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Abstract
In this paper we give a new method to find a grayscale im-

age from a color image. The idea is that the structure tensors of

the grayscale image and the color image should be as equal as

possible. This is measured by the energy of the tensor differences.

We deduce an Euler-Lagrange equation and a second variational

inequality. The second variational inequality is remarkably sim-

ple in its form. Our equation does not involve several steps, such

as finding a gradient first and then integrating it. We show that if

a color image is at least two times continuous differentiable, the

resulting grayscale image is not necessarily two times continuous

differentiable.

Introduction
Scope of this paper

Our paper presents a new method and framework for color

to grayscale conversions. Our method has made it possible to

study the core of one of the hardest problems in image sci-

ence, i.e. the non integrability problems that occur in color to

grayscale.

Our method is based on variational calculus, which is a

mathematical tool used in physics but also in differential geome-

try and other branches of mathematics. We apply variational cal-

culus as in Lagrange formalism of classical mechanics to prove

a fundamental differential equation for color to grayscale con-

version. This is a so called Euler-Lagrange equation. We will

also go one step further and find the so called second variational

formula for the conversion problem. This is rarely done in im-

age processing. A solution of the Euler-Lagrange equation gives

only critical point. The second variational formula tells us when

a critical point gives a minimum solution.

A similar but simpler approach was followed in [3] by Ali

Alsam and the author. Instead of using a variational approach,

we searched for luminance maps that preserved as much as pos-

sible of the contrast. The idea to compute and investigate the

second variational formula was inspired by works in differential

geometry [6], [12].

On gradient methods

In color to grayscale transform of a picture, finding the gra-

dient is often the first task to be solved, ([1], [2], [8], [10]). The

gradient is also used in other applications, such as edge detec-

tion, ([5], [15], [13], [7], [13], [9]), and image fusion, ([14], [11],

[4]). Many methods for finding a gradient are known. The most

celebrated method is to use an eigenvector of the structure ten-

sor. We take an eigenvector belonging to the highest eigenvalue.

The length is set to the square root of the eigenvalue, [16]. This

method is used in most of the articles cited in the present article.

The method has two properties that are worth mentioning.

P1 For a grayscale image, the method will give the picture’s ex-

act gradient up to sign. This fact is often used to justify the

eigenvector method.

P2 A pleasant fact about the method is that the eigenvalues and

the eigenspaces are invariant under orthonormal coordinate

transformations.

In most gradient based methods in image analysis, if (p,q) is a

candidate for the gradient of a picture described by a function f ,

(p,q) is generally not integrable, that is, it is not a gradient field.

One way to find the grayscale image is to solve the PDE

px +qy = ∆ f .

In this article we give a PDE in the unknown f that gives a direct

way to find f from the structure tensor. We also show a condi-

tion where the eigenvalue/vector method gives exactly the same

solution as our method.

From color gradient to grayscale gradient
Model of the image

We view an n-channel multi spectral image as a smooth

function f(x,y). Its domain is the “canvas” Ω = IW × IH , where

IW and IH are intervals of the real line. The function f takes its

values in a color space (C,g). C can be viewed, at least locally,

as

R
n = {(y1,y2, . . . ,yn)|yi ∈ R}

with a metric g = [gi j]. This metric defines the curve length dif-

ferential ds by

ds2 = ∑
i, j

gi jdyidy j. (1)

The metric coefficients are symmetric, e.g. gi j = g ji. In general,

the coefficients gi j are functions on C.

The structure tensor
The color gradient is the ordered pair of vectors (fx, fy),

fx =

(
∂ f1

∂x
,

∂ f2

∂x
, . . . ,

∂ fn

∂x

)
(2)

and

fy =

(
∂ f1

∂y
,

∂ f2

∂y
, . . . ,

∂ fn

∂y

)
. (3)

The color structure tensor is the matrix field

MC =

[
g(fx, fx) g(fx, fy)
g(fy, fx) g(fy, fy)

]
, (4)

where g(X ,Y ) = ∑i j gi jXiY j . In the case of grayscale images, the

“color” function is a real function f (x,y). We then have

MG =

[
fx

2 fy fx

fy fx fy
2

]
. (5)

We call this the gradient tensor field. The gradient tensor field

has the following properties. The determinant is equal to 0 and it
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has two eigenvalues λ = fx
2 + fy

2 and 0. The gradient fxi+ fyj

is an eigenvector for the eigenvalue λ . The square root
√

λ of the

eigenvalue is the length of the gradient. Another property of the

gradient is the integrability condition for gradient vectors; fxy =
fyx. This is actually the mixed derivative theorem and requires

that f has continuous second derivatives.

Given a structure tensor M, e.g. MC, over Ω. We will search

for the least square approximation of

MC =

[
A C

C B

]

in the space of grayscale structure tensors, i.e. matrix fields on

the form [
X Z

Z Y

]

where X = f 2
x , Y = f 2

y and Z = fx fy.

The functional

W ( f ) =

∫∫

Ω

[
(X −A)2 +2(Z −C)2 +(Y −B)2

]
dx dy (6)

is then minimized. We will assume that there exists a solution f

to this minimizing problem with continuous partial derivatives of

second order. In the section named Picture in trouble, we will in

fact show that this is not always true. The factor 2 in the second

term in the integrand is necessary for making W invariant with

respect to O.N. changes of coordinates of Ω.

Variation approach
The Euler-Lagrange equation of the color to
grayscale problem

In this section we will prove an Euler-Lagrange equation

for the color to grayscale problem. That is a differential equation

that is satisfied for minimal solutions f for the functional W ( f ).

Theorem 1. If f : Ω→R is a grayscale image that minimizes the

integral W in Equation (6) and f has continuous partial deriva-

tives of second order, then f satisfies

∂
∂x

(
(X +Y ) fx −A fx −C fy

)

+
∂
∂y

(
(X +Y ) fy −C fx −B fy

)
= 0. (7)

Proof. Let X = f 2
x , Y = f 2

y , and Z = fx fy minimize W and let

η be a smooth function defined on Ω, so that η is zero on the

boundary of Ω. Consider the variation f̃ (t) = f + tη . Then,

X̃(t) = X + 2 fxηx t + η2
x t2, Ỹ (t) = Y + 2 fyηy t + η2

y t2, and

Z̃(t) = Z +( fxηy + fyηx) t +ηxηy t2. Let F(t) = (X̃(t)−A)2 +
2(Z̃(t)−C)2 +(Ỹ (t)−B)2. The derivative of F(t) is

d

dt
F(t) = 4(X̃(t)−A) · ( fxηx +η2

x t)

+4(Z̃(t)−C) · ( fxηy + fyηx +2ηxηy t)

+4(Ỹ (t)−B) · ( fyηy +η2
y t). (8)

For t = 0, this is

d

dt
F(0) = 4

(
(X −A) fx +(Z −C) fy

)
ηx

+4
(
(Z −C) fx +(Y −B) fy

)
ηy

= 4
(
(X +Y ) fx −A fx −C fy

)
ηx

+4
(
(X +Y ) fy −C fx −B fy

)
ηy. (9)

We have used that Y fx = Z fy and that X fy = Z fx.

0 =
d

dt
W ( ft)|t=0 =

∫∫

Ω

d

dt
F(0)dxdy

= 4

∫∫

Ω

(
(X +Y ) fx −A fx −C fy

)
ηx

+
(
(X +Y ) fy −C fx −B fy

)
ηy dxdy

= 4

∫∫

Ω

∂
∂x

(
(X +Y ) fx −A fx −C fy

)
η dxdy

+4

∫∫

Ω

∂
∂y

(
(X +Y ) fy −C fx −B fy

)
η dxdy.

Partial integration is used to establish the last equality. Given

an interior point (x0,y0) of Ω and a positive real number s so

that the disc Ds(x0,y0) = {(x,y)|(x− x0)
2 +(y− y0)

2 ≤ s2} is

contained in the interior of Ω. First define N(x,y) = (x− x0)
2 +

(y− y0)
2 − s2. Let η(x,y) be given as cexp

(
s2/N(x,y)

)
on the

interior of Ds(x0,y0) and zero everywhere else. The real number

c is a constant so that
∫∫

Ω η dxdy= 1. Since η is non-negative on

Ds and the left hand side of equation (7) is continuous on Ω there

must be a point in Ds where equation (7) is satisfied. Therefore,

since (x0,y0) and s are chosen arbitrarily, equation (7) is satisfied

on a dense subset of Ω and hence it is satisfied everywhere on

Ω.

The second variational formula for the color to
grayscale problem

In this subsection, we give an inequality that must be satis-

fied if any solution f of the Euler-Lagrange equation is a mini-

mum for the functional W ( f ).

Theorem 2. If f : Ω → R is a function with continuous second

derivatives that minimizes the integral W in Equation (6), then f

satisfies

|∇ f |2 ≥ 1

4
(A+B) (10)

at every point in Ω.

Proof. We calculate

0 ≤ d2

dt2
W ( f (t))|t=0 =

∫∫
d2

dt2
F(0)dxdy.

The second derivative of F(t) at t = 0 is

d2

dt2
F(0) = 4(3X +Y −A) ·η2

x

+8(2Z −C) ·ηxηy +4(3Y +X −B) ·η2
y . (11)

Let η(x,y) = c exp
(
s2/N

)
for (x − x0)

2 + (y− y0)
2 < s2 and

η(x,y) = 0 elsewhere, where N = (x−x0)
2 +(y−y0)

2 − s2. We

restrict s to values such that the support of η(x,y) is contained in

Ω. The first derivatives of η are

ηx = −2(x−x0)s
2

N2
η

ηy = −2(y−y0)s
2

N2
η.

In s-independent polar coordinates centered around the point

(x0,y0) given by x = x0+sr cos θ and y = y0+sr sinθ , the above
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formulas are

ηx = − 2cr cos θ
s(r2 −1)2

exp

(
1

r2 −1

)

ηy = − 2cr sinθ
s(r2 −1)2

exp

(
1

r2 −1

)
.

The integral of η2
x and η2

y over Ω is 4πc2
∫ 1

0
r3

(r2−1)4 e
2

r2−1 dr,

while the integral of ηxηy in the first sector (0 ≤ θ ≤ π/2) is

2c2
∫ 1

0
r3

(r2−1)4 e
2

r2−1 dr. Since η2
x and η2

y are positive on their sup-

port, the lemma follows. The term with ηxηy will vanish under

integration when s goes to 0. We have used that A, B, etc. are

continuous.

The boundary condition
We assume a reflexive boundary condition for the images.

A matrix version of equation (7) is
[

A−|∇ f |2 C

C B−|∇ f |2
][

fx

fy

]
=

[
−Ky

Kx

]
, (12)

where K(x,y) is a two times differentiable function on Ω. The

function K(x,y) exists if (A − |∇ f |2) fx +C fy and C fx + (B −
|∇ f |2) fy have continuous partial derivatives. The value of K is

constant on the boundary of Ω: On the vertical boundaries we

have X = A =C = 0 and fx = 0. Thus, we have
[
−Y 0

0 B−Y

][
0

fy

]
=

[
0

(B−Y ) fy

]
=

[
−Ky

Kx

]
, (13)

so Ky = 0 and therefore K is constant on the left and right vertical

boundaries. The same argument holds for the horizontal bound-

aries.

Lemma 1. Assume that f : Ω→R is a grayscale image that min-

imizes the integral W in (6) and f has continuous partial deriva-

tives of second order. The values of X and Y on the boundary are

then equal to A and B respectively.

Proof. ((B−Y) fy)y = 0 on the vertical boundaries. This means

that Kx is constant on the boundary. Since Kx is zero in the cor-

ners, then Kx = 0 along the boundary. Thus, (B−Y ) fy = 0. By

the second variational formula, we have 5Y ≥ B on the vertical

boundaries. Thus, Y = B. A similar argument gives X = A on the

horizontal boundaries.

Corollary 1. ∇K = 0 on the boundary.

A remark on the eigenvalue method
In the previous section, we saw that K(x,y) is constant on

the boundary. On Ω, K(x,y) is generally not a constant function,

but in the case where K is a constant function, we have an eigen-

value problem. In fact, let λ ′ be the highest eigenvalue of MC

with corresponding eigenvector (P,Q) with length
√

λ ′. In the

mainstream literature (P,Q) is used as a non-integrable grayscale

gradient. That is X ′ = P2, Y ′ = Q2, Z′ = PQ, λ ′ = X ′ +Y ′,
AP+CQ = λ ′P, and CP+BQ = λ ′Q. Combining these equa-

tions gives AP+CQ = (X ′+Y ′)P and CP+BQ = (X ′+Y ′)Q.

Therefore the equation in the theorem is “satisfied” by replacing

fx and fy with P and Q respectively. A non vanishing K says that

the eigenvector field is not integrable. The highest eigenvalue

gives

|∇ f |2 = λ ′ =
A+B+

√
(A+B)2 −4AB+4C2

2
≥ 1

4
(A+B).

Thus, theorem 2 proves that the highest eigenvalue method min-

imizes W ( f ) when (P,Q) is integrable.

Figure 1. Synthetic image in trouble.

Picture in trouble
In this section we consider the synthetic image defined

by the RGB-function f(x,y) = [1 − S(x) − S(y) + 2S(x)S(y),
S(x),(1 − S(x))S(y)], where S(t) = (3 − 2t)t2. The canvas

is [0,1]× [0,1]. The image is displayed in Figure 1. The

color gradient has components fx(x,y) = [−S′(x) + 2S′(x)S(y),
S′(x),−S′(x)S(y)] and fy(x,y) = [−S′(y) + 2S(x)S′(y),0,(1 −
S(x))S′(y)]. Integration of the direction derivative of f along the

edge should give 0, but we get ±
√

2±
√

3±
√

1±
√

2 6= 0. There-

fore, given the reflection boundary condition, a minimal solution

of the energy equation (6) either does not exist for this special im-

age or it does not have continuous second derivatives. Another

metric g for calculating MC could fix the problem, but it would

only be an ad hoc solution.

Upper edge fx(x,0) = [−S′(x),S′(x),0]
fy(x,0) = [0,0,0]
X = A = 2S′(x)2

Lower edge fx(x,1) = [S′(x),S′(x),−S′(x)]
fy(x,1) = [0,0,0]
X = A = 3S′(x)2

Left edge fx(0,y) = [0,0,0]
fy(0,y) = [−S′(y),0,S′(y)]
Y = B = 2S′(y)2

Right edge fx(1,y) = [0,0,0]
fy(1,y) = [S′(y),0,0]
Y = B = S′(y)2

The color gradients along the edges of the image in trouble.

Conclusion
In this paper we propose a new method to study the process

of color to grayscale conversion. We introduce an energy func-

tional W ( f ) for the grayscale structure tensor, which give us an

Euler-Lagrange equation for color to grayscale conversion.

Our method improves the eigenvector method for estimating

a grayscale gradient field from a color image in the sense that our

method does not need to find a direction of tangent fields. The

picture used in our example shows that one should be careful

when assumptions are laid on the grayscale solution. A better

approach to color to grayscale conversion and other image fusion

methods, could be to look for solutions with discontinuous partial

derivatives or second partial derivatives.
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