
Color Temperature Tuning: Allowing Accurate Post-Capture
White-Balance Editing
Mahmoud Afifi1, Abhijith Punnappurath1, Abdelrahman Abdelhamed1, Hakki Can Karaimer1,3, Abdullah Abuolaim1, and
Michael S. Brown1,2

1York University, Toronto, Canada 2Samsung Research, AI Center, Toronto, Canada
3School of Computer and Communication Sciences (IC), Ecole Polytechnique Fédérale de Lausanne (EPFL)

Abstract
The in-camera imaging pipeline consists of several routines

that render the sensor’s scene-referred raw-RGB image to the fi-
nal display-referred standard RGB (sRGB) image. One of the cru-
cial routines applied in the pipeline is white balance (WB). WB is
performed to normalize the color cast caused by the scene’s il-
lumination, which is often described using correlated color tem-
perature. WB is applied early in the in-camera pipeline and is
followed by a number of nonlinear color manipulations. Because
of these nonlinear steps, it is challenging to modify an image’s
WB with a different color temperature in the sRGB image. As a
result, if an sRGB image is processed with the wrong color tem-
perature, the image will have a strong color cast that cannot be
easily corrected. To address this problem, we propose an imaging
framework that renders a small number of “tiny versions” of the
original image (e.g., 0.1% of the full-size image), each with differ-
ent WB color temperatures. Rendering these tiny images requires
minimal overhead from the camera pipeline. These tiny images
are sufficient to allow color mapping functions to be computed
that can map the full-sized sRGB image to appear as if it was ren-
dered with any of the tiny images’ color temperature. Moreover,
by blending the color mapping functions, we can map the output
sRGB image to appear as if it was rendered through the camera
pipeline with any color temperature. These mapping functions
can be stored as a JPEG comment with less than 6 KB overhead.
We demonstrate that this capture framework can significantly out-
perform existing solutions targeting post-capture WB editing.

1. Introduction
A camera’s scene-referred raw-RGB sensor image is con-

verted to the final display-referred standard RGB (sRGB) output

image through a series of operations collectively referred to as the

in-camera imaging pipeline [25, 33]. One of the first operations

in the camera pipeline is white balance (WB), which is applied as

an approximation to the human visual system’s ability to perceive

scene content as the same color even when viewed under different

illuminations [22]. WB is applied to the raw-RGB sensor image

and aims to remove the color cast due to the scene’s illumina-

tion, which is often described by its correlated color temperature.

An image’s WB temperature can either be specified by a manual

setting (e.g., Tungsten, Daylight) or be estimated from the image

using the camera’s auto-white-balance (AWB) function.

After the WB step, the camera pipeline applies several non-

linear camera-specific operations to convert the image from the

raw-RGB color space to sRGB or other color spaces, such as

Adobe RGB. The pipeline’s nonlinear operations make it chal-

lenging to modify the WB post-capture. This is particularly trou-
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Figure 1. An sRGB image rendered using our framework with a WB setting

(i.e., t =2850K). Using metadata embedded in the sRGB image, our method

can modify the sRGB image to appear as if we rendered it with any WB color

temperature (e.g., t =4950K, t =5500K, t =7500K). The results (column 2)

are almost identical to what the actual in-camera pipeline would have pro-

duced (column 3). Error maps (�E) insets, and average (�E) show that our

method is superior to conventional WB manipulation (column 1).

blesome if the WB setting was incorrect, resulting in the captured

image having an undesirable color cast [4]. State-of-the-art meth-

ods for post-capture WB manipulation attempt to reverse the cam-

era pipeline and map the sRGB colors back to raw-RGB. Not only

does this process necessitate careful camera calibration, but also it

requires reapplying the pipeline to re-render the image into sRGB

space after modifying the WB in raw-RGB space.

Contribution We propose an image capture framework that

enables accurate post-capture WB manipulation directly in the

sRGB color space without having to revert to the raw-RGB space.

Our method creates a tiny downsampled version of the raw-RGB

image and renders it through the camera pipeline multiple times

using a set of pre-defined WB color temperature settings. Using

these tiny sRGB images, color mapping functions are computed

that transform the full-sized sRGB output image’s colors to ap-

pear as if it they were rendered through the pipeline with the color
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temperature of any of the tiny images. By blending these mapping

functions, the user can navigate the full parameter space of WB

settings—that is, we can produce a full-sized sRGB output im-

age with any color temperature that is almost identical to what

the camera pipeline would have produced. Fig. 1 shows an ex-

ample. The color mapping functions can be efficiently computed

and stored in the sRGB-rendered image as a JPEG comment with

less than 6 KB overhead.

2. Related Work
2.1 Computational Color Constancy (WB)

Unprocessed raw-RGB images contain noticeable color casts

due to the captured scenes’ illumination. Computational color

constancy is the process performed onboard cameras to compen-

sate for scene illumination. This is often referred to as WB in

photography. The scene illumination is often described in terms

of its correlated color temperature in the CIE Yxy chromaticity

space [9]. WB is generally a two-step procedure: first the illumi-

nation of the scene is estimated, either by having the user select

the temperature from a set of camera presets, or by using an auto-

matic selection computed from the raw-RGB image (i.e., an AWB

routine). After the illuminant has been estimated, WB correction

can be performed using a simple 3×3 diagonal matrix.

Most computational color constancy research is focused on

the illumination estimation (i.e., AWB) component. Early work

on illumination estimation was either statistics-based [8, 19, 36]

or gamut-based [17,20,21]. In recent years, learning-based meth-

ods [3, 6, 7, 14, 24, 32, 35] have also been successfully applied to

this task. All of these methods estimate the illuminant and apply

the correction in the camera’s raw-RGB color space; they are not

intended to be applied to sRGB-rendered images.

The recent work in [4] proposes to correct improperly white-

balanced sRGB-rendered images by estimating polynomial map-

ping functions from a large set of training data. Our work is close

to [4] in the sense that we also use a set of polynomial mapping

functions to manipulate the WB of sRGB-rendered images. How-

ever, in contrast to [4], our work embeds the required mapping

functions within the rendered sRGB images during the rendering

process itself, and does not require any kind of training.

Manipulating WB in the sRGB color space is challenging.

Even when the exact illumination color temperature is used – for

example, measured from a color chart placed in the scene – and

WB correction is applied in a “linearized” sRGB space [5,16], the

results are still poor, as shown in Fig. 1, column 1. This is because

the linearization is erroneous and fails to undo the nonlinear cam-

era pipeline operations [4]. Our result, shown in Fig. 1, column 2,

is significantly more accurate.

2.2 Raw Image Reconstruction
Radiometric calibration [15, 23, 28], which is closely related

to raw image reconstruction, aims to undo the nonlinear oper-

ations applied onboard cameras to linearize the sRGB output.

More recent raw reconstruction techniques do not just linearize

the sRGB values but attempt to convert sRGB values back to their

original raw-RGB values. The raw-RGB reconstruction method

of Yuan and Sun [37] is based on a guided up-sampling of a

low-resolution raw image, stored along with the sRGB image,

to reconstruct the full-resolution raw image. Kim et al. [26] and

Chakrabarti et al. [10,11] proposed the use of more complex mod-

els for the onboard-camera processing stages to achieve higher

raw reconstruction accuracy. Work by Nguyen and Brown [30,31]

showed that the metadata needed for accurate raw reconstruction

can be computed directly from an sRGB-raw image pair, and this

metadata (of only 64 KB) can be embedded within the JPEG im-

age itself. Recently, a deep neural network architecture has been

proposed [29] to emulate the camera pipeline in both directions—

from raw-RGB to sRGB, and from sRGB to raw-RGB. However,

to use any of these methods for WB manipulation, it is still re-

quired to revert from sRGB to raw-RGB, manipulate the WB, and

reprocess the image through the camera pipeline. Our method

does not require going back from sRGB to raw, and forward to

sRGB again. Instead, our method allows processing the sRGB-

rendered images directly in the sRGB color space.

3. Proposed Method
Our proposed method is based on the computation of a set

of nonlinear color mapping functions between a set of tiny down-

sampled camera-rendered sRGB images. We discuss the details

in the Sections 3.1–3.3. An overview of our image capture frame-

work is shown in Fig. 2-(A). In this paper, we represent each

image as a 3×P matrix that contains the image’s RGB triplets,

where P is the total number of pixels in the image.

3.1 Rendering Tiny Images
The first step of our imaging framework is to create a tiny

downsampled copy of the raw-RGB image I. The tiny version is

denoted as X and, in our experiments, is only 150×150 pixels,

as compared to, say, a 20-megapixel full-sized image I. Our tiny

raw-RGB image X, which is approximately 0.1% of the full-size

image, can be stored in memory easily. The full-sized raw-RGB

image I is first rendered through the camera pipeline with some

WB color temperature to produce the full-sized sRGB output im-

age O. This color temperature is either obtained from a manu-

ally selected WB setting or estimated by the camera’s AWB. The

tiny image X is then processed by the camera pipeline N times,

each time with a different WB color temperature setting {Ti}N
i=1.

These settings {Ti}N
i=1 can correspond to the camera’s preset WB

options, such as Tungsten, Daylight, Fluorescent, Cloudy, and

Shade, or their color temperature values, such as 2850K, 3800K,

5500K, 6500K, and 7500K, or any other chosen set of color tem-

peratures. The resulting tiny sRGB images processed by the cam-

era pipeline are denoted as {YTi}N
i=1 corresponding to the WB

settings {Ti}N
i=1.

3.2 Mapping Functions
The full-sized sRGB output image O is downsampled to

have the same dimensions as {YTi}N
i=1 and is denoted as Otiny.

For each tiny image {YTi}N
i=1, we compute a nonlinear mapping

function MTi , which maps Otiny to YTi [4], by solving the follow-

ing minimization problem:

argmin
MTi

‖ MTi Φ
(
Otiny

)−YTi ‖2
F, (1)

where Φ : R3 → R
u is a kernel function that transforms the RGB

triplets to a u-dimensional space, where u > 3, and ‖ . ‖F de-

notes the Frobenius norm. For each image YTi , this equation finds

an MTi that minimizes the errors between the RGB colors in the

downsampled image Otiny and its corresponding image YTi .
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Figure 2. (A) Overview of our proposed imaging framework. The raw-RGB image I is downsampled to produce a tiny raw-RGB image X. Image X is then

rendered through the pipeline with N pre-selected WB settings Ti. This produces N tiny sRGB-rendered images {YTi}N
i=1. Mapping functions {MTi}N

i=1 are

computed between each tiny image {YTi}N
i=1 and a downsampled version of the full-size sRGB output image O denoted as Otiny. The mappings {MTi}N

i=1 are

stored inside the JPEG comment field of the sRGB output image O. (B) The metadata is used to modify the sRGB image. Example 1 shows a case where the

sRGB image O is mapped to one of the color temperatures in the metadata. The corresponding color mapping function can be extracted and used to modify

the image. Example 2 shows an example where the target color temperature is not in the metadata. In this case, the target temperature mapping function is

interpolated by blending between the two closest mapping functions in the metadata.

In general, relying on kernel functions based on high-degree

polynomials can hinder generalization; however, in our case, the

mapping function is computed specifically for a pair of images.

Hence, a kernel function with a higher degree is preferable. In

our experiments, we adopted a polynomial kernel function given

in [18], where Φ : [R, G, B]T → [R, G, B, R2, G2, B2, RG, GB,

RB, R3, G3, B3, RG2, GB2, RB2, GR2, BG2, BR2, RGB, R4, G4,

B4, R3G, R3B, G3R, G3B, B3R, B3G, R2G2, G2B2, R2B2, R2GB,

G2RB, B2RG]T . Hence, each mapping function is represented by

a 3×34 matrix. Once the mapping functions are computed, the set

of downsampled images X, {YTi}N
i=1, and Otiny can be discarded.

For all of our experiments in this paper, we rendered tiny

images using five (5) color temperature values, 2500K, 4000K,

5500K, 7000K, and 8500K, and computed the corresponding

mapping functions MTi . The five functions require less than 6 KB

of metadata to represent and can be saved inside the final JPEG

image O as a comment field.

3.3 Color Temperature Manipulation
Once the mapping functions have been computed, we can

use them to post-process the sRGB output image O to appear as

if it was rendered through the camera pipeline with any of the

WB settings {Ti}N
i=1. This process can be described using the

following equation:

Omodified = MTi Φ(O) , (2)

where Omodified is the full-resolution sRGB image as if it was “re-

rendered” with the WB setting Ti. This is demonstrated in Exam-

ple 1 of Fig. 2(B). By blending between the mapping functions,

we can post-process the sRGB output image O to appear as if it

was processed by the camera pipeline using any color temperature

value, and not just the settings {Ti}N
i=1.

Given a new target WB setting with a color temperature t, we

can interpolate between the nearest pre-computed mapping func-

tions to generate a new mapping function for t as follows:

Mt = gMa +(1−g)Mb, g =
1/t −1/b
1/a−1/b

, (3)

where a, b ∈ {Ti}N
i=1 are the nearest pre-computed color temper-

atures to t, such that a < t < b, and Ma and Mb are the corre-

sponding mapping functions computed for temperatures a and b,

respectively. The final modified image Omodified is generated by

using Mt instead of MTi in Eq. 2. Example 2 of Fig. 2(B) demon-

strates this process.

Recomputing the Mapping Functions Our metadata was com-

puted for the original sRGB-rendered image O. After O has been

modified to Omodified, this metadata has to be updated to facili-

tate future modifications of Omodified. The update is performed so

as to map Omodified, with color temperature t, to our preset color

temperatures {Ti}N
i=1. To that end, each pre-computed mapping

function {MTi}N
i=1 is updated based on the newly generated im-

age Omodified as follows:

argmin
MTi

‖ MTi Φ
(
MtΦ

(
Otiny

))−MTi(old)Φ
(
Otiny

) ‖2
F, (4)
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Figure 3. The effect of down-

sampling size versus mean

squared error (MSE) between

our results and the target in-

camera ground truth images

after updating our metadata

for three successive WB mod-

ifications with different target

color temperatures.

where MTi is the new mapping function and MTi(old) is the old

mapping function for the ith WB before current WB modification.

4. Results
We evaluated our method on six cameras from the NUS

dataset [13]. Images in this dataset were captured using DSLR

cameras with a color chart placed in the scene. All images are

saved in raw-RGB format and we can convert them to sRGB

format using conventional in-camera pipelines [1, 25]. We ren-

dered sRGB images with five different color temperature val-

ues: 2850K, 3800K, 5500K, 6500K, and 7500K. These corre-

spond approximately to the common WB presets available on

most cameras—namely, Tungsten, Fluorescent, Daylight, Cloudy,

and Shade. For our chosen six cameras totaling 1,340 images, this

process yields 1340×5 = 6700 sRGB-rendered images. We also

rendered the same images using our proposed framework with

the color chart masked out. During this rendering process, map-

ping functions corresponding to our pre-selected color tempera-

ture values (i.e., 2500K, 4000K, 5500K, 7000K, and 8500K) are

computed and stored as metadata in each image.

For each image generated with a particular WB preset, we

chose the other four WB settings as the target WB values. Fol-

lowing the procedure described in Sec. 3.3, we then processed

the input image using our pre-computed mapping functions to ap-

pear as though it was rendered through the camera pipeline with

the four target WB settings. For example, given an input image

originally rendered with the WB Tungsten preset, we generated

four WB modified versions with the following WB settings: Flu-

orescent, Daylight, Cloudy, and Shade. In this manner, we gener-

ated 6700×4 = 26800 WB modified images using our proposed

approach. These modified images can be compared with their cor-

responding ground truth images rendered using the camera.

We adopted four commonly used error metrics for quantita-

tive evaluation: (i) mean squared error (MSE), (ii) mean angular

error (MAE), (iii) ΔE 2000 [34], and (iv) ΔE 76. In Table 1, the

mean, lower quartile (Q1), median (Q2), and the upper quartile

(Q3) of the error between the WB modified images and the cor-

responding ground truth images are reported. It can be observed

that our method consistently outperforms the diagonal manipula-

tion, both with and without the commonly used pre-linearization

step using a 2.2 inverse gamma [16], in all metrics.

Fig. 3 shows the effect of different downsampling sizes on

the post-processing WB modification compared with rendering

the original raw-RGB image with each target color temperature

(i.e., ground truth). In this example, we randomly selected 300

raw-RGB images from the NUS dataset. Each image was ren-

dered using our method, and then modified to different target WB

settings. This process was repeated three times to study the error

propagation of our post-processing modifications.

T T T T T
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Figure 4. The first row shows images rendered by the camera pipeline with

different WB settings. The next two rows show how an image O (in the red

box) originally captured with a particular WB can be modified post-capture

using our mapping functions MTi to any other WB setting. The last two rows

show image O modified to other WB settings with linearization applied.

Representative qualitative result are shown in Figs. 4, 5, and

6. As can be seen, our method produces better results compared

to the sRGB diagonal WB manipulation and Adobe Lightroom.

An interesting extension of our proposed approach lies in its

ability to effectively white balance images having two illuminants

in the scene [12]. We first computed an image with the WB set-

ting corresponding to one of the illuminants. We then applied our

post-capture manipulation to generate another image with the WB

setting suitable for the second illuminant. Now, each of the two

sRGB images was corrected for only one of the two illuminants.

Relying on a user to identify the regions containing the two dif-

ferent illuminantions, we can spatially blend between these two

images to produce an image that has both illuminants corrected.

An example is shown in Fig. 7. For this experiment, we used the
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Figure 5. First row: In-camera sRGB images rendered with different color temperatures. Second row: Results obtained by diagonal manipulation using the

exact achromatic patch from the color chart. Third row: Our results. ΔE error of each result is reported and shown as an error map.

Table 1. Quantitative results on the NUS dataset [13] versus diagonal (Diag) WB, applied directly in sRGB (using the exact achro-
matic reference point), and on “linearized” sRGB [5, 16]. The terms Q1, Q2, and Q3 denote 1st, 2nd (median), and 3rd quartile,
respectively. The terms MSE and MAE stand for mean square error and mean angular error, respectively. Best results are in bold.

Method
MSE MAE Δ E 2000 Δ E 76

Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3

Diag WB 1196.93 455.21 825.38 1441.58 5.75 2.24 4.85 8.03 8.98 4.88 7.99 11.73 13.53 7.18 11.84 17.98

Diag WB w linearization 1160.16 428.18 771.78 1400.49 5.49 2.19 4.56 7.61 8.61 4.62 7.58 11.09 12.87 6.82 11.22 16.99

Ours 75.58 35.51 61.05 98.68 2.04 1.42 1.86 2.45 3.09 2.33 3.00 3.74 4.39 3.21 4.26 5.30

lazy snapping method [27] with superpixels [2] to quickly mark

the regions containing the two illuminants. The blending mask

was then smoothed by applying a Gaussian blur.

5. Concluding Remarks
We have described an imaging framework that enables users

to accurately modify the WB color temperature of an sRGB-

rendered image. Such functionality is currently not possible with

the conventional imaging pipeline. Our method allows easy re-

covery from white-balance errors, or color temperature manipu-

lation to change the image’s aesthetics. Our approach requires a

minor modification to the existing imaging pipeline and produces

metadata that can be stored in an image file (e.g., JPEG) with only

6 KB of overhead. Finally, we note that our imaging framework

can be modified to accommodate other types of camera settings

(e.g., picture styles) or color space options, such as allowing post-

capture display white-point selection.
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