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Abstract. In this study, we propose a method to detect wetness on
the surface of human skin and skin phantoms using an RGB camera.
Recent research on affect analysis has addressed the non-contact
multi-modal analysis of affect aimed at such applications as
automated questionnaires. New modalities are needed to develop a
more accurate system for analyzing affects than the current system.
Thus we focus on emotional sweating, which is among the most
reliable modalities in contact methods for affect analysis. However,
sweat detection on the human skin has not been achieved by other
researchers, and thus it is unclear whether their feature values are
useful. The proposed method is based on feature values of color
and glossiness obtained from images. In tests of this method, the
error rate was approximately 6.5% on a skin phantom and at least
approximately 12.7% on human skin. This research will help to
develop non-contact affect analysis. c© 2019 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2019.63.4.040406]

1. INTRODUCTION
Many recent studies have examined non-contact methods
for affect analysis [1–5]. Such methods can be useful, for
instance, for automating and improving questionnaires while
subjects watch a video, by using physiological signals [3–5].
This is because respondents of questionnaires do not always
answer honestly. The conventionally used contact method
to analyze affect may prevent people from concentrating on
the relevant stimuli because of discomfort due to devices
attached to them. Thus, questionnaires that are automated
using non-contact analysis for affect can be useful in such
situations.

The system of non-contact affect analysis is based on
analyses of facial expression, voice, and pulse waves using a
microphone or a video. It thus may not be suitable for people
who are mute, ‘‘poker-faced,’’ or have fewer cardiac outputs
than the average. To improve the system to be applicable for
a wider class of people, new modalities of non-contact affect
analysis are needed.

Therefore, we focus on emotional sweating, which is
among the most reliable modalities in contact-based affect
analysis. For example, sweat appears on your palms when
you feel nervous or anxious even though it is not hot.
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This is emotional sweating, and is conventionally evaluated
using skin conductance and skin potential. These indices
are obtained by measuring the electric state of the skin
through electrodes attached to it. These electric methods
are not suitable for non-contact analysis of affect. On the
contrary, Uchida et al. analyzed the difference between
dry and wet palms based on color features [6]. However,
their database did not consider wetted palms due to sweat,
and could not detect wetness on the surface of the palm.
Therefore, it remains unknown whether the features they
proposed are useful for detecting wetness, especially due to
sweating.Moreover, the skewness of theY component, which
is related to glossiness [7], showed no significant trend. Thus,
glossiness could not be used as a feature. They also assumed
a change in internal reflection. However, images that they
processed contained internal reflection as well as surface
reflection, which can appear as noise in the analysis.

In this study, we use both color and glossiness as features
to detect wetness on the skin, including through sweat. The
remainder of this paper is structured as follows and an
overview is provided in Figure 1: We construct databases of
images of skin phantoms and human skin as described in
Section 2. Some image processing methods were applied to
captured images in the databases, and this is described in
Section 3. In Section 4, we describe the training of classifiers
to estimate whether skin in a given image is wet based on
the feature values using a support vector machine (SVM). In
Section 5, we detail our results and discuss them. Finally, we
summarize this study and offer directions for future work in
Section 6. All codes in this study were written in MATLAB.

2. DATABASE CONSTRUCTION
In this section, we describe the procedure to construct
our databases. We constructed them using images of skin
phantoms (Beaulax) and human skin.

2.1 Database of Skin Phantoms
We used five skin phantoms made by Beaulax with different
anisotropic textures copied on the cheeks of Japanese
females. All skin phantoms were identical in color, like
the color of the skin of Mongoloids. An example of the
skin phantoms is shown in Figure 2, and Figure 3 shows
our experimental setup to construct the database of skin
phantoms. Their geometry was empirically determined as
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Figure 1. The procedure of our study.

Figure 2. An image of skin phantom.

the image contained many highlights. We captured images
of the skin phantoms with a polarizing camera (Lucid,
PHX050S-Q, whose sensor is Sony IMX250 MYR) under
artificial solar light (Seric, XC-100AF) in a dim room. We
used the polarizing camera because that is compact and
not expensive, and because that helps to simultaneously
remove surface reflection, which is the cause of gloss [8].
We developed software for capturing and imaging using
SDK provided by Lucid. One [px] in the captured image
corresponded to approximately 0.2 [mm] of physical space.
A polarizing plate was attached in front of the artificial
solar light. Images of different polarizing angles could be
simultaneously obtained, and we used 0◦ images as ones
containing gloss and 90◦ images as images without gloss. The
direction of polarizing plate was empirically decided so that
90◦ images do not contain gloss. We assumed that spectral
response is the same for each polarizing bands because
the difference between each bands is based on only the
direction of polarizer not any spectral factors. Shutter speed
was 1.0 [s], and was set to reduce color changes by the pulse
wave when capturing images of the human skin. We noted
that the texture of the skin phantom changed after slight
rotation because of its anisotropy. We thus captured images
of skin phantoms by rotating them to increase the number
of samples. We then trimmed the images and obtained 128×
128 [px] images, such as the red frame in Figure 2.We labeled
phantomswhose surface was wipedwith a dry tissue as ‘‘dry,’’
and labeled phantoms whose surface was wiped with a wet
tissue as ‘‘wet.’’ We obtained 200 data items in total, 100
images each labeled ‘‘dry’’ and ‘‘wet.’’

Figure 3. Our experimental setting for skin phantoms.

2.2 Database of Human Skin
We now explain the construction of the database of images
of human skin. The subjects were four Japanese males and
a Japanese female of ages ranging from 22 to 25 years.
We captured images of their left palms. Figure 4 shows
our experimental setup to construct the database of human
skin. The experimental settings were nearly identical to
those described in Section 2.2 except that the subject’s
hand was placed on a table to prevent movement. We
gave the subjects five stimuli as follows: ‘‘relaxing,’’ ‘‘mental
calculation,’’ ‘‘softly gripping a computer mouse for 10
minutes,’’ ‘‘imagining nervous experiences,’’ and ‘‘wetting the
surface of the palm by tissue.’’ ‘‘Mental calculation,’’ and
‘‘imagining nervous experiences’’ are emotional stimuli, and
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Figure 4. Our experimental setting for constructing a database of images
of human skin.

we expected that the subjects’ palms would become wet
during these tasks due to the activation of the sympathetic
nerves. ‘‘Softly gripping a computer mouse for 10 minutes’’
caused sweat to appear on the palm. ‘‘Relaxing,’’ ‘‘’mental
calculation,’’ and ‘‘imagining nervous experiences’’ lasted for
2 [min], and we captured images of the palm at 30 [s], 60
[s], and 90 [s]. We did not use images captured at 120 [s]
because the affect might not have lasted this long and the
shutter speed was high to keep the palm wet. We also labeled
samples based on the sense of touch using one evaluator. We
then trimmed images and obtained 128×128 [px] images,
such as the red frame in Figure 5.We labeled the skin assessed
to be dry by the evaluator as ‘‘dry’’ and that determined to be
wet as ‘‘wet.’’ We obtained 55 data items in total: 33 images of
dry palms and 22 images of wet ones.

3. FEATURE EXTRACTION
In this section, we describe the proposed method to obtain
feature values. We explain the change caused by wetness.
First, light re-enters the skin by total reflection at the
water–air interface if the surface of the skin is covered
with water. As a result, more light is absorbed by the
chromophore in the skin so that luminance decreases and
saturation increases [9]. Second, the rough surface of the
skin becomes smooth because it is covered with water.
Therefore, sharp highlights appear rather than dull ones to
increase glossiness as shown in Figure 6. (a) shows dry skin
and (b) shows wet skin. We apply two methods to obtain
values to represent these features. We first explain the color
statistics [10] and then describe feature values based on
band-sifting decomposition [11].

3.1 Color Statistics
In this section, we describe the method to obtain feature
values related to color from images with gloss and images
without gloss, respectively. RGB values are first converted
into CIEXYZ coordinates [12] under D55 light source using
MATLAB. We then obtain two feature values, the mean and
skewness of the Y component, known as the luminance
component. The mean is related to a decrease in luminance
and the skewness to that in glossiness [7]. Then, u′v ′
coordinates are calculated from the XYZ coordinates: [13]

(
u′

v ′

)
=


4X

X + 15Y + 3Z
9Y

X + 15Y + 3Z

 , (1)

where
(
u′, v ′

)
are the u′v ′ coordinates, and X , Y , and

Z are the CIEXYZ coordinates. Following this, we obtain
saturation and hue by the following formula:

S= 13
√
(u′− u′n)2− (v ′− v ′n)2 (2)

H = tan−1
(
v ′− v ′n
u′− u′n

)
, (3)

where S is saturation, H is hue, (u′, v ′) are the u′v ′ coordi-
nates of the object, and

(
u′n, v ′n

)
are theuv ′ coordinates of the

white point. We obtain two features: mean saturation related
to an increase in saturation, and the entropy of hue. These
four features are related to the human perception of wetness.
Finally, we obtained the feature values as follows: The mean
of the Y component was obtained from images with gloss,
the skewness of the Y component was obtained from images
with gloss, the mean of saturation was obtained from images
with gloss, the entropy of hue was obtained from images
with gloss, the mean of the Y component was obtained from
images without gloss, the skewness of the Y component was
obtained from images without gloss, the mean of saturation
was obtained from images without gloss, and the entropy of
hue was obtained from images without gloss. Fig. 7 shows the
example of each color components before obtaining feature
values. Figure 7(a) shows the original image, (b) shows the
Y component image, (c) shows the saturation image, and (d)
shows the hue component image.We obtained some statistics
from these components.

3.2 Feature Values based on Band-sifting Decomposition
In this section, we describe the method to obtain feature
values related to glossiness based on band-sifting decompo-
sition [11], which uses the appearance of a given material,
such as highlights.

We first extracted the L* component of CIELAB color
space from the original RGB image with gloss [14]. The
L* image was then decomposed in terms of frequency.
This is achieved with pyramid structure such like Laplacian
pyramid. The overview is shown in Figure 8. The bottom
image is the original L* image. The second image from the
bottom is obtained by smoothing the original image. The
third image from the bottom is obtained by smoothing the
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Figure 5. Example of the image of human skin.

Figure 6. The difference in surface reflection between dry skin and wet skin: (a) dry skin, (b) wet skin.

(d)(c)(b)(a)

Figure 7. Examples of color component: (a) the original image, (b) the Y component image, (c) saturation components, and (d) hue components. The bar
beside images represents the value of the components.

second image from the bottom. After that, we calculated
the difference between nth image from the bottom and
n+1th image from the bottom to decompose L* component
by frequency. We apply a guided filter [15], which can
preserve edges although it is a smoothing filter. Then, the
L* image was decomposed into high-frequency components
(described as H) and low-frequency components (described
as L). The components were then decomposed in terms of
amplitude, where a decomposed value higher than 1.2 σ was

considered a high-amplitude component (described as H)
and that lower than 0.8σ was considered a low-amplitude
component (described as L).σ represents standard deviation.
The interval between 0.8σ and 1.2σ was linearly connected
to modulate the appearance naturally, as in a previous
study [11]. The values were also decomposed in terms of sign,
such as positive (described as P) and negative components
(described as N).
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Figure 8. Overview of the decomposition in terms of frequency.

We obtained feature values as the mean of each
representative operator. The operator is a finely decomposed
component, for example, high frequency, high amplitude,
and positive. We selected the following nine operators
mentioned in a previous study: [11]. (frequency, amplitude,
sign) = (H, H, P), (H, H, N), (H, H, A), (H, L, P), (H, L,
N), (H, L, A), (L, A, P), (L, A, N), (L, A, A). ‘‘A’’ means
‘‘all components.’’ Figure 9 shows the examples of images
before obtaining feature values. Fig. 9(a) shows the original
image. Fig. 9(b) shows the (H, H, P) component image,
and Fig. 9(c) shows the (H, H, N) component image. The
bar beside images shows the value of the component. Pixels
corresponding highlights in Fig. 9(a) are emphasized in
Fig. 9(b), pixels corresponding skin grooves in Figure 8(a) are
emphasized in Fig. 8(c). Thus, the band-shifting components
are related to appearance. We obtained feature values as the
mean of each components.

3.3 Results of Feature Values
In this section, we show the results of feature values expected
to have significant differences between dry andwet skins.We
normalized the scale of feature values into [0, 1] to display
and tested themusing the student’s t-test. The null hypothesis
was that the mean of each group was the same.

Figure 10 shows the feature values of the skin phantoms.
(a) shows the result of ‘‘mean of Y component’’ obtained
from images without gloss, (b) shows the result of ‘‘skewness
of Y component’’ obtained from images with gloss, (c) shows
those of ‘‘mean of saturation’’ obtained from images without
gloss, (d) shows the result of ‘‘entropy of hue’’ obtained
from images with gloss, (e) shows those of ‘‘mean of HHP
operator,’’ and (f) shows those of ‘‘mean of LAP operator.’’
The vertical axis of each graph shows the normalized value
of each feature and the horizontal axis its label, such as ‘‘dry’’
and ‘‘wet.’’

In Fig. 10(a), the mean of the wet group is slightly
larger but there is no significant difference (p = 0.0772).
We expected the mean of the wet group to have been
significantly smaller than that of the dry group because of
the change in the path of light caused by wetness. However,
there was no significant visual difference possibly because
of the differences between skin phantoms. In Fig. 10(b), the
mean of the wet group is significantly larger than that of
the dry group (p= 7.60× 10−18). This result is as expected
because the skewness of the Y component is related to
glossiness, and wetness increases glossiness on the surface.

In Fig. 10(c), the mean of the wet group is significantly larger
(p= 2.62× 10−10). This result is as expected because of the
change in the path of light caused by wetness. In Fig. 10(d),
the mean of the wet group is slightly larger but there is no
significant difference (p= 0.824). We expected the mean of
the wet group to have been significantly larger than that of
the dry group as Sawayama et al. have shown [10]. However,
this is the same result as obtained by Uchida et al. [6].
This may be related to the fact that the skin showed no
significant color change. In Fig. 9(e), the mean of the wet
group is significantly larger than that of the dry group
(p = 4.78×10−3). This is the expected result because the
HHP operator is related to sharp highlights [11], andwetness
increases sharp highlights on the surface. In Fig. 10(f), the
mean of the wet group is significantly larger than that of
the dry group (p= 1.15× 10−4). However, we expected that
the mean of the wet group would be significantly smaller
than that of the dry group because the LAP operator is
related to dull highlights [11], and wetness reduces them
on the surface. This may be because the threshold of the
band-sifting decompositionwas not optimized to the settings
of our experiment. As a result, we obtained both color and
glossy features.

Figure 11 shows the feature values of images of the
human skin. (a) shows the result of the ‘‘mean of Y
component’’ obtained from images without gloss, (b) shows
that of the ‘‘skewness of Y component’’ obtained from
images with gloss, (c) shows that of the ‘‘mean of saturation’’
obtained from images without gloss, (d) shows the result of
‘‘entropy of hue’’ obtained from images with gloss, and (e)
shows the result of ‘‘mean ofHHPoperator.’’ The vertical axis
of each graph shows the normalized value of each feature and
the horizontal axis shows the label, ‘‘dry’’ or ‘‘wet.’’

In Fig. 11(a), the mean of the wet group is slightly
larger but there is no significant difference (p = 0.853).
We expected the mean of the wet group to be significantly
smaller than that of the dry group because of the change
in the path of light caused by wetness. In Fig. 11(b), the
mean of the wet group is slightly smaller but there is no
significant difference. (p= 0.620). However, we expected it
to be significantly larger than that of dry group because the
skewness of the Y component is related to glossiness, and
wetness increases glossiness on the surface. In Fig. 11(c),
the mean of the wet group is slightly larger but there is
no significant difference (p = 0.502). We expected it to be
significantly large than that of the dry group. In Fig. 11(d),
the mean of the wet group is slightly smaller but there
is no significant difference (p = 0.313). We expected it
to be significantly larger than that of the dry group as a
previous study has shown [9]. In Fig. 11(e), the mean of
the wet group is slightly smaller but higher than that of
the dry group (p = 0.634). However, we expected it to be
significantly larger because the HHP operator is related to
sharp highlights [10], and wetness increases sharp highlights
on the surface. In Fig. 11(f), the mean of the wet group is
significantly larger than that of the dry group (p = 0.913),
but we expected it to be significantly smaller because the
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(c)(b)(a)

Figure 9. Example of components: (a) the original image, (b) (H ,H , P ) components, and (c) (H ,H ,N ) components. The bar beside images represents
the value of the components.

(a) (b) (c)

(d) (e) (f)

Figure 10. The differences between dry and wet skin phantoms on feature values expected to have significant differences. (a) Mean of Y component in
images without gloss of skin phantoms. (b) Skewness of Y component in images with gloss of skin phantoms. (c) Mean of saturation in images with gloss
of skin phantoms. (d) Entropy of hue in images with gloss of skin phantoms. (e) Mean of HHP operator of skin phantoms. (f) Mean of LAP operator of skin
phantoms.

LAP operator is related to dull highlights [10], and wetness
decreases them on the surface. There was no significant
difference possibly because differences between individuals
were larger than that between dry andwet samples. However,
this is a trivial problem for learning-based classifiers because
we used a non-linear method.

4. TRAINING A CLASSIFIER AS SUPPORT VECTOR
MACHINE

To detect wetness on skin, we trained and compared three
classifiers: (A) a classifier based on only the color statistics
described in Section 3.1, (B) a classifier based on feature

values described in Section 3.2, and (C) a classifier based on
all feature values described in Section 3. In this section, we
describe the method to construct these classifiers.

In this study, there was a correlation between feature
values as shown in Figure 12. (a) shows the correlation in the
case of skin phantoms and (b) shows it in the case of human
skin.However, if feature values are correlated, the response of
the classifier may not be stable because of multicollinearity.
Therefore, we applied principal component analysis (PCA)
to the feature values to avoid multicollinearity. PCA can be
used to obtain vectors orthogonal to one another [16].

The first principal component vector is defined as
a vector representing the direction in which variance is
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(a) (b) (c)

(d) (e) (f)

Figure 11. The effect of differences between dry and wet human skin on the feature values expected to have significant difference. (a) Mean of Y
component in images without gloss of human skin. (b) Skewness of Y component in images with gloss of human skin. (c) Mean of saturation in images
with gloss of human skin. (d) Entropy of hue in images with gloss of human skin. (e) Mean of HHP operator of human skin. (f) Mean of LAP operator of
human skin.

(a) (b)

Figure 12. The absolute value of correlation between feature values:
(a) correlation in the case of skin phantoms, (b) correlation in the case of
human skin. The colors correspond to the absolute value of the correlation.

the maximum in the data space. The second principal
component is defined as a vector orthogonal to the first
principal component, and representing the direction in
which the variance is the second maximum in the data
space. The lth principal component is defined as a vector
orthogonal to the first ∼ l-1th principal components, and
representing the direction in which the variance is the lth
maximum in the data space. This analysis is achievedwith the
eigenvalue decomposition of the variance–covariancematrix

of the feature values through the following formula:

zl =
n∑

i=1

wilxi, where (V − λI )wl = 0, l = 1, . . . , L,

(4)
where zl is the lth principal component, wl =
(w1l , . . . ,wnl)

T is the weight of lth principal component,
x represents coordinates in the data space, V is the
variance–covariance matrix, and λ is the eigenvalue. n is
the number of dimensions of the data space and L is the total
number of principal components.

We then obtained the principal component scores,
which are shown in Figure 13, with coordinates in the space
represented by the principal components. These scores were
normalized to the same scale.

Following this, we trained the non-linear classifiers to
detect wetness on the skin. We used an SVM [17, 18] to
obtain the classifiers. An overview is shown in Figure 14.
The normalized principal component scores were mapped to
high-dimensional space by a radial-basis function kernel:

k
(
x, x ′

)
= exp

(
−
∥∥x − x ′

∥∥2
)
, (5)

where x and x ′ are factors of the dataset. We calculated a
classifier that can linearly separate data in high-dimensional
space to maximize the margin of the error. This is described
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Figure 13. Overview of principal component analysis and principal
component scores.

Figure 14. Overview of support vector machine.

as follows:

min
wsvm,γ,ξ

[
1
2
‖wsvm‖

2
+C

n∑
i=1

ξi

]
subject to (wT

svmxi+ γ )

≥ 1− ξi, ξi ≥ 0,∀i= 1, . . . , n, (6)

where wsvm is the weight for the SVM, C is a parameter to
control the acceptance of the error, ξ is the error, and γ is the
bias.

5. RESULT ANDDISCUSSION
We evaluated accuracy of the classifiers by the leave-one-out
error rate. It is a cross-validation method where the classifier
is trained with all samples except one sample as rotating the
left one.We then statistically tested the difference in accuracy
with the McNemar test [19]. This test focuses on labeling the
data; the labels are predicted correctly by one classifier but
not by another. The statistical value is described as follows:

t∗ =min (n12, n21) , (7)

where n12 is the number of samples whose labels were
correctly predicted by model A but not by model B and
n21 is the number of samples whose labels were correctly

(a) (b)

Figure 15. The results of error rates of the classifiers: (a) the case of skin
phantoms, (b) the case of human skin.

predicted by model B but not by model A. The critical region
is represented as follows:

n12+n21Ct∗0.5n12+n21 +

t∗−1∑
t=0

n12+n21−1 Ct0.5n12+n21−1 <
a
2
,

(8)
where a is the level of significance empirically determined to
be a = 0.05. The null hypothesis was that ‘‘the accuracy of
both classifiers is the same.’’

The comparative result is shown in Figure 15. (a) shows
results of skin phantoms and (b) shows those for the human
skin. ∗ means p < 0.025, and ∗∗ means p < 0.005 because
we applied Bonferroni correction. In Fig. 15(a), the error in
(B) is significantly higher than that in the others. The p-value
between (A) and (B) was 6.81×10−10, and between (C) and
(B) was 7.64×10−11. In Fig. 15(b), there is no significant
difference and the p-value was 3.85× 10−2 between (C) and
(A). The error rate of (C) was the largest and that of (A) was
the smallest of the three.

We expected (C) to deliver the highest accuracy because
it contained more feature values than the other classifiers.
However, the accuracy of (A) tended to be the highest.
This suggests that feature values related to glossiness were
noisy because glossiness is very sensitive to the experimental
geometry, whereas the color change is robust against it.
Moreover, this might have obtained because the surface was
not wet enough to recognize the difference in gloss.

Trends in the case of skin phantoms and human skin
were different. Error rates in the case of human skin
were higher than those in the case of skin phantoms,
possibly because of inter- and intra-class differences, such
as difference in the phase of pulse wave, difference in skin
color, and difference in shape. Moreover, we trained the
classifiers on a small dataset so that they could not learn
to classify beyond inter- and intra-class differences. This
problem can be solved by normalizing the differences, such
as by introducing a baseline or by training the classifiers on a
large dataset.
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6. CONCLUSION AND FUTUREWORK
In this study, we proposed a method to detect wetness
on the skin using an RGB camera. We first constructed
databases of skin phantoms and human skin. We obtained
feature values, eight color statistics, and nine means of the
operator using band-sifting decomposition. Following this,
we removed the correlation among the feature values using
PCA. We then trained support vector classifiers based on
normalized principal component scores to detect wetness
on the skin. Finally, we compared the accuracy of classifiers
based on only color statistics, on feature values based on
band-shifting decomposition, and a classifier based on all
feature values. As a result, we found that color statistics are
useful for constructing a classifier that can detect wetness on
the skin.

It is necessary to improve the system to apply it. It
needs to be rendered robust against the amount of sweat,
the geometry to capture, and skin color. It is also important
to detect changes in the volume of sweat in the sweat
ducts. These problems can be solved with infrared and
near-infrared imaging because some bands therein have very
large water absorbance, and because near-infrared light and
infrared light invade deep into the skin. This will form part
of our future work in the area.
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