
 

The importance of a device specific calibration for smartphone 

colorimetry 

Miranda Nixon 1, Felix Outlaw 1, Lindsay W. MacDonald 2, Terence S. Leung 1 
1Department of Medical Physics and Biomedical Engineering, University College London, UK; 2Department of Civil, 

Environmental & Geomatic Engineering, University College London, UK 

 

Abstract 
In order for a smartphone-based colorimetry system to be 

generalizable, it must be possible to account for results from 

multiple phones. A move from device-specific space to a device 

independent space such as XYZ space allows results to be 

compared, and means that the link between XYZ values and the 

physical parameter of interest needs only be determined once. 

We compare mapping approaches based on calibration data 

provided in image metadata, including the widely used open-

source software dcraw, to a separate calibration carried out 

using a colorcard. The current version of dcraw is found to 

behave suboptimally with smartphones and should be used with 

care for mapping to XYZ. Other metadata approaches perform 

better, however the colorcard approach provides the best results. 

Several phones of the same model are compared and using an xy 

distance metric it is found that a device-specific calibration is 

required to maintain the desired precision.  

Introduction 
There are a wide range of fields within which non-

subjective color measurements are sought. Within medicine, 

applications include screening for conditions such as jaundice [1, 

2], anaemia [3], and anterior blepharitis [4] via images of eye or 

lower eyelid. Also of interest is the quantification of colorimetric 

test results, such as urine tests for pH, glucose and protein [5–7], 

or saliva tests for alcohol concentration [8]. Outside medicine, 

applications are equally wide-ranging and include testing water 

quality [9] and comparing color in marine monitoring [10]. 

Custom devices for measuring color exist, however these 

may not be appropriate for situations which require non-contact 

measurements and are often relatively expensive. Smartphones 

provide an alternative – they are low cost and portable, and better 

than digital cameras in that they have the capability of carrying 

out processing in a self-contained way. Smartphone use is 

becoming ever more prevalent with the global total of 

subscriptions reaching over 8 billion by 2018 [11], and with 

access to the technology not limited even in low resource 

settings. A previous limitation of smartphones was poor image 

quality and limited access to raw images, however nowadays 

image quality has exceeded an adequate standard and with the 

majority of smartphones allowing raw image access.  

A major problem in developing a flexible color 

quantification method is accounting for ambient light. Simple 

options include calibrating the phone before every measurement 

[5], including a colorcard in every image [3], or removing the 

ambient light entirely [2, 8, 9], however these complicate image 

capture and may require the development of custom pieces of kit. 

One solution is to use pairs of flash-no flash images, and perform 

a subtraction to remove the effects of ambient light, leaving 

results as though they were captured only under the illumination 

provided by the phone [12, 13]. This process enables colors 

captured using the same phone to be compared across different 

capture sessions. However, for any colorimetry method to be 

more generally useful, it must be possible to account for data 

from different phones. This concept is the focus of this paper, as 

it is the crucial step necessary for a method to be generalizable, 

and its impact is often overlooked. 

The color values returned by two different phones for 

images of the same object, even under identical illumination, will 

be different. This is because the color filters and sensors of 

phones vary in their spectral sensitivity, meaning that the values 

recorded are different. The way to enable datasets from different 

phones to be compared is to move to a device independent space 

(such as CIEXYZ space), however this step is non-trivial. The 

typical way to do this is to use a linear mapping from the device 

space to the general space – it has been found that the additional 

complication of introducing machine learning does not improve 

accuracy [14] – however there are different ways to generate and 

use these mappings. In the context of colorimetry, the goal is to 

produce values in XYZ space that are precise and reliable such 

that the link between XYZ values and the physical parameter of 

interest need only be developed once. Especially in situations 

where a ground truth value in XYZ space cannot be measured, it 

is easy to overlook how large an impact this mapping can have 

and how imprecise the resulting values can be. It is hard to 

separate noise coming from real-world data and noise coming 

from a poor mapping. Therefore, in this paper we use a controlled 

environment to present and compare two broad categories of 

approaches for moving to XYZ space – ones based around 

information provided in the metadata and one based on imaging 

a colorcard as a one-time calibration step. 

Theory 
When using smartphone images to quantify color, it is 

crucial to use the raw images recorded by the camera. The JPEG 

images we are used to viewing on our phones have undergone 

several stages of processing after the values are recorded, 

including lossy compression and non-linear scaling, to improve 

the aesthetic result and reduce their size for storage [15]. This 

means that the values stored are no longer directly related to 

incident light, and causes huge problems for quantitative 

measurement. Over the last few years, it has become more and 

more common to be able to access raw images from smartphone 

cameras, making more phones viable candidates for quantifying 

color. 

In this paper, we present data captured with an illumination 

provided by the smartphone flash or white screen with no 

ambient illumination. This is to enable the impact of the mapping 

to XYZ space to be considered without any potential error 

introduced by ambient light. As discussed in the Introduction, the 

ambient subtraction method using flash-no flash pairs could be 

used to account for changes in ambient light, meaning that the 

mappings discussed here would be applicable to data resulting 
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from subtraction. Since the data ends up under a standardized 

illumination, the calibration needs only to be performed once, 

dramatically simplifying the future image capture process. The 

smartphone provided illumination was chosen to highlight the 

ease of extending the ambient subtraction method discussed in 

the Introduction to multiple phones, however any fixed 

illumination could equally be considered. 

We now focus on how to move from phone native space, 

where results will vary between phones due to variation in the 

spectral sensitivity and the spectral power distribution of the 

flash/screen, to a device independent space, CIEXYZ. Note that 

we focus on using a matrix mapping to convert RGB to XYZ, 

and do not consider ICC/DNG profiles owing to particular 

model-specific metadata not being present in our smartphone 

metadata and the approaches’ need for additional software and 

equipment, making it hard to integrate with on-phone processing. 

Here we group the options for the move from native to XYZ 

space into two broad categories – metadata approaches, which 

rely only on phone model-specific information stored in the raw 

image metadata, and a colorcard approach, which utilizes images 

of a physical colorcard to develop a mapping. Metamerism owing 

to the Luther condition not being met for the cameras means that 

the aim is to find the closest approximation for the transformation 

to XYZ space from native space [16].  

Metadata approaches - dcraw 
The first metadata approach we will consider is that of the 

widely used open-source software dcraw [17]. The method 

implemented by dcraw utilizes one of two calibration matrices 

stored in the raw metadata – these matrices map from XYZ space 

to phone native space, based typically around illuminant D65 and 

one other standard illuminant. The dcraw implementation uses 

the D65 calibration matrix, and so the following description 

refers to D65 for clarity, however the same approach could be 

used for the other matrix. 

The overall mapping is achieved by applying the following 

matrices to the recorded RGB values [18]: 

[
X

Y

Z

]

D65

= sC-1D
D65

-1 D [
R

G

B

]

scene

                   (1) 

where C is the stored colormatrix moving from XYZ to native 

space; s is a scaling factor determined such that the whitepoint of 

D65 in XYZ [0.9504, 1, 1.0888] is mapped to a native space 

green channel value of 1 upon application of C; and D is a 3x3 

diagonal matrix of white balance multipliers, designed to move 

the recorded values for a white object to [1,1,1]. These 

multipliers can be obtained through knowledge of the RGB 

values for white under the scene illumination (in cases of a fixed 

ambient illumination, the metadata values can be used). DD65 is 

another 3x3 diagonal matrix, this time inverted to move [1,1,1] 

to the white point of D65 in native space. In other words, the 

diagonal entries of    DD65
-1 are simply the white point of D65 in 

native space. These values can be obtained as follows 

[
R(WP)

G(WP)

B(WP)
]  = 

1

s
C [

X(WP)=0.9504

Y(WP)=1          
Z(WP)=1.0888

]

D65

          (2) 

where s and C are applied to the XYZ value of the D65 

whitepoint to move to native space. Throughout this paper we 

use a D50 whitepoint, so the final step is to apply a chromatic 

adaptation transform (CAT) to the data to shift the whitepoint – 

here the Bradford transform was used [18]. 

 

Metadata approaches - ForwardMatrix 
Also stored in the image metadata for dng files are what are 

called ‘Forward matrices’. According to the Adobe dng 

specification this approach behaves better for more extreme 

values so has been considered here as an alternative to the dcraw 

approach [19]. These forward matrices convert directly from 

phone native space to XYZ D50 

[
X

Y

Z

]

D50

= MFMD [
R

G

B

]

scene

             (3) 

where MFM is the forward matrix and D is the white balance 

matrix as before [19]. The metadata includes two forward 

matrices, taken at high and low color temperatures. If the color 

temperature of the illumination is known, then an interpolation 

may be carried out to determine the optimal combination of the 

two forward matrices. For our case, where the details of the 

illumination are unknown a simple mean of the two matrices was 

used. 

All metadata methods have the limitation that the transforms 

were optimized for illuminations other than our scene 

illumination and that the transform is only provided on a per-

model basis rather than a per-device basis, which we will see is 

crucial. 

Colorcard approach 
An alternative approach to using the metadata conversions 

is to generate a mapping based on a set of known pairs of RGB 

and XYZ values. Obtaining these sets of values could be 

achieved in two ways. Option 1: the device could be fully 

characterised by measuring the spectral power distribution of the 

flash/screen and the spectral sensitivity of the camera. The 

reflectances of the surfaces desired for the calibration could be 

measured, and the RGB values could then be simulated along 

with producing the XYZ values. This is undesirable for 

smartphone calibration as it relies on the user having access to 

the specialist equipment required to carry out the phone 

characterization, or introduces error if the characterization is 

carried out in a more approximate way. Option 2: a physical 

colorcard could be imaged using the device and illumination of 

interest to obtain RGB values, and XYZ values measured or the 

standard provided values used. This option enables the user to 

calibrate the phone without additional equipment, so we have 

focused on this method. To generate a standard mapping, the 

Macbeth ColorChecker Classic card was used, as it is widely 

available and covers a range of colors yet is small enough to 

enable a calibration from a single image capture.  

Since the illumination provided by a smartphone 

flash/screen is highly non-uniform, it is necessary to carry out an 

intensity non-uniformity correction (INUC). This is achieved by 

capturing a second image of a grey card, with as little movement 

between captures as possible. A pixel-wise scaling of the 

colorcard pixel values using the green channel of the grey card 

image accounts for variations in intensity as follows 

RGBcorr= 
RGBc-RGBc,dark

Gw - Gw,dark

           (4) 

where the c subscript refers to pixels in the colorcard image, w 

refers to the grey card image, and dark refers to images of 

colorcard and grey card with no illumination. Note that linear, 

not gamma-encoded, RGB values extracted from the raw image 

data should be used. 

There are many different options for generating the matrix 

mapping between RGB and XYZ values. The most common 

approaches in the literature are linear and polynomial mappings. 
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We require that the mapping be exposure time independent, to 

allow images to be taken at different illumination intensity levels 

without affecting the resulting chromaticities, which rules out 

polynomial mappings. One option would be a root polynomial 

mapping [20], however for the number of patches considered 

here this would likely lead to overfitting. Hence the simplest 

option, the linear mapping, is selected and calculated  

M= (RTR)
-1

RTH             (5) 

where R and H are Nx3 matrices of RGB and XYZ values 

respectively, and N is the number of patches [18]. Irradiance 

independent mappings, which do not depend on the relative 

intensities of the patches, were considered as an alternative to a 

linear INUC [20,21], however a significant reduction in accuracy 

was found and so the original linear INUC approach was used. 

Methods 
For this study two different models of phone were 

considered – the Samsung S8 and the LG Nexus 5X, referred to 

throughout the paper as simply S8 and Nexus. For image capture, 

the S8 rear camera was used with illumination provided by the 

LED flash, whereas the front-facing camera of the Nexus was 

used with a white screen as the illumination. In all cases, images 

were captured with no ambient illumination. The two phones 

yielded images of dimensions 3024x4032 and 1944x2592 

respectively. Depending on the application, it may be more 

useful to use either the front or rear-facing camera, hence we 

considered an example of both. To investigate the variability of 

these phones within a specific model, two devices of each model 

were used. The linearity of the response of each phone to incident 

light was verified before use. 

148 patches from the Macbeth ColorChecker DC card were 

used for testing the mapping approaches (excluding the repeating 

neutrals from the boundary of the chart, the reflective patches and 

those out of the gamut of the Classic card). The patch reflectances 

were measured using the x-rite ColorMunki spectrophotometer 

and the resulting ground truth xy values are shown in Figure 1 as 

yellow crosses. The card was imaged in sections with each phone 

to enable a reasonable illumination and regions of interest 

selected. All mapping approaches considered are exposure time 

independent so it did not matter that the intensity of light varied 

across the images. At the scale of a single patch, the intensity was 

uniform hence the resulting xy chromaticities were unaffected by 

the variation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The ground truth xy values for the Macbeth DC card used for 

testing (yellow crosses) are shown along with the ground truth xy values for 

the Macbeth Colorchecker Classic card used for the colorcard approach 

(purple stars). 

For the first metadata approach, dcraw (Dave Coffin version 

9.27, 2016) was used to process the images to 16-bit linear tiff 

images in XYZ space, using pre-measured white balance 

multipliers. Additionally, the process used by dcraw was 

implemented in MATLAB (MathWorks r2018a) to verify details 

of the method. The ForwardMatrix metadata approach was also 

implemented in MATLAB. The patch xy values could then be 

extracted directly from the processed images. 

For the colorcard approach, the Macbeth ColorChecker 

Classic 24 patch card was used. The patch reflectances were 

again measured using the x-rite ColorMunki spectrophotometer, 

and the xy values are shown in Figure 1 as purple stars. Images 

of the card were captured for each phone using the phone 

illumination with no ambient light. Here the relative patch values 

are crucial so in order to account for the varying illumination 

intensity provided by the phone, an intensity non-uniformity 

correction (INUC) was carried out as described in the Theory 

section. Once the INUC had been performed, it was then possible 

to construct the RGB to XYZ mapping using the extracted RGB 

values and measured XYZ values. This mapping was applied to 

native RGB values extracted from the test images to obtain xy 

values.  

Performance Metric 
It should be noted that the method presented here provides 

only xy information, not full XYZ values. For many colorimetry 

applications, precise xy values are all that is required and the 

increased flexibility of not having to include anything additional 

in test images outweighs the negative of losing the third 

dimension. The method could be extended to produce full XYZ 

values through the inclusion of a white standard in each image to 

normalize for lightness, but this was deemed unnecessary here. 

The lack of full XYZ values means that the typical ΔE error 

metric in L*a*b* space cannot be used. This space is specifically 

designed to be more perceptually uniform and the benchmark ΔE 

values are in reference to human vision. An alternative approach 

would be to consider not xy chromaticity values but u′v′ values 

which are a simple transform away from xy values, from the CIE 

1976 uniform chromaticity scale diagram which is designed to be 

more perceptually uniform [23]. The u′v′ distance between 

predicted and ground truth values could then be used as a 

performance measure. We selected XYZ space as it is a standard 

device independent color space, not because of its relation to 

human vision. The aim of this research is not to mechanize 

human color judgements but rather to obtain repeatable digital 

color descriptors that can then be linked to the relevant physical 

biomarker scale. In alignment with previous literature in this 

area, xy chromaticity space was used [5, 6] and the xy distance 

between mapped and ground truth patch values was therefore 

used to quantify performance of the different methods 

xy distance= √(xM-xGT)2+(y
M

-y
GT

)
2
         (6) 

where subscript M and GT refer to mapped and ground truth 

chromaticity values respectively. The overall goal is for the 

results from different phones to match each other and so if they 

are found to match the ground truth then this goal is achieved.  

Results and Discussion 
The first method considered was the metadata approach 

using dcraw. Figure 2 shows the resulting xy values scattered 

with the ground truth values for one Nexus and one S8. Upon 

visual inspection of the overall distribution, the match between 
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measured and ground truth xy values seemed worse than 

expected, especially given how widely used and trusted dcraw is.  

Upon implementing the dcraw method in MATLAB it was 

discovered that in line with a mention in the literature [18], dcraw 

makes the assumption that the colormatrix for D65 illumination 

is always stored as the second colormatrix in the metadata. 

Whilst this may well be the case for digital cameras, by 

considering the CalibrationIlluminant1 and 2 metadata tags, it 

was found that for these smartphone models the D65 calibration 

matrix is in fact the other matrix. Figure 3 provides a visual 

description of how the choice of colormatrix differs between 

dcraw and when knowledge of the calibration illuminant is 

included. It is little surprise that dcraw produces poor results as 

the implementation is incorrect here. Use of dcraw to XYZ space 

with smartphones should therefore be used with care.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Ground truth xy values for the DC card (yellow crosses) along with 

the values produced by dcraw processing of images from a Nexus (blue 

circles) and an S8 (red circles). 

  

  

  

  

  

  

  

  

  

  

  

  

Figure 3. Visual description of the choice of calibration matrices from the 

metadata for dcraw, CM (correct colormatrix) and FM (forward matrix) 

methods. Note that dcraw does not use the calibration illuminant tags to 

select the colormatrix but uses a default. 

Figure 4 shows the accuracy of the four approaches for a 

Nexus and an S8 – similar trends were obtained for the phones of 

a given model across the different approaches, so the results for 

an example phone of each model are shown here. To calculate 

the data shown in Figure 4, the following steps were followed for 

each phone and mapping: 

 - Find the distance of each mapped patch to the ground truth 

 - For a given radial threshold xy distance (0 – 0.1) 

- Find the number of mapped patches which fall within 

this radial value of their respective ground truth 

This data then presents the likely accuracy of the mapping 

method for a given desired xy distance uncertainty. Note that the 

trends seen in Figure 4 were identical when using u′v′ distances. 

From an inspection of Figure 4, it is clear that for very high 

xy distance thresholds, or in other words for discriminating 

between very different colors, it does not matter which mapping 

is chosen as all give good results. As the xy distance decreases 

the dcraw results drop off particularly quickly. For both phones, 

as expected, the use of the correct colormatrix greatly improves 

the dcraw-style metadata approach. For the Nexus phones, the 

ForwardMatrix approach behaves similarly to the ColorMatrix 

approach, whereas there is a significant improvement for the S8 

when using the ForwardMatrix. Since the overall goal is to find 

a calibration method which enables different phones to be used 

together, the ForwardMatrix method is clearly not a reliable 

option since it produces such poor results for the Nexus phone. 

The colorcard approach outperforms the metadata 

approaches at almost all levels, particularly for low threshold xy 

distances. Therefore, in order to achieve xy values of a usefully 

precise level, it is necessary to carry out a calibration stage using 

images of a colorcard.  
(a) 

(b) 

Figure 4. The percentage of patches falling within different xy distances are 

shown in (a) and (b) for a Nexus and an S8 phone respectively. The results 

are shown for four different mapping options: dcraw (pink), dcraw-style 

using the correct colormatrix (blue), ForwardMatrix (purple), colorcard 

(green). For low target xy distances, the colorcard approach provides the 

best results for both phone models. 
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At this stage, it would be tempting to assume that the 

colorcard mapping developed for a phone of a given model 

would be applicable to another phone of the same make and 

model. It is known that variations in digital cameras prohibit this 

[15, 21], however results for smartphones have not been 

presented. Unfortunately, the combination of subtle variations in 

the filters and sensors combined with variations in the spectral 

power distributions of the LEDs or screens of typical 

smartphones is too great to allow a model-level calibration. 

Figure 5 shows a demonstration of the impact using the wrong 

mapping can have, where the mapping developed using one 

Nexus phone is applied to the other Nexus. A similar reduction 

in accuracy was observed for all phones, hence just the Nexus 

has been included as an example.  

 

 

Figure 5. The percentage of patches falling within different xy distances is 

shown for a Nexus phone (similar results for S8 phones), contrasting the 

precision between a device-level calibration and a model-level calibration. 

The ForwardMatrix metadata method is shown in purple, and the colorcard 

approach mapping developed using the same device is shown in green. The 

result of using a colorcard mapping developed using a different Nexus 

phone is shown in orange. The significant loss in accuracy especially for 

small xy distances highlights the need for a device specific calibration to 

maintain accuracy.  

When a model-level mapping is applied, the loss of 

accuracy incurred for low xy distances is so great that the 

colorcard approach is reduced in quality to the metadata 

approaches. For example, at an xy threshold of 0.01 the 

percentage falls from 61% to just 23%. To achieve the desired 

higher level accuracies, it is therefore vital that phones are 

calibrated on a per-device basis. Whilst this may sound 

unrealistic for making a colorimetric method more widely 

available, the calibration needs only to be carried out once per 

device. Since this mapping is intended to be used in combination 

with an ambient subtraction approach, the illumination is 

standardized to the phone illumination after subtraction despite 

varying ambient light. And when the per-device colorcard 

approach is used, data from different phones become 

combinable.  

 

 

 

 

Conclusions 
In this paper, we have showcased the ability of smartphones 

to provide compatible chromaticity measurements between 

phones of different makes when calibrated correctly, using a 

simple one-time calibration and ambient subtraction. We have 

highlighted the requirement that the development of a mapping 

from images of a colorcard is carried out on a per-device basis in 

order to achieve the best accuracy. The negative impact of using 

a per-model level calibration is such that if phones are not going 

to be individually calibrated then it is no longer worth using the 

colorcard method and instead a metadata approach should be 

used, with the exception of using dcraw which is unreliable for 

conversion to XYZ with smartphones. In fact, it should be noted 

that the unreliability of dcraw for conversion to XYZ is a more 

general issue for smartphones, relevant regardless of the 

approach for dealing with ambient light. If the full XYZ values 

are required, then it is possible to extend the method presented 

here through the inclusion of a white standard in each image 

allowing the lightness information to be recovered. However, 

when xy values are all that is required the colorcard calibration 

method presented here allows data from different phones to be 

combined. This means that the more complicated task of finding 

a link between xy values and the physical scale of interest need 

only be carried out once.  
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