
Color processing and management in Ghostscript
Michael J. Vrhel, Artifex Software, 1305 Grant Avenue, Suite 200, Novato, CA 94945

Abstract
Ghostscript has a long history in the open source community

and was developed at the same time that page description lan-
guages were evolving to the complex specification of PDF today.
Color is a key component in this specification and its description
and proper implementation is as complex as any other part of the
specification. In this document, the color processing and manage-
ment that takes place in Ghostscript is reviewed with a focus on
how its design achieves computational efficiency while providing
flexibility for the developer and user.

Introduction
Page description languages (PDLs) such as PDF offer a wide

variety of definitions of color for images, graphics and text. In

addition, PDF includes specifications for over-printing and trans-

parency blending that can become complex. For these reasons, the

design of software to render the PDF content to images or convert

it to other PDL formats requires careful thought. In addition, this

rendering software is often embedded within a printer, and so it

must be able to operate efficiently with limited resources.

In this paper, the color processing and management methods

in the open source project Ghostscript are reviewed. Various steps

that must take place to ensure proper color rendering of PDF files

are discussed. The efficiency of the code and its use of multiple

cores as well as SIMD (Single Instruction Multiple Data) opera-

tors are discussed and performance results are given.

PDLs
The first page description languages were PostScript, devel-

oped by Adobe Systems in 1984 [1], and PCL introduced by

Hewlett-Packard in 1984 [2]. PostScript is a stack-based pro-

gramming language and as such has great flexibility. Over the

years, several versions of each of these specifications were devel-

oped, culminating with PostScript Language Level 3 (PS-LL3) in

1997 and PCL6 in 1995. The color model in PCL is gray or RGB

based with the assumption that the data is contained in sGray1 or

sRGB [3] color space. PS-LL3, on the other hand, has a rich def-

inition of color with the use of multi-dimensional lookup tables

(MLUTs) for source color spaces as well as output color spaces2.

CIE-based color support was introduced in PS-LL2 in 1990 with

the ability to specify matrix-based mappings for source colors and

MLUTs for destination devices. Spot color support was intro-

duced in PS-LL2 with the separation color space. This addition to

the specification allowed the drawing of an object using a single

colorant that need not be RGB, gray or CMYK based. To ensure

that devices that were unable to use a spot colorant could create

1A colorimetrically neutral color space with a gamma and white point
that is the same as sRGB.

2These source MLUTs are called color space arrays, and the destina-
tion MLUTs are called color rendering dictionaries (CRDs). The PS-LL2
specification includes CRDs but no color space arrays.

a reasonable reproduction of the document, an alternate tint map-

ping to a common color space such as RGB, gray, CMYK or a

CIE-based color space is required. PS-LL3 introduced a DeviceN

color space, which allowed the use of arbitrary spot colorants pos-

sibly mixed with standard CMYK colorants. As with the separa-

tion color space, the DeviceN color space description is required

to include a mapping to a more common color space.

The PDF 1.0 specification, which was introduced in 1993,

had support for device-dependent gray, RGB and CMYK colors.

Initially, it was not possible to make any device-independent color

specification. In 1999, PDF 1.3 was introduced with support for

ICC color spaces. In 2001, PDF 1.4 introduced transparency into

the PDF specification with the ability to specify particular color

spaces in which to perform transparency blending. The PDF 1.7

specification was turned into an ISO standard (ISO 32000-1:2008)

in 2008. In 2017, version 2.0 was introduced (ISO 32000-2),

which supports the use of ICC profile version ICC.1:2010 (ISO

15076-1:2010) [4].

Spot color support in PDF was introduced with the separa-

tion color space in version 1.2 in 1996 and the DeviceN color

space in version 1.3 in 1999. These color spaces were specified in

a manner similar to the PostScript separation and DeviceN color

spaces.

The PDF specification includes several specialized versions

including PDF/A for archiving, PDF/E for engineering and tech-

nical documents, PDF/UA for universal access, PDF/VT for vari-

able and transactional printing and PDF/X for graphics exchange,

which is geared toward the print industry. PDF/X allows the spec-

ification of a particular output intent for which the document is

targeted. This output intent can be specified either by a spe-

cific ICC profile embedded in the document or a key word (e.g.

CGATS TR 001 SWOP). Version PDF/X-5n includes the ability

to specify an xCLR ICC profile for the output intent.

Ghostscript
First released in 1988, Ghostscript is an open source project

originally developed by L. Peter Deutsch as an implementation

of a PostScript interpreter [5]. Since that time, Ghostscript has

been expanded to support PostScript LL3, all versions of PDF

through the current 2.0 version, Microsoft XPS and ECMA 388

Open-XPS format [6] as well as all the various versions of PCL.

Ghostscript is currently distributed under the GNU AGPLv3 li-

cense as well as a commercial version. It is a key component of

Linux CUPS (Common UNIX Printing System) and, as such, has

millions of installs and users.

Ghostscript can be roughly divided into three sections: the

interpreters, the graphics library and the output devices, as shown

in Figure 1. The interpreter has the task of converting the com-

mands of the input language to common forms that the graphics

library and/or the device understand. For example, the languages

© 2019 Society for Imaging Science and Technology

62 Society for Imaging Science and Technology

https://doi.org/10.2352/issn.2169-2629.2019.27.12

Language Interpreters

XPSPostScript PDF PCL5 PCLXL

High Level
Graphics
Commands

Graphics Library

Output Devices

High Level or
Low Level
Graphics
Commands

Vector - PDF, PDFA, Postscript, PCL, XPS
Raster - TIFF, JPG, PNG, BMP

Custom - Printer pipeline

Figure 1. High-level view of Ghostscript’s architecture.

all have the concept of drawing a path and filling it with a par-

ticular shading or placing an image at a specific location on the

page. Each language has different syntax for describing these op-

erations, and it is the job of the interpreter to map these commands

to a common command such as fill path or put image.

The output device may directly understand these higher level

vector-based commands. For example, if the output device is a

PDF output device, the device will take the fill path command and

construct the PDF syntax needed in the output PDF file to specify

the path and the color to fill the path. In this way, Ghostscript can

map from one high-level language (e.g. PDF) to another high-

level language (e.g. XPS) maintaining scalability. If the output

device is a raster format (e.g. an image or printer engine), then

the device will not know directly what to do with a command

like fill path. In this case, the graphics library must process the

command into the highest level command that the device can han-

dle. For example, the device may have hardware capability to do

shading fills of trapezoids. As such, as the graphics library breaks

down a fill path command to more fundamental fills, shading fills

of trapezoids when encountered in that process would be handled

directly by the device.

Ghostscript Color Management
Prior to 2010, Ghostscript color management was primarily

based on PostScript color methods with embedded ICC profiles

handled with the open source Argyll color management system

[7]. With the release of version 9.0 in 2010, Ghostscript switched

to a pure ICC-based color processing approach using the open

source Little CMS color management engine as its CMM [8]. At

ICC Manager

Link Cache

Named Color Profile

DeviceN Profiles []

DefaultGray Profile

DefaultRGB Profile

DefaultCMYK Profile

Profile Cache

SoftMask Profiles

Source Profiles
(override)

gsicc_init_buffer
gsicc_get_link

gsicc_release_link

gsicc_set_gscs_profile
gsicc_get_gscs_profile

gsicc_profile_new
gsicc_get_profile_handle_buffer

Each thread could
have access to a

common ICC cache
or create its own

Graphics
Library

&
Interpreter

CMM
CMM API
gscms_create
gscms_destroy
gscms_is_threadsafe
gscms_get_profile_handle_mem
gscms_get_profile_handle_file
gscms_release_profile
gscms_get_link
gscms_get_link_proof_devlink
gscms_get_name2device_link
gscms_get_link_dim
gscms_release_link
gscms_transform_color_buffer
gscms_transform_color
gscms_transform_named_color
gscms_get_numberclrtnames
gscms_get_clrtname
gscms_get_input_channel_count
gscms_get_output_channel_count
gscms_get_profile_data_space

Device

User profile directory

Text.icc

Device Profiles For Various Rendering Cases and Object Types

Graphics.iccImages.icc

default_gray.icc

default_rgb.icc

default_cmyk.icc

iccprofiles

lab.icc

sRGB.icc

s-gray.icc

ps_gray.icc

ps_rgb.icc

ps_cmyk.icc

gray_to_k.icc

Proof.icc

DeviceLink.icc

esrgb.icc rommrgb.icc

OutputIntent.iccBlend.iccPostRender.icc

gsicc_new_device_profile_array
gsicc_set_device_profile
gsicc_get_dev_icccolorants
gsicc_set_device_profile_colorants
gsicc_set_device_profile_intent
gsicc_set_device_blackptcomp
gsicc_set_device_blackpreserve
gsicc_set_devicen_equiv_colors
gsicc_init_device_profile_struct
gsicc_extract_profile

Figure 2. Color architecture and API for CMM in Ghostscript.

this time, an API3 was specified that enabled the straight-forward

use of any CMM with Ghostscript. Today, Ghostscript uses a

thread-safe fork of little CMS [9, 10]. A diagram of the system as

it exists today (with the current release of version 9.27) is shown

in Figure 2.

Non-ICC CIE-based color spaces
Although Ghostscript has moved to a pure ICC work-flow,

non-ICC color spaces that are CIE-based still exist in documents

and, as such, Ghostscript must handle those in a manner that en-

ables them to be processed by the CMM. The CMM is unlikely to

understand how to handle PostScript color space arrays or PDF’s

non-ICC CIE-based color spaces of CalRGB and CalGray. To

handle these color spaces, Ghostscript converts them to equiva-

lent ICC profiles that can be understood by the CMM. To avoid

repeated conversions of the same color spaces, Ghostscript will

compute a hash of the contents in the case of PostScript or make

use of the color space object resource number in PDF and store

this hash number with the equivalent ICC profile in a most re-

cently used (MRU) cache as shown in Figure 3.

Device-dependent color spaces
PDF allows the use of device-dependent color spaces

specified by the keywords DeviceGray, DeviceRGB and De-

viceCMYK. In some cases, a PDF file will specify in a Resource

Dictionary values for DefaultGray, DefaultRGB and/or Default-

CMYK color spaces in terms of ICC profiles. In this case, those

ICC profiles are used wherever the related device-dependent color

space is used. If the PDF file is of the PDF/X form with an out-

put intent specified (for example as a CMYK ICC profile), then all

DeviceCMYK colors in the document are assumed to be specified

by that ICC profile.

3Application Programming Interface

6327th Color and Imaging Conference Final Program and Proceedings

[/CIEBasedABC
 << /DecodeLMN
 [{ dup 0.03928 le
 {12.92321 div}
 {0.055 add 1.055 div 2.4 exp}
 ifelse} bind dup dup]
 /MatrixLMN [
 0.412457 0.212673 0.019334
 0.357576 0.715152 0.119192
 0.180437 0.072175 0.950301]
 /WhitePoint [0.9505 1.0 1.0890]
 >>]

Compute Hash
(e.g. CRC)

Hash 0 Equiv. ICC Profile

Hash N-1 Equiv. ICC Profile

Hash 1 Equiv. ICC Profile

Hash ... Equiv. ICC Profile

MRU Cache

Figure 3. Caching of equivavlent ICC profiles based upon hash of the color

space contents. Note PS description for sRGB color space.

If none of the above definitions for these device-dependent

color spaces are contained in the document, Ghostscript will

treat DeviceGray as being defined by the sGray ICC profile, De-

viceRGB as being defined by the sRGB ICC profile and De-

viceCMYK as being defined by a profile based upon CGATS/S-

WOP TR003 2007 CMYK. Ghostscript allows the user to define

other ICC profiles for the device-dependent color spaces with its

command line options, where, for example, including

-sDefaultCMYKProfile=‘‘MyCMYKProfile.icc’’

means that the code will use that profile to define DeviceCMYK

color spaces in the document.

Spot Colors
The handing of spot colors by Ghostscript can occur in a

number of different ways depending upon the capabilities of the

device and the needs of the user. For example, if a document

contains a spot color (e.g. Pantone 631) and the output device

only understands CMYK, then that spot colorant is converted to

CMYK using the alternate tint transform specified in the doc-

ument. This is Ghostscript’s default behavior when processing

spot colorants for devices that do not support spot colorants. In

this case, a user is at the mercy of the alternate tint transform for

his/her simulated view of the spot colorant.

Instead of relying upon the alternate tint transform, using an

option in Ghostscript, the user can specify an xCLR ICC profile

for the spot colorant (or combination of spot colorants if it is a

DeviceN color space) and have that ICC profile associated with

and used when managing those spot colors. The xCLR ICC pro-

files must contain the colorantTableTag so that the colorant names

can be compared to the names encountered in the document. The

1. ICC profiles.
One for each DeviceN
color space of interest.
Can be created by
measurement or from
a mixing model.

. . .

2. Preload into
graphics library

D

Document DeviceN
color space

[/DeviceN
[/Orange /Green /Blue]
/DeviceCMYK

]

3. Load and parse document to render

4. When DeviceN color
space encountered, check

 ICC profiles.

Figure 4. xCLR ICC based handing of source DeviceN colors.

colorant orders specified by the names in the document may be

different than they exist in the xCLR ICC profile, necessitating

the use of a permutation of the tint values prior to color manage-

ment [11]. The xCLR ICC profile is provided to Ghostscript on

the command line using an option like

-dDeviceNProfile=‘‘OrangeViolet.icc’’

See Figure 4 for an overview of the process.

Instead of the alternate tint transform or the xCLR approach,

users can use a custom based method in Ghostscript for the han-

dling of spot colorants. If the user has her own proprietary manner

in which she wants to process DeviceN colors, she can load any

data she needs using the command line option

-sNamedProfile=‘‘MyNamedColorStructure.icc
’’

She will need to implement the gsicc_transform_named_color

method in Ghostscript. For this method, there is currently an

example implementation that uses a look-up-table with colorant

names and associated CIELAB values along with a mixing model

to create a simulated color.

Ghostscript has devices included with it that will handle all

spot colorants (up to 60 + CMYK per page). One device is the ps-

dcmyk device, which creates Photoshop output image files (with

a Photoshop specification max of 56 colorants). The other device

is the tiffsep device, which creates a composite TIFF image of

all the colorants as well as individual separation TIFF images for

each colorant on the document page.

Device Profiles
As shown in Figure 2, there are several ICC profiles as-

sociated with the output device. This design allows for object-

dependent color management, since Ghostscript knows the object

type that it is processing. For example, different destination ICC

profiles (as well as rendering intents) can be used for graphics,

images and text. These destination ICC profiles are specified on

the command line using options such as

-sGraphicICCProfile=‘‘MyGraphicsProfile.
icc’’

64 Society for Imaging Science and Technology

Gray Images Gray Graphics Gray

Gray
Gray

Gray

Figure 5. Object-dependent color management. Depending upon the

source type and color, the CMM is provided different source and destination

ICC profiles.

to specify the device destination profile for graphics objects. Sim-

ilar options exist for text and images.

In addition to specifying the destination profile, Ghostscript

offers the flexibility for the user to specify the source profile that

she wants to use for graphics, images and text objects that exist in

the document in the DeviceGray, DeviceRGB and DeviceCMYK

color spaces. Since this requires the specifying of as many as

nine additional ICC profiles, the profile information for any of

these that are needed to be set are contained in a single file that is

provided to Ghostscript through the command line option

-sSourceObjectICC=‘‘MySourceInformation.
txt’’

Detail on the exact format of this file is contained in the

Ghostscript documentation [12]. Figure 5 provides an overview

of the various options that can be specified.

By default, for the tiffsep device, the CMYK colorants are

color managed using the same work flow used for a standard

CMYK device, while the spot colorants are rendered directly to

separations without any color management. If desired, the user

has the option to specify an output ICC profile for the tiffsep de-

vice that has more than four colorants. For example, if the output

device used the colorants CMYK+Orange+Violet an ICC profile

for these six colorants can be specified for the device on the com-

mand line using the options

-sOutputICCProfile=‘‘MyDeviceNProfile.icc’
’

-sICCOutputColors=‘‘Cyan , Magenta , Yellow ,
Black , Orange , Violet ’’

The list of colorant names must be in the same order that they

occur in the ICC profile. If a matching colorant name is found in

the document (e.g. Orange), then that colorant will be associated

with the related separation.

Transparency
As mentioned earlier, PDF 1.4 and above allow the use of

transparency in the imaging model. Transparency blending in

PDF is quite complex. It includes a variety of blending opera-

tions as well as the capability for the blending color space to be

specified in the document. To add to the complexity, transparency

groups can be embedded within groups each with their own blend-

ing color space along with additional properties of knockout and

isolation. Ghostscript will honor the color space in its blending

operations per the specification. Occasionally PDF files are en-

countered for which the page transparency group, which is to say

the top most or first transparency group, does not specify a color

space. In this case, the specification states that the transparency

group should inherit the color space of the target device. This

dependency of the blending color space on the target device can

lead to rendering that looks quite different on an LCD screen com-

pared to rendering on a printed page. The difference is caused by

blending in RGB color space for the LCD display vs. blending

in CMYK color space for the printer. To work around this issue,

Ghostscript enables the user to specify a blending color space to

use to ensure consistent rendering across devices. This is done

with the command line option

-sBlendColorProfile=‘‘MyBlendingColorSpace
.icc’’

With transparency blending occurring between different object

types, performing object-dependent color managment becomes

problematic. For example, if a text object is 50 percent blended

with an image object, should those pixels be treated as image

or text during color conversion? This decision is left to the de-

signer of the output device in Ghostscript. To provide the flex-

ibility for this color managment to be handled in the output de-

vice, Ghostscript can use an additional image plane during trans-

pareny blending to maintain information about the type of objects

that were used when a particular pixel was blended. In this way,

when the drawing of the transparency buffer is completed, the de-

vice can determine based upon this additional image plane how it

wants to perform color processing of the buffer.

The blending operations of transparency can take a significa-

tion amount of computational time. For example, when blending

one transparency group with its parent (the backdrop), for each

pixel in the group, Ghostscript has to compute

Cr =

(
1− αs

αr

)
×Cb+

αs

αr
× [(1−αb)×Cs +αb ×B(Cb,Cs)] (1)

αr = 1− [(1−αb)× (1−αs)] (2)

where Cr is the resultant color, αr is the resultant alpha, Cb is the

backdrop color, αb is the backdrop alpha, Cs is the source (or cur-

rent group) color, αs is the source alpha and B(x,y) is a blending

function for which PDF defines twelve different options4.

4These equations in the PDF specification are based on the work of
Porter and Duff. [13]

6527th Color and Imaging Conference Final Program and Proceedings

Thread 1 Render to
Buffer

Color Manage
To Output CS

Thread 2 Render to
Buffer

Color Manage
To Output CS

Thread 3 Render to
Buffer

Color Manage
To Output CS

Thread 4 Render to
Buffer

Color Manage
To Output CS

Figure 6. Multi-threaded rendering.

Where the architecture allows for it, Ghostscript can make

use of single instruction multiple data (SIMD) operations to pro-

vide acceleration on this process. Performance results for this will

be discussed in the following Efficiency section.

Output Intent and Threaded Rendering
It was previously discussed that a PDF/X file can include

an output intent ICC profile, which specifies the intended color

space to which the document was to be rendered. Often, this color

space is significantly different than the actual target device color

space. For example, the output intent could be Fogra 39 CMYK,

but the document is being displayed on an organic LED RGB dis-

play with a P3 gamut. In this case, the proper rendering process

would be to render the document as a CMYK Fogra 39 image and

then transform that data to the RGB color space defined by the P3

display device.

Implementing the above transformation in a design takes

some thought. The amount of data that needs to be processed has

increased significantly since the entire page is being color man-

aged twice. A developer might be tempted to pack the color trans-

forms into one operation eliminating the rendering to the interme-

diate Fogra 39 color space. Unfortunately, in general, that ap-

proach is not possible due to the fact that PDF includes a drawing

state called overprint in which subsequent drawing of colorants

might not erase colorants that have already been drawn in that lo-

cation. This drawing state means that the previous colors in the

Fogra 39 color space must be maintained through the entire draw-

ing of the page to ensure the intended rendering is performed.

Most processors today have multiple cores; so to provide

some efficiency in this rendering process, Ghostscript can make

use of multiple threads as it renders the page. This process is

shown in Figure 6, where individual threads are used to render

different bands of the page to buffers in the output intent color

space, which is then color managed by the thread to the target

color space. Other operations such as halftoning, scaling or trap-

ping can be performed by these threads. In low memory situa-

tions, the band size can be made quite small (down to a single

row, for example), and as a thread completes its processing, it

will begin processing the next band. In this way, the number of

processing threads can be set to the number of cores in the CPU

enabling significant speed-up in the processing.

Efficiency
Commercial users of Ghostscript have aggressive perfor-

mance requirements since they are often trying to reach a par-

Link Cache

Hash Code Ref Count Link Structure

.

.

.

.

gsicc_get_link(*input_colorspace,
*output_colorspace,
*rendering_params)

Compute hash of
input CS, output CS,
rendering params

Search cache for
match. If found
return link. If not
request new link

Hash Code
Hash Code
Hash Code

Ref Count
Ref Count
Ref Count

Ref CountHash Code Link Structure

Link Structure
Link Structure
Link Structure

CMM

Figure 7. Link cache

ticular page/minute goal. In addition, printer manufacturers of-

ten need to achieve certain certifications, such as Apple AirPrint,

for which performance is a key factor. To reach performance

goals, the first place to look for improvements is at portions of

the code that are the most computationally expensive. Profiling of

Ghostscript points to color transformations, transparency blend-

ing and creation of ICC color transformations as some of the more

expensive oprations.

In the case of Little CMS, the creation of color transforms or

links involves the creation of a relatively large multi-dimensional

look-up table. Ideally these links should only be created once and

then shared between the rendering threads. To enable link sharing

among threads, Ghostscript uses a thread-safe version of Little

CMS. [9] In addition, Ghostscript uses a cache to store opaque

pointers to links supplied by the CMM. A hash of the source

and destination ICC profiles as well as the rendering conditions

and input/output data organization and bit depth is included in the

hash. Figure 7 shows a graphical illustration of this caching pro-

cess.

In addition to methods of multi-threaded rendering and

caching, performance improvements can be achieved through the

use of SIMD operations or (potentially) GPGPU resources if they

are available. Ghostscript can use SSE4.2 SIMD intrinsics [14] to

achieve parallelism in expensive operations such as transparency

blending as well as tetrahedral interpolation of MLUT data used

in color conversion [15]. SSE4.2 has 128-bit sized registers mak-

ing it possible to operate on four 32-bit floats, eight 16-bit integers

or sixteen bytes in parallel. As such, depending upon the opera-

tion that is being implemented, significant speed-ups are possible.

The SSE tetrahedral interpolation is implemented as a plug-in to

the thread-safe lcms2-MT fork of Little CMS [9, 10].

To demonstrate the speed-up achieved with the use of SSE

operations for tetrahedral interpolation, Figure 8 displays the con-

tents of a PDF page consisting of six images in sRGB color space,

each of size 4608x3456 pixels with a PDF page size of 23.9 x

26.7 cm. The file was rendered to a CMYK color space defined

by the eciCMYK ICC profile (FOGRA53)[16] with a bit depth of

32bits/pixel at 600dpi resolution. This output format amounts to

approximately 142 MB data for this file. To avoid timing over-

head due to file output, the actual output data was written to the

66 Society for Imaging Science and Technology

Figure 8. PDF Images document with six images in sRGB color space.

null device. The exact command line used was

./gs -sDEVICE=bitcmyk
-r600 -o /dev/null
-sOutputICCProfile=eciCMYK.icc
-dGrayValues =256 -f input_file.pdf

The code was run on single thread on an Intel i7-6700HQ at

2.6GHz. Profiling was performed using the Visual Studio 2017

profiler enabling investigation into the total amount of time spent

on tetrahedral interpolations going from the sRGB color space to

the FOGRA53 color space.

In addition to the above tetrahedral interpolation testing, SSE

4.2 implementations were made to the transparency composit-

ing operations given in Equations 1-2. To test the performance

improvements, a file from the Apple AirPrint Conformance Test

Suite that contains transparency content was rendered to a contin-

uous tone CMYK output device (32-bits/pixel) at 600dpi where

again the actual output was sent to the null device to avoid timing

overhead for file transfer time. The command line used was

./gs -sDEVICE=bitcmyk
-r600 -o /dev/null
-dGrayValues =256 -f Airprint.pdf

Figure 9 displays the speed-up achieved using SSE 4.2 for

the tetrahedral interpolation and transparency blending compared

to an efficient C-code implementation. This figure shows the per-

cent speed-up for processing the entire file (in blue) as well as the

speed-up within the function doing the operation as well (in or-

ange). Note that the file speed-ups were similar for the two files

at about 10 percent, but the function speed-ups were much dif-

ferent with the SSE 4.2 transparency blending operation being 73

percent faster than the standard C-code implementation. This dif-

ference in function vs. file speed-up is caused by differences in

the time spent within those functions when rendering those files.

0

10

20

30

40

50

60

70

80

Tetrahedral
Interpolation

Transparency
Blending

Pe
rc

en
t S

pe
ed

 U
p

Percent speed up for file

Percent speed up in operation

Figure 9. Percent speed-up for using SSE 4.2 methods on tetrahedral

interpolation and transparency blending.

For the images file shown in Figure 8, the tetrahedral interpolation

operation consumes almost 50 percent of the total page processing

time, in which case every 1 second speed-up in that operation will

result in a 0.5 second speed-up on the entire file. In the case of the

Apple AirPrint file with transparency, only about 12 percent of the

processing time is spent doing transparency blending. Achieving

a 10 percent speed-up in the file requires a much greater speed-up

in the transparency blending function.

References
[1] PostScript R© Language Reference, Third Edition, Adobe Systems,

Addison-Wesley, Reading Massachusetts (1999)

[2] PCL5 Printer Language Technical Reference Manual Part 1, Hewlett

Packard (1992)

[3] IEC 61966-2-1, Part 2-1: Colour management Default RGB colour

space sRGB, IEC (1999)

[4] ISO 32000-1:2008. Document management – Portable document for-

mat – Part 1: PDF 1.7 (2008)

[5] Interview with L. Peter Deutsch,

http://web.archive.org/web/20041013082602/http://devlinux.org/deutsch-

interview.html (retrieved 2019)

[6] ECMA 388 Open XML Paper Specification. Available at

http://www.ecma-international.org/publications/standards/Ecma-

388.htm (2009)

[7] https://www.argyllcms.com/ (2019)

[8] Source code at https://github.com/mm2/Little-CMS (2019)

[9] M. J. Vrhel, R. Watts and R. Johnston, LittleCMS-MT: A thread-safe

open source color management library, CIC 26, Vancouver BC (2018)

[10] Source code at http://git.ghostscript.com/?p=thirdparty-

LittleCMS2.git;a=shortlog;h=refs/heads/LittleCMS2-art (2019)

6727th Color and Imaging Conference Final Program and Proceedings

[11] M. J. Vrhel, System and method for improving color management

of color spaces in electronic documents, US Patent US8488195B2

(2013)

[12] Source code at http://git.ghostscript.com/ghostpdl.git/. Documenta-

tion at https://www.ghostscript.com/Documentation.html (2019)

[13] T. Porter and T. Duff, Compositing digital images, Computer Graph-

ics, vol. 18., no. 3, July (1984).

[14] https://software.intel.com/sites/landingpage/IntrinsicsGuide/ (2019)

[15] H. R. Kang, Color Technology for Electronic Imaging Devices,

SPIE Press (1997)

[16] European Color Initiative, profile and details available at

http://www.eci.org/en/colourstandards/workingcolorspaces Au-

gust (2017)

Author Biography
Michael Vrhel was awarded his PhD from North Carolina State Uni-

versity in 1993; during his PhD, he was an Eastman Kodak Fellow. He has
many years’ experience working in digital imaging, including biomedical
imaging and signal processing at NIH; color instrument and color soft-
ware design at Color Savvy Systems Ltd, and positions at Conexant Sys-
tems, TAK Imaging and Artifex Software. A senior member of the IEEE, he
has a number of current and pending patents and is the author of numer-
ous papers in the areas of image and signal processing including a book,
The Fundamanentals of Digital Imaging. His current interests include ef-
ficient computational color rendering methods as well as deep learning
applications.

68 Society for Imaging Science and Technology

