Application, 23(1):52-54.

10. Bland, J. M. and Altman, D. (1986) Statistical methods for assessing
agreement between two methods of clinical measurement. The lancet,
327(8476), 307-310.

11. Arpit, D., Jastrzębski, S., Ballas, N., et al. (2017) A closer look at
memorization in deep networks. Proc. 34th Intl. Conf. on Machine
Learning, 70:233-242, JMLR.

12. Snoek, J., Larochelle, H., and Adams, R.P. (2012) Practical bayesian
optimization of machine learning algorithms. Advances in neural
information processing systems (NIPS 25), 2951-2959.

158 Society for Imaging Science and Technology

