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Abstract 
We investigated how well a multilayer neural network could 

implement the mapping between two trichromatic color spaces, 
specifically from camera R,G,B to tristimulus X,Y,Z. For training 
the network, a set of 800,000 synthetic reflectance spectra was 
generated. For testing the network, a set of 8,714 real reflectance 
spectra was collated from instrumental measurements on textiles, 
paints and natural materials. Various network architectures were 
tested, with both linear and sigmoidal activations. Results show that 
over 85% of all test samples had color errors of less than 1.0 ΔE2000 
units, much more accurate than could be achieved by regression. 

1. Introduction  
The signals produced by a digital camera are encoded at each 

pixel position in the image as red, green and blue (R,G,B). The 
relationship between the scene’s reflected light and each signal 
depends on the spectral sensitivity of the corresponding channel. 
Human color vision, on the other hand, responds according to the 
sensitivity of the retinal photoreceptors (‘cone cells’) in long, 
medium and short (L,M,S) wavebands. The light reflected from the 
object, as it reaches the camera or observer, is a continuous 
distribution of power as a function of wavelength over the visible 
spectrum 380–780 nm. Both camera and observer apply a projective 
mapping from N to 3 dimensions, but because their primaries (i.e. 
spectral basis functions) are different there is no simple way of 
defining correspondence between the two triplets of signals (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Correspondence of color signals from a camera and observer. 

This is restatement of input device characterization, i.e. the 
process of establishing the relationship between the color of an 
object seen by a human observer, usually expressed in CIE 
tristimulus values, and signals generated by the camera. We seek to 
represent the camera signals as a function of color: (R,G,B) = f 
(X,Y,Z). There is generally no analytical function available, and 
neither set of spectral sensitivity functions can be represented as a 
linear combination of the other. Hence an approximation is 
frequently used, by fitting the data with a low-order polynomial 
through a regression procedure. 

A large dataset of 8,714 reflectance spectra was collated from 
readily available spectral reflectance measurement sets [1] over the 
wavelength range 380 to 780 nm, and interpolated to 1 nm intervals 

by the Matlab function interp1 with the cubic spline option. 
Measurement data was at intervals of 10nm or less. Where the 
original wavelength range was smaller, for example with no data 
provided below 400 nm or above 700 nm, the reflectance was set to 
zero. R,G,B and X,Y,Z triplets corresponding to all reflectance 
spectra were calculated at 1nm wavelength intervals, multiplying by 
the spectral power distribution of the D65 illuminant, and the 
interpolated sensitivity curves for the Nikon D200 digital camera [3] 
and the tristimulus functions of the CIE 2° Standard Observer, as 
plotted in Fig. 2. All calculations were performed in Matlab over the 
wavelength range [380,780] nm, using data vectors with 401 
elements. Computed values for R,G,B were normalized to the range 
[0,1], while X,Y,Z values were normalized to Yw = 100. 

 
 
 
 
 
 
 
 
 

 
Figure 2. Spectral sensitivity functions of: (left) Nikon D200 camera; and 

(right) the CIE 2° Standard Observer. 

As a baseline for the accuracy of the color transform, a 
regression procedure was employed to find coefficients 𝑚௜௝ that 
would minimize error in the X,Y,Z domain over the full dataset: 

𝑋௜ ൌ 𝑚ଵଵ𝑅௜ ൅ 𝑚ଵଶ𝐺௜ ൅ 𝑚ଵଷ𝐵௜ 
𝑌௜ ൌ 𝑚ଶଵ𝑅௜ ൅ 𝑚ଶଶ𝐺௜ ൅ 𝑚ଶଷ𝐵௜       (1) 
𝑍௜ ൌ 𝑚ଷଵ𝑅௜ ൅ 𝑚ଷଶ𝐺௜ ൅ 𝑚ଷଷ𝐵௜  

where 𝑅௜, 𝐺௜, 𝐵௜ are normalized signal values from the camera 
sensors for each sample. The system of equations can be written 
more compactly in matrix form as: 

ሾ𝑿 𝒀 𝒁ሿ ൌ ሾ𝑹 𝑮 𝑩ሿ 𝐌 (2) 

where for n wavelength intervals, X ൌ ሾ X1 … Xn ሿ T is the nx1 
response vector (and similar for 𝒀 and 𝒁), 𝑹 = [ 𝑅 1… 𝑅 n ] is the 
nx1 signal vector (and similar for 𝑮 and 𝑩) and the 3x3 matrix 𝐌 = 
[ 𝑚௜௝  ] contains the coefficients. 

A regression fitting over the full set of 8,714 real samples 
yielded the matrix: 

𝐌𝐑 ൌ  ൥ 
74.32 29.43 3.26
41.36 104.61 െ6.87
13.79 െ4.52 154.76 

൩     (3) 

The distribution of color errors is shown in Fig. 3, with mean 
of 1.68 ΔE*ab. This is considered a good performance, but note that 
more than 50% of errors are above the visibility threshold (assuming 
JND = 1.0) and over 5% of color errors exceed 5 ΔE*ab. 
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To validate the fitting procedure, the collated dataset was 
partitioned by random selection into two subsets, each containing 
4,357 samples. A matrix was computed by regression fitting over 
the first subset, and applied to the other subset to obtain the predicted 
X,Y,Z values. The performance of this linear fitting of camera R,G,B 
to tristimulus X,Y,Z was evaluated by converting both the reference 
color and estimated color of each sample to L*a*b* and calculating 
the color difference as ΔE*ab. The distribution of errors for fitting 
was very similar to that for testing with median 1.05 (1.03), mean 
1.71 (1.67), and 95th percentile 5.47 (5.24).  

 
 
 
 
 
 
 
 
 
 

Figure 3. Distribution of color errors (ΔE*ab) from fitting of 3x3 matrix to a set 

of X,Y,Z triplets derived from 8,714 samples of real (measured) reflectances. 

Error statistics for second- and third-order polynomial fitting to 
all real data are shown in Table 1. These represent the baseline of 
performance that can be achieved by conventional means, using 
transforms of colorimetric values (in this case R,G,B to X,Y,Z). 

Table 1. Error statistics for regression fitting of real samples 
Polynomial order 1 2 3 

Median 1.04 0.90 0.80 
Mean 1.68 1.37 1.12 

95th percentile 5.38 4.20 3.18 
Maximum 14.86 14.48 10.91 

% errors above    visual 
threshold 51.27 45.31 39.79 

 
In a recent study by Jackman et al of camera characterization 

in a machine vision application, conversion of RGB into L*a*b* was 
achieved by combining a linear color space transform and multiple 
regression methods. They found that it was possible to predict 
L*a*b* color coordinates with errors less than 2.2 ΔE*ab units by 
transforming the R,G,B color components into new variables that 
better reflected the structure of the L*a*b* color space. Color 
features derived by this system were able to discriminate between 
three classes of ham with 100% correct classification, whereas color 
features measured on a conventional colorimeter were not [6]. 

 A problem with regression is that the transformation should be 
optimized over all reflectance spectra that could be encountered. If 
the usage is always limited to a specific population of materials or 
objects, for example photographic prints or paints or textiles made 
with known dyes, it may be sufficient to take a selection of test 
samples from that population. But for a digital camera that could be 
used for any real-world materials, it is not sufficient to train it on a 
small number of samples with a limited range of reflectance spectra, 
e.g. by using a standard color test target, and then expect the 
transform to predict accurately all possible spectra. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4. Four generating functions for synthetic spectra: (top left) Gaussian; 

(top right) logistic; (bottom left) sine; (bottom right) piece-wise linear ramp. 

2. Synthetic reflectance spectra 
To simulate the widest possible range of reflectance spectra 

that might be encountered by a camera, a set of synthetic spectra was 
generated. They were constrained to be continuous, single-valued 
functions of wavelength at 1 nm intervals over the range 380 to 780 
nm, with a maximum slope (first derivative) not exceeding ±0.024 
nm-1. The latter limit was derived from analysis of real spectra, 
which showed that the first derivatives fall largely within the range 
from -0.01 to +0.02 nm-1. These gradient values can be related to the 
cross-sectional area of the color gamut [2]. 

 
 
 
 
 
 
 
 
 
 

 
Figure 5. Cross-sections of (left) a*-b* plane and (right) L*-b* plane of color 

gamut of 8,714 real (colored) and 20,000 synthetic (grey) spectra in CIELAB 

space for the D65 illuminant. 

The synthetic reflectance spectra were based on eight 
generating functions: Gaussian, inverted Gaussian, logistic, inverted 
logistic, sine, upward ramp, downward ramp, sum of three 
Gaussians, and piecewise linear (Fig. 4). The central wavelength 𝜆଴ 
and width parameter 𝑘 were randomized to produce a family of 
100,000 curves for each function, giving 800,000 synthetic spectra 
in total. Central wavelengths ranged over the visible spectrum from 
400 to 700 nm, with the full range of reflectance factors [0,1]. Limits 
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were set on the slope and width parameters to restrict the maximum 
slope of the curves in all cases within the range ±0.024 per 1 nm 
interval, based on an analysis of the reflectance of naturally 
occurring materials [1]. L*a*b* coordinates of all real and synthetic 
spectra were calculated for the D65 illuminant (Fig. 5). The real 
samples fit within cuboidal bounds of approximately 10<L*<95, -
60<a*<70 and -55<b*<105. The synthetic spectra, however, fill a 
much larger volume of 0<L*<100, -130<a*<135 and -125<b*<140. 
They are more demanding, therefore, as a test of the robustness of 
any color transformation. 

Regression was applied, as described in the previous section, 
fitting the corresponding R,G,B and X,Y,Z triplets derived from the 
full set of 800,000 synthetic spectra, giving the matrix: 

𝐌𝐒 ൌ  ൥ 
78.23 31.50 4.30
36.23 102.02 െ9.77
16.83 െ3.16 157.16 

൩     (4) 

Comparison with 𝐌𝐑 in Eq. (3) shows that the blue component 
was slightly under-represented in the real samples. The fitting errors 
were larger because of the greater variance of the synthetic dataset, 
and higher orders of polynomial did not improve performance, 
actually causing the median error to increase (Table 2). 

Table 2. Error statistics for fitting of synthetic spectra 
Polynomial order 1 2 3 

Median 1.43 1.45 1.53 
Mean 3.08 2.95 2.52 

95th percentile 11.26 10.40 8.00 
Maximum 73.37 70.16 63.78 

% errors above v.t. 58.08 58.59 61.51 
 
The polynomial transforms derived from fitting the synthetic 

spectra were tested on corresponding triplets derived from the real 
(measured) reflectance spectra. The results in Table 3 are slightly 
worse than for fitting on the real reflectance data alone (Table 1). 
But because the synthetic spectra densely sample the whole space of 
realistic reflectance spectra (within the given constraints) the 
transformations can be regarded as independent of any particular set 
of samples. Thus the matrix 𝐌𝐒 could be considered optimal for the 
given camera (Nikon D200) and illuminant (D65) over all possible 
reflective surfaces that might be encountered. 

Table 3. Error statistics for testing with real samples 
Polynomial order 1 2 3 

Median 1.11 1.06 1.01 
Mean 1.83 1.74 1.41 

95th percentile 5.76 5.43 3.85 
Maximum 14.02 11.72 9.51 

% errors above v.t. 52.81 51.76 50.46 

3. Neural networks 
An earlier study by Fdhal et al. [4] trained a neural network to 

convert R,G,B to L*,a*,b* in the context of ICC output profile 
generation for an Epson inkjet printer. The network had an input and 
output layer, each with 3 nodes, and one hidden layer with 360 
nodes. The training dataset had 909 samples and the test set had 256 
samples. The mean and maximum errors (ΔE*ab) achieved by the 
network were claimed to be 0.28 and 2.29 respectively. One reason 
for the smallness of these values may have been that the samples 

were limited to a printed test chart, the color gamut of which 
occupied a relatively small volume in color space. 

We have studied whether a neural network of any topology can 
produce better results for the two-way color transformation between 
R,G,B and X,Y,Z than a system of polynomials fitted by regression. 
The network was trained using the 800,000 synthetic reflectance 
spectra, as described in Section 2, and was tested using the dataset 
of 8,714 real reflectance spectra. A previous project for processing 
R,G,B signals from a color laser scanner [1] had demonstrated that 
some performance improvement over regression could be achieved 
by an adaptive color lookup table (CLUT) method, and we wanted 
to see what could be achieved by a deep learning network. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Schematic representation of a fully-connected network with three 

hidden layers. 

Initially, we decided on a network with nonlinear activations. 
To identify the optimal architecture of our network, we ran a grid 
search over the space of plausible parameter values as follows: 

• Activations: {sigmoid, relu, tanh} 
• Number of nodes: {3, 21, 54, 77, 96, 114, 132} 
• Optimizer selection {adam, sgd, rmsprop, adagrad, adadelta} 
• Kernel initializer {'uniform', 'lecun_uniform', 'normal', 'zero', 

'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform’} 
• Batch size {50, 100, 150, 200, 250} 
• Epochs {25, 50, 75, 100, 125} 

In the first round of grid search we considered a network 
architecture with just one hidden layer, with number of nodes 
ranging from 3 to 132. The optimal number of nodes selected by the 
algorithm was 21 but the fit was not very impressive with R2 of 0.982 
and ΔE*ab around 1.46. We repeated this procedure for the number 
of nodes in the second hidden layer, and the algorithm selected 77 
nodes as optimal. The performance was R2 of 0.995 and ΔE*ab just 
below 1.0, much better than with only one hidden layer. Finally, we 
checked whether a third hidden layer would improve our results 
(trying out the same values). The algorithm selected 21 nodes. Next 
we used grid search to select the activations, optimizer, kernel 
initializer, number of epochs and batch size. The best architecture 
was a network with 3 nodes in both input and output layers and three 
hidden layers with 21, 77 and 21 nodes respectively (Fig. 6). Other 
optimal parameters were as follows: activation function: sigmoid; 
optimizer: adam; kernel initializer: uniform; batch size: 50. We 
trained the network over 50 epochs using back-propagation, i.e. an 
algorithm for learning the weights at each node.  

The data derived from synthetic spectra was scaled by a min-
max scaler to vary between 0 and 1. Before training the model, we 
split the synthetic data into a training set (80%) and cross-validation 
set (20%) using stratified sampling, so that each generating function 
was equally represented in the training process. 
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4. Results for sigmoidal network 
The network with sigmoid activations was trained, taking 

R,G,B triplets as input and producing X,Y,Z triplets as output. We 
trained two models: the first using ΔE*ab and the second using 
ΔE2000 as a loss function. From the results listed in Table 4, it is clear 
that errors are smaller when the model is optimized over ∆E2000 
rather than ∆E*. Both the mean error and its standard deviation are 
lower in this case. Differences between the two distributions are 
visually compared in Fig. 7. The model optimized over ∆E2000 has 
smaller errors and 85% of the error distribution is below the nominal 
visibility threshold (just noticeable difference) of ∆E2000 = 1.0, 
compared with 68% in the case of the model optimized over ∆E*ab. 
These results are significantly better than those of regression 
methods, as reported in Tables 1 and 3. 

Table 4. Error statistics for network trained by two methods 
Loss function ∆E*ab ∆E2000 
Error metric ∆E*ab ∆E2000 ∆E*ab ∆E2000

Mean 1.048 0.886 0.699 0.580 
Std dev 0.776 0.716 0.563 0.494 

Minimum 0.042 0.029 0.028 0.022 
1st quartile (25%) 0.549 0.362 0.335 0.254 
2nd quartile (50%) 0.866 0.707 0.579 0.453 
3rd quartile (75%) 1.247 1.156 0.827 0.737 

Maximum 8.860 10.602 5.322 5.002 
% errors below v.t. 60% 68% 82% 85% 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Occurrence of errors for two forms of optimization 

5. Scalability and noise performance 
Despite the symmetrical architecture of our chosen network, 

commutativity of this model is not automatic, meaning that A→B 
does not imply B→A. Once the model has been trained, it works 
only in that direction, i.e. R,G,B → X,Y,Z. Simply swapping inputs 
with outputs leads to suboptimal performance of the model with 
correlation R2 = 0.7189 and mean ∆E2000 = 0.9468. However the 
model with identical architecture can be retrained with inputs 
swapped for outputs, leading to an equally tight fit: R2 = 0.9986 and 
mean ∆E2000 = 0.5980. 

Ideally the data should be scalable, meaning that any scaling 
factor applied to the input data should cause the output data to 
change by the same factor (at least within the operating range of the 
input and output values). For camera characterization this is equi-
valent to linear tracking of exposure, which does not hold true for 
most non-linear characterizations [5]. For scaling factors in range 
[0,1] our sigmoidal network gives approximate linearity (Fig. 8). 

 
 
 
 
 
 
 
 

 
Figure 8. Ratio of output/input vs input scaling factor for X,Y,Z 

Replotting the difference using the Bland-Altman convention 
[10] (defined as [prediction with scaled data] / [prediction with 
original data] - scaling factor) vs scaling factor shows a substantial 
scatter of results (Fig. 9). The behavior of the three output channels 
(X,Y,Z) is similar but not identical. 

 
 
 
 
 
 
 

 
Figure 9. Ratio of output/input vs input scaling factor for X,Y,Z 

 
We added Gaussian noise to each R,G,B observation, i.e. 

random noise from a normal distribution with mean 0 and variance 
1, with amplitude multiplied by 0.05 to simulate a signal-to-noise 
ratio of 20:1. Fig. 10 shows noised difference = [model prediction 
with noised data – model prediction with original data] vs noise. 
 

 
 

 
 
 
 
 

Figure 10. Differences vs Gaussian noise amplitude for X,Y,Z 

∆E2000 error value 

∆E* error value 
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6. Linear neural network 
The network with sigmoid activations gives the smallest color 

errors for the training and test datasets, but performs poorly for 
scaling of the data and in the presence of noise. We therefore sought 
to find an alternative network with linear activations by running a 
grid search over the space of plausible parameter values as follows: 

• Number of nodes in each layer {3,33,63,93,123,153,183,213} 
• Optimizer selection {adam, sgd, rmsprop, adagrad, adadelta} 
• Kernel initializer {'uniform', 'lecun_uniform', 'normal', 'zero', 

'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform’} 
• Batch size {50, 100, 150, 200, 250} 
• Epochs {25, 50, 75, 100, 125} 

The first round of search resulted in 63 as the optimal number 
of nodes and, even if all other hyper-parameters were selected 
optimally, the network could not be trained to achieve a fit with R2 
above 0.98. Hence another hidden layer was added, in which the 
optimal number of nodes was found by grid search to be 33. The 
search was repeated for other numbers of nodes around 63 and 33, 
but did not further improve performance. In each search, the model 
fit was evaluated using KFold cross-validation with cv=3 folds, 
meaning that the training data was split into 3 parts and a model was 
fitted to each. The optimality was determined by averaging the 
model’s performance on these 3 folds. The network was trained over 
50 epochs with a callback, so that at each epoch of the training 
procedure, the model was saved only if it was the best so far. Thus 
the resulting model was the one that performed best on the validation 
dataset (not necessarily the one trained in epoch 50). The final 
selected linear network has four layers with 3-63-33-3 nodes. 

Table 5. Performance of sigmoidal and linear networks 
 Sigmoidal Linear 
 Loss R2 Loss R2 

Training set 0.7532 0.9984 0.9586 0.9974 
Validation set 0.7490 0.9985 0.9610 0.9974 

Test set 0.5802 0.9985 0.6617 0.9978 
 
The performance of the linear network is poorer than that of the 

sigmoidal network, in terms of both greater mean loss (ΔE2000) and 
lower coefficient of correlation (Table 5). But this is compensated 
by the very much better scalability, with a reduction of the standard 
deviation by factors of at least 10x (Table 6). The linear model is 
also quite stable for scaling factors above 1, even greater than 10, 
and more resistant to the presence of noise (Fig. 11). 

Table 6. Difference errors for scaling of sigmoidal network 
 Sigmoidal Linear 
 Mean Std dev Mean Std dev 

X -0.001127 0.008851 -0.000521 0.000836 
Y -0.001798 0.006540 -0.000225 0.000382 
Z -0.000523 0.009126 0.000428 0.000643 
 
 
 
 
 
 
 

 
Figure 11. Differences vs Gaussian noise amplitude for X,Y,Z (linear model) 

7. Discussion 
We chose a network architecture with three hidden layers rather 

than one very wide hidden layer, as was used in [4]. With our 
training data, one hidden layer was not sufficient to achieve a good 
fit. Two hidden layers performed better but the best results were 
achieved with three hidden layers. Four or more hidden layers led to 
over-fitting. We tried four types of activation functions: linear, relu 
(rectified linear unit), tanh and sigmoid. Of the four, sigmoid 
activations achieved the best fit in the training. Linear activations 
led to comparatively slower learning of the network and the results 
eventually stopped improving despite many learning epochs, 
suggesting that the relationship between inputs and outputs is 
nonlinear. Relu activations led to faster learning during initial 
epochs but later to over-fitting. Tanh activations performed only 
slightly worse than sigmoid activations. Our summary conclusions 
are that sigmoid activations enable the best error performance but 
that linear activations enable the best scalability. 

When the logistic function was removed, giving linear input to 
each node, the model did not fit the data so well. It achieved rather 
good correlation, with R2 = 0.9976, but the losses were higher than 
in the selected model and, to make matters worse, there were clear 
signs that the model was trying to memorize training data and did 
not generalize even to cross-validation data. We conclude that, in 
general, the nonlinearity introduced by the sigmoid helps the model 
to train better and, more importantly, to generalize better. In effect 
the linear input has to clip over-range values to min or max, whereas 
the sigmoid avoids this problem by its asymptotes. 

The sigmoid model architecture we selected has 3 nodes in the 
input layer, followed by 21, 77, and 21 nodes respectively in the 
subsequent hidden layers, and 3 nodes in the output layer (Fig. 6). 
Since we have used a fully-connected dense network, the model has 
3482 parameters to be estimated: 4x21 (between the input and first 
hidden layer, where 4 stands for 3 inputs plus 1 bias unit), 22x77 
parameters between the first and second hidden layers, 78x21 
parameters between the second and third hidden layers and finally 
22x3 parameters in the output layer. 

The optimal architecture of a network depends on how well the 
models fit the data. The empirical procedure is to start with simple 
models and continue to make them more sophisticated until their 
performance is satisfactory. While there has been some research on 
using data characteristics to determine the network architecture [8], 
there is still no standard approach in deep learning, and the 
performance of such models is not yet very stable. 

 The minimum size of the training dataset was investigated by 
fixing the model architecture to 3-21-77-21-3 and iteratively 
reducing the number of training samples in units of 8,000 (choosing 
equal-sized random samples from the training data derived from 
synthetic reflectance spectra). The performance of the network, 
measured as the percentage of test sample errors below the visibility 
threshold of ΔE2000 = 1.0), is plotted against the number of training 
samples in Fig. 12, showing that the performance is maintained 
down to about 100,000 training samples. Only below this number 
does the performance fall away. The noise in the graph arises from 
the random weight initialization in the training phase of the network. 

The networks were trained over 50 epochs. We experimented 
with different numbers of epochs and stopped training when the 
performance stopped improving. If training were to continue beyond 
this point, the model would not learn more about the relationships 
within the data, but just start to memorize the training set [11]. 
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Figure 12. Performance of sigmoidal model vs number of training samples 

It is not obvious that any meaning can be inferred from the 
estimated weights applied to the data passed at each layer. Deep 
learning models are known as ‘black-box models’ for good reason, 
because their internal structure is concealed, and it is difficult to 
interpret how the model does what it does and why it works. Since 
we have so many nodes in so many layers, it is almost impossible to 
assign any meaning to what is happening at each layer. The beauty 
of a neural network (as opposed to a linear regression model, for 
example) is that it’s the model that decides which features in the data 
to use, by assigning weights. In a regression you need to say only: 
use first-, second- or third-order, fit the data and estimate all the 
coefficients. But when training a neural network, the model itself 
creates the features, or variables, it uses by linear or nonlinear 
transformations of the inputs and their combinations. 

It is interesting to speculate on what the topology of our 
network suggests about color vision and human neural processing. 
The dense five-layer interconnected network with sigmoidal 
activations is not unlike the layered organization of neurons in the 
retina (literally a neural network). It is reckoned that for a human 
observer the total number of discernible colors is approximately 2 
million [9]. This is a measure of the span of the retinal mapping from 
an infinite number of incoming spectra to the perceived triplets 
encoded in a luminance-chrominance domain (akin to Yuv) in the 
optic nerve to the visual cortex. So if we can say that a certain 
network architecture (numbers of layers and nodes) is necessary and 
sufficient to encompass this level of complexity then we have 
established something about retinal neuronal architecture. 

The number of possible pathways through our neural network 
is the product of the number of nodes at each layer. For the sigmoidal 
network architecture it is 3x21x77x21x3 = 305,613 and this is one 
measure of the complexity of the network. But this number of 
training data items is not necessarily needed, because the number of 
paths is not crucial. A more reasonable indicator is the number of 
parameters (weights on the connections between nodes), which in 
our case is 3,482 (with biases), but in general the measure of 
complexity depends on the problem [7]. 

Our models do not use any convolutional layers, because the 
color stimulus at each point in the scene is assumed to be 
independent of its neighbors. In real environments, the retinal array 
is viewing the whole scene, so the colors of neighboring regions 
have an effect on perception. Retinal neurons are interconnected 
through multiple layers of the network, particularly at the amacrine 
and ganglion levels. For example, in the well-known phenomenon 
of simultaneous contrast the effect is to increase local color contrast 
between center and surround. Hence a spatial aggregating process, 
implemented in image processing by convolution, is required. 

In computer vision algorithms, convolution is often employed 
to identify features in the scene, and to decrease the number of 
parameters the model has to learn. In machine learning, 
convolutional networks are justified by the efficiency of estimation 
[12]. In a dense network all weights are independent (so many more 
parameters need to be estimated), whereas in a convolutional 
network the weights of neighboring pixels in each convolution are 
assumed to be the same, no matter where in the picture the 
convolution filter is moved. Thus dense networks are much less 
efficient because they have many more degrees of freedom. In very 
large problems, it is not possible to use dense networks because of 
limits on the computational power available. 

In conclusion, we have shown that a dense neural network can 
give very good performance in mapping from a camera R,G,B 
domain to a device-independent X,Y,Z domain. The key to its 
success is the availability of a very large training dataset, generated 
from synthetic reflectance spectra that span the gamut of all 
physically realizable colors. The training and testing datasets used 
in this study were computed from the spectral sensitivity of the 
Nikon D200 camera to generate R,G,B and from the Standard 
Observer and D65 illuminant to generate X,Y,Z. Any other camera, 
observer and illuminant could be used to compute corresponding 
datasets, but these would be metamers of the data for the reflectance 
samples. We assert that the performance of the neural network 
would be little affected by these parameters. 
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