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Abstract
Most modern cameras allow captured images to be saved in

two color spaces: (1) raw-RGB and (2) standard RGB (sRGB).
The raw-RGB image represents a scene-referred sensor image
whose RGB values are specific to the color sensitivities of the
sensor’s color filter array. The sRGB image represents a display-
referred image that has been rendered through the camera’s im-
age signal processor (ISP). The rendering process involves sev-
eral camera-specific photo-finishing manipulations intended to
make the sRGB image visually pleasing. For applications that
want to use a camera for purposes beyond photography, both the
raw-RGB and sRGB color spaces are undesirable. For example,
because the raw-RGB color space is dependent on the camera’s
sensor, it is challenging to develop applications that work across
multiple cameras. Similarly, the camera-specific photo-finishing
operations used to render sRGB images also hinder applications
intended to run on different cameras. Interestingly, the ISP cam-
era pipeline includes a colorimetric conversion stage where the
raw-RGB images are converted to a device-independent color
space. However, this image state is not accessible. In this pa-
per, we advocate for the ability to access the colorimetric image
state and recommend that cameras output a third image format
that is based on this device-independent colorimetric space. To
this end, we perform experiments to demonstrate that image pixel
values in a colorimetric space are more similar across different
makes and models than sRGB and raw-RGB.

Introduction
Cameras have an onboard image signal processing (ISP)

module that applies a series of image manipulation steps to con-
vert the raw-RGB sensor image to its output image. The steps
applied in the ISP make up what is often referred to as the cam-
era imaging pipeline. Figure 1 shows an illustrative example of
the standard steps performed by an ISP. The imaging pipeline
starts with a minimally processed raw-RGB image where the
RGB color channels are specific to the camera sensor’s spec-
tral sensitivity. The raw-RGB image is processed through a se-
ries of steps, including steps to perform colorimetric conversion
to map the raw-RGB color space to a device-independent color
space–namely, one based on CIE XYZ (e.g., ProPhoto [21]). Af-
ter the colorimetric conversion, additional photo-finishing steps
are applied to produce a visually pleasing image which is finally
encoded in a standard RGB (sRGB) color space. We can con-
sider each of the ISP’s steps as changing the state of the image,
starting from a initial scene-referred color space (raw-RGB) to
its final display or output-referred color space (sRGB).

Currently, users and application developers have access to
only two image states: the raw-RGB image (e.g., DNG format)
or the sRGB image (e.g., JPEG format). These two image states
are not suitable for applications that require consistent color val-

ues across multiple cameras. For example, the raw-RGB values
are specific to the sensor used by the camera. If multiple cameras
observe the same scene under the same illumination, their raw-
RGB values will be different due to their sensor’s different spec-
tral responses. In principle, sRGB image values should be stan-
dard across multiple devices and many applications erroneously
make this assumption. However, this assumption overlooks the
fact that virtually all camera pipelines include camera-specific
photo-finishing operations that modify the image values to pro-
duce a visually pleasing image. Moreover, the type of photo-
finishing applied is often specific to the camera’s settings during
imaging, such as the picture style (e.g., landscape style, vivid
style, portrait style). As a result, sRGB values not only are dis-
similar among different cameras but also can even differ on the
same camera when different capture settings are used.

Contribution In this paper, we advocate for a third image for-
mat to be made available to consumers and application devel-
opers. Specifically, we argue that the internal ISP image state
after it has been processed by the colorimetric steps in the cam-
era pipeline is more suitable for applications that assume imaged
scene values are consistent among multiple cameras. To demon-
strate this, we performed experiments that analyze the consis-
tency of pixel values at different image states for scene points
imaged by multiple DSLR cameras. We show that the colori-
metric image state is by far the most consistent across multiple
cameras. These experiments reinforce our advocacy for camera
manufacturers to provide access to a colorimetric image format.

Camera ISP Preliminaries
We begin with a quick overview of the camera processing

pipeline shown in Figure 1. This figure illustrates several of the
high-level steps performed by a typical ISP. Readers are referred
to [16, 20] for more details about standard camera pipelines.

The camera pipeline starts with the raw-RGB image that
represents a minimally processed image captured from the cam-
era’s sensor. The raw-RGB values can be considered scene-
referred as they are directly related to the image scene; however,
the values are in a color space specific to the spectral sensitivi-
ties of the sensor’s color filter array. The pipeline can be divided
into three stages. The first stage involves raw-RGB processing
that includes routines such as linearizing the raw-RGB values
and correcting for issues related to the lens’ vignetting and chro-
matic abberations. The raw-RGB image is also demosiaced to
provide three full-color channels. The pipeline second stage in-
volves a colorimetric conversation that applies routines to convert
the raw-RGB values to device-independent values based on the
CIE 1931 color space. Note that this includes a white-balance
step realized as a 3 × 3 diagonal matrix operation followed by a
linear colorimetric step as a 3 × 3 matrix operation. Most cam-
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Figure 1. This figure (adapted from [16]) shows the standard steps applied on a camera’s ISP. Currently users have access to the raw-RGB image and the

sRGB image. The pipeline can be divided into three stages: (1) raw-RGB image processing; (2) a colorimetric conversion to map the raw-RGB values to

device-independent values based on CIE XYZ; (3) camera-specific photo-finishing. We advocate access to the colorimetric image state.

eras include an additional nonlinear colorimetric step that is per-
formed as a 3D lookup table (LUT). After this stage, the image
values are in a colorimetric color space that is directly related
to the scene (i.e., still a scene-referred color space). After the
colorimetric conversion, the final stage applies photo-finishing
operations to modify the image further to be visually appealing
and to be suitable for use on display devices. The final image is
encoded in a display-referred sRGB color space.

Related Work

There are two areas related to the work addressed in this
paper. First are methods targeting camera colorimetric calibra-
tion. There are number of papers that focus on mapping the raw-
RGB values to a perceptual color space (e.g., [1, 2, 8–10, 14]).
These methods typically focus on how best to compute an ac-
curate mapping between raw-RGB and CIE 1932 XYZ values
by imaging a physical calibration chart with known CIE XYZ
values. Most work focuses on the types of mathematical func-
tions used to parameterize the color mappings, such as high-order
polynomials (e.g., [10, 14]), look-up-tables (e.g., [15]), or neu-
ral networks (e.g., [4]). Issues such as non-uniform illumination
are also addressed (e.g., [1, 8, 9]) as it can be difficult to ensure
uniform illumination on the physical calibration pattern. There
has even been work that demonstrates that additional physical
filters achieve better colorimetric properties (e.g., [7, 11]). Cam-
era manufacturers have undoubtedly incorporated these research
findings into their camera pipelines; however, users do not have
access to such results unless they manually perform and apply
the calibration methods discussed in these works.

Radiometric calibration (sometimes called color de-
rendering) is another related research area. Radiometric calibra-
tion is the process of modeling the camera’s imaging pipeline in
order to undo the photo-finishing routines applied. This is of-
ten performed when scene-referred values are needed, but only
sRGB images are available. Notable works include [3, 5, 6, 12,
13, 17–19, 22]. These works propose mathematical models to
emulate the steps of the camera pipeline. Once a model is es-
tablished, it can be inverted to obtained image values at various
states in the image pipeline. The work in this paper advocates
a third output format that encodes the colorimetric values in the
existing ISP camera pipeline, thus avoiding the need for radio-
metric calibration.

Experimental Setup and Analysis
As described in the previous section, the goal of this paper

is to demonstrate that providing access to image values after the
colorimetric image conversion is the most suitable image state to
provide consistent image values among different cameras.

Towards this goal, we perform the following experiments il-
lustrated in Figure 2. The following four DSLR cameras are used
to capture scenes under various lighting conditions: (1) a Canon
5D Mark IV, (2) a Nikon D7200, (3) a Fujifilm X-T20, and (4)
an Olympus OM-D E-M10. These cameras are placed in a con-
trolled environment where each camera captures three types of
planar scenes with different physical materials. Specifically, we
image a Macbeth Color Rendition Chart (with 24 color patches),
and two charts of 81 paint samples that we have created, denoted
as Paint Samples #1 and Paint Samples #2. The scenes are il-
luminated by a tunable direct current (DC) lighting rig. We use
illuminations that correspond to correlated color temperatures of
3200◦K, 4340◦K, and 5500◦K.

Each scene and lighting condition are captured with the four
DSLR cameras and saved in a raw-RGB image format. For these
particular cameras, the raw-RGB image format embeds colori-
metric conversion metadata that provides the parameters for the
linear transformation and nonlinear 3D LUTs. Using the soft-
ware camera pipeline from Karaimer and Brown [16] we are able
to render each state of the imaging pipeline. To avoid errors due
to each camera’s proprietary auto-white-balance functions, we
perform the white-balance operation based on the neutral color
patches in the Macbeth color rendition chart. Our imaging setup
is shown in Figure 2-(A).

In order to assess the consistency among the cameras, we
map each observed patch’s pixel values to 2D chromaticity space
as shown in Figure 2-(B). We use the 2D chromaticity space to
factor out differences related to overall image brightness among
the cameras due to issues such as image gain and differences in
exposure. We compute the mean variance of each patch in the 2D
chromaticity space for the following image states: (1) raw-RGB,
(2) raw-RGB with white balance applied, (3) raw-RGB with the
linear colorimetric operation applied (4) raw-RGB with the addi-
tional non-linear (3D LUT) colorimetric operation applied, and
(5) sRGB.

The results for the Macbeth Color Rendition Chart, Paint
Samples #1, and Paint Samples # 2 are shown in Table 1. The
table summarizes the results for each CCT as well as the overall
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Figure 2. (A) Our experiment setup. Patches from three different physical patterns (Macbeth Color Rendition Chart, and two custom charts of 81 flat paint

samples each) are imaged using four different cameras. A direct current (DC) light source is used to illuminate the scene under different correlated color

temperatures (CCTs). (B) For each color patch observed by the four cameras, we compare their values in a 2D chromaticity space. In particular, we are

interested in the variance of these measures in different internal camera pipeline image states.

(1) Color Rendition Chart
Stage 3200◦K 4340◦K 5500◦K Combined

raw-RGB 0.046 0.049 0.051 0.130
white-balanced raw-RGB 0.018 0.017 0.018 0.016

colorimetric image state (linear) 0.125 0.117 0.103 0.095
colorimetric image state (non-linear) 0.004 0.004 0.003 0.004

sRGB 0.041 0.041 0.042 0.037

(2) Paint Samples #1
Stage 3200◦K 4340◦K 5500◦K Combined

raw-RGB 0.121 0.131 0.139 0.411
white-balanced raw-RGB 0.031 0.028 0.031 0.029

colorimetric image state (linear) 0.213 0.174 0.147 0.148
colorimetric image state (non-linear) 0.006 0.004 0.005 0.009

sRGB 0.042 0.029 0.038 0.041

(3) Paint Samples #2
Stage 3200◦K 4340◦K 5500◦K Combined

raw-RGB 0.127 0.135 0.143 0.424
white-balanced raw-RGB 0.034 0.033 0.035 0.031

colorimetric image state (linear) 0.218 0.177 0.155 0.152
colorimetric image state (non-linear) 0.004 0.004 0.005 0.007

sRGB 0.045 0.049 0.056 0.051

Table 1: Colorimetric consistency between four cameras
at five different processing stages of the camera imaging
pipeline using the patches from (1) the Macbeth Color Rendi-
tion Chart, (2) our first custom chart with 81 paint samples, (3)
our second custom chart with 81 different paint samples. The
table reports the average variance of each patch’s 2D chro-
maticity values among the four cameras in the respective im-
age states. The most consistent method is highlighted in bold
and green. Results are shown for each illumination CCT and
all illuminations combined.

result where all illumination conditions are combined. It is clear
that the full colorimetric conversion image state (raw-RGB with
linear and non-linear colorimetric conversion applied) is by far
the most consistent state.

Figures 3–5 show the plots in chromaticity space for the
three imaged charts. Each cluster of points represents the same
patch imaged by the four cameras. An ellipse is shown to show
the spread of the measurements. From these plots, we can also
see that the full colorimetric conversion image state has the min-
imum spread (i.e., lowest variance among the cameras).

Discussion Our experiments show that the colorimetric map-
ping stage achieves the most consistent results. More impor-
tantly, we obtain these results without the need for any colori-
metric calibration; this is simply a matter of accessing the appro-
priate image state within the existing camera imaging pipeline.

As a result, we advocate the need for cameras to allow a third
image format beyond raw-RGB and sRGB, named a colorimet-
ric image state.

Concluding Remarks
We have performed experiments to demonstrate the advan-

tages of allowing access to the colorimetric image state in the
camera imaging pipeline. Our experiments showed that image
values in the colorimetric image state have the least amount of
variance among different cameras when compared to other image
states. Currently only the raw-RGB and sRGB image states are
available to users, which represent arguably the two worst image
states for multi-camera consistency. We point out that the white-
balanced raw-RGB image state included in our experiments was
provided only for comparison; like the colorimetric image state,
the white-balance raw-RGB image state is not easily accessible.

It is worth noting that our experiments compared the vari-
ance of values in different images states that represent different
color spaces. This is important to consider as variance is not in-
variant to scaling which undoubtedly happens in the conversion
between color spaces. A more proper evaluation would involve
attempting to normalize each color space into a canonical 3D
volume and then estimate the variance. However, such normal-
ization does not represent how image processing and computer
vision application developers use such values, nor how the cam-
era pipeline manipulates the image’s RGB values. Instead, appli-
cations developers would tune their algorithms based on the color
space used, and in such cases, having lower variance among dif-
ferent devices is always preferred.

Finally, our experiments were limited to DSLR cameras, as
smartphone cameras currently do not include the nonlinear col-
orimetric metadata in their raw-RGB files. This lack of metadata
made it impossible to evaluate the true colorimetric conversion
performed onboard smartphone cameras. This issue further bol-
sters our advocacy for more open access to various image states
within the camera image pipeline. In this paper, we show com-
pelling evidence that accessing the colorimetric image is useful;
however, access to all image states would be welcomed. Analy-
sis of other image states for both DSLR and smartphone cameras
is part of our ongoing and future efforts.
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Figure 3. Colorimetric consistency between four cameras at five different processing stages of the camera imaging pipeline using the patches of the Macbeth

Color Rendition Chart. It is clear that the full colorimetric conversion image state (raw-RGB with linear and non-linear colorimetric conversion applied) is by

far the most consistent state.
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Figure 4. Colorimetric consistency between four cameras at five different processing stages of the camera imaging pipeline using the patches of the 81

Paint Samples #1. It is clear that the full colorimetric conversion image state (raw-RGB with linear and non-linear colorimetric conversion applied) is by far the

most consistent state.
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Paint Samples #2. It is clear that the full colorimetric conversion image state (raw-RGB with linear and non-linear colorimetric conversion applied) is by far the

most consistent state.
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