
LittleCMS-MT: A thread-safe open source color
management library

Michael J. Vrhel, Robin Watts and Ray Johnston, Artifex Software, 1305 Grant Avenue, Suite 200, Novato, CA 94945

Abstract
We introduce a thread-safe color management library,

LittleCMS-MT. It is a fork of the popular LittleCMS color man-
agement library. The issues with LittleCMS are described and the
approach used to create LittleCMS-MT is discussed. The archi-
tectural design of using a thread-safe color management library
with open source projects used for rendering page description
languages is covered. Performance results using Ghostscript with
LittleCMS-MT vs. LittleCMS and standard test files are provided.

Introduction
LittleCMS[1] is a popular open source color management

engine. It was introduced in 1998 by Marti Maria and currently
is provided under an MIT license. The current version number is
2.9, which was released in November of 2017.

LittleCMS has been used for years in Ghostscript[2], which
is a dual licensed (GNU AGPL and commerical) open source
project used for the rendering and conversion of PostScript R©[3],
PDF[4], XPS[5] and PCL[6] documents. Ghostscript was intro-
duced in 1986 by L. Peter Deutsch. It is currently at version
9.23, which was released in March of 2018. Today, Ghostscript
is embedded in millions of devices/applications including printers
(desktop and production), RIPs, document management software
systems, document viewers and cloud applications to name a few.

One of the limitations of LittleCMS is that it is not thread-
safe. While it is true that LittleCMS can be used in multi-
threaded applications, these applications must be designed to use
LittleCMS in a way that achieves a less than ideal level of per-
formance. For example, in LittleCMS, it is not possible to safely
share ICC profiles or links (structures that define mappings be-
tween ICC profile device color spaces) between threads without
placing a lock around them during their use. This severely lim-
its the performance of applications such as Ghostscript, which are
commonly used in a multi-threaded manner and have heavy color
conversion needs.

To overcome this limitation, a thread-safe version of Lit-
tleCMS has been released under the same MIT license[7]. The
new version is referred to as LittleCMS-MT. In addition to provid-
ing a thread-safe color management library, LittleCMS-MT pro-
vides accelerations that are currently unavailable in LittleCMS.
The motivation for this work and its efficient use is described in
the remainder of this paper.

Thread safety
One of the features of a library like LittleCMS is the ability

for the library to call back to the calling application. These call-
backs are typically used to provide error trapping, memory man-
agement or to provide processed data in an asynchronous manner.
A requirement in designing a thread-safe library that uses call-

backs is that the callback routines should be capable of accessing
the variables and data structures required to work. The standard
manner in which this is usually achieved is to allow the caller to
pass in an opaque pointer as one of the arguments to every pro-
cedure in the library’s application programming interface (API),
which will then be passed back unchanged in every callback.

With the thread’s context propagated through the library
functions, all callbacks can then provide a pointer to the state or
context associated with the thread. This ensures that the calling
thread does not receive pointers to structures for which it should
not have access and (assuming there are not other issues such as
global variables etc.) avoids contention or race conditions be-
tween threads.

The existing LittleCMS library achieves some level of this
design as it provides the concept of a contextID to be passed with
some of its procedures. Unfortunately, the design falls short as
the contextID is not passed to all of the procedures. In addition,
LittleCMS stores the contextID into some of its structures effec-
tively cementing those structures to be used only by the calling
thread that created them. This situation is shown in Figure 1,
where Thread1 creates a resource rsrc1 (for example an ICC pro-
file structure or a transformation structure) using its context ctx1,
which LittleCMS stores inside of rsrc1 . The object rsrc1 is then
stored in a cache so that it can be used by other threads. To avoid
the overhead of creating its own copy of rsrc1, Thread2 makes
use of the rsrc1 object that is present in the cache and passes it
along with the thread’s context ctx2 to the LittleCMS library. Due
to its less than optimal design, the library fails to propagate ctx2
through its calls and at some point makes use of the context ctx1
stored in the resource structure, passing ctx1 to Thread2 in a call
back. Since Thread1 and Thread2 are now both possibly making
changes to ctx1 (or using it to access certain memory addresses),
thread safety is no longer ensured.

In LittleCMS-MT, the above problem is avoided by having
the incoming contextID propagated to all methods within the li-
brary, including static ones. In addition, storage of the caller’s
contextID in structures within the library is not allowed. In this
way, a thread will receive only its own contextID on any callback.
This situation is shown in Figure 2, where after an API call to
the library with api(ctx2) from Thread 2, any callbacks that occur
must, by design, pass back ctx2 and can never return ctx1.

Ghostscript
Ghostscript’s architecture is shown coarsely in Figure 3. At

the top of this figure, we have the interpreters for the various page
description languages (PDLs) that Ghostscript supports. At the
bottom of the figure we have the output device and list a few of
the many output formats that Ghostscript supports. These out-
put formats include other PDL formats as well as image formats

38326th Color and Imaging Conference Final Program and Proceedings

© 2018, Society for Imaging Science and Technology
https://doi.org/10.2352/ISSN.2169-2629.2018.26.383



lcms Library

Thread 1 Thread 2

rsrc1 =
get_resource(ctx1) use_resource(ctx2, rsrc1)

callback(ctx1)

Shared
Resources

Cache

rs
rc

1

rs
rc

1

Figure 1. Diagram of unsafe thread interaction when using LittleCMS

lcms-MT
library

Thread 1 Thread 2

api(ctx1) api(ctx2)

callback(ctx1) callback(ctx2)

Shared
Resources

rs
rc

1

rs
rc

2

rs
rc

1

rs
rc

2

rs
rc

1

rs
rc

2

Figure 2. Diagram of safe thread interaction when using LittleCMS-MT

Language Interpreters

XPSPostScript PDF PCL5 PCLXL

High Level
Graphics
Commands

Graphics Library

Output Devices

High Level or 
Low Level
Graphics
Commands

Vector - PDF, PDFA, Postscript, PCL, XPS
Raster - TIFF, JPG, PNG, BMP

Custom - Printer pipeline

Figure 3. High level view of Ghostscript’s architecture

and customized printer driver formats. Between these two compo-
nents is the graphics library. When going from one PDL format to
another PDL format (e.g. PostScript R© to PDF) the output device
may understand how to handle a high level drawing command
and the graphics library may not need to do any work. Instead the
output device simply repackages the command in the appropriate
manner for the output PDL format. If instead, we are going out to
an image format, the graphics library will break down the higher
level commands to lower level commands (e.g. to a rectangle fill
or a bitmap copy).

To provide proper rendering, Ghostscript must be able to
handle a variety of managed color definitions. These include
PostScript R© color space arrays, ICC profiles (both V2 and V4),
CIELAB, PDF CalGray and PDF CalRGB color spaces. In addi-
tion, PostScript R© and PDF have generic Gray, RGB and CMYK
color spaces. These are typically assigned with default ICC pro-
files that are run-time configurable by the user. To simplify things,
Ghostscript converts all non-ICC managed color definitions to
equivalent ICC profiles.

A PDL document can contain text, vector graphics and im-
ages each of which can be defined in different color spaces. Ren-
dering to a target, Ghostscript allows the user to define a single
target ICC profile or unique profiles for image, graphic and text
objects. This flexibility of color space definitions for different ob-
ject types can lead to documents that have significant color con-
version requirements. For an embedded PDL rendering engine,
rendering performance is always a concern as it has an obvious
impact on the printer page-per-minute specification. Creation of
links between ICC color spaces can be a significant computational

384 Society for Imaging Science and Technology



RGB Image

CMYK Image CMYK Graphic

RGB Graphic

RGB TEXT

CMYK TEXT

RGB Image

CMYK Image CMYK Graphic

RGB Graphic

RGB TEXT

CMYK TEXT

Display List

High-level
commands
stored in a
op�mized
manner for
banded 
rendering 

Thread 1

Thread 2

Thread 3

Figure 4. Display list multi-threaded rendering

cost, especially if larger table sizes are created. To minimize the
number of links created, Ghostscript maintains a cache of previ-
ously created links, which is searched when a link is needed by a
thread. If the needed link is not found in the cache, a new one is
created and stored in the cache.

When rendering to high resolutions, Ghostscript will store
the various page drawing commands into a display list. Part
of the description for these drawing commands are the associ-
ated ICC color spaces, which are also stored in the display list.
Once created, this display list can then be processed to render the
graphic, text and images onto the output bitmap. Use of the dis-
play list enables the data to be structured in a way that optimizes
for only rendering a small band at a time, thereby saving on mem-
ory needs for the system. When rendering in a single threaded
manner, Ghostscript will first render the top band, then the next,
all the way to the final band. When Ghostscript is operated in
a multi-threaded manner, each thread can independently render a
band. This parallelism can provide a significant speed-up when
using a multi-core processor. Figure 4 shows an example where
the output page is divided into multiple bands and three threads
are each independently rendering different bands. When a thread
completes a band, it will move to the next unprocessed band.

With multi-threaded rendering in Ghostscript, each thread
maintains its own memory pool manager. The memory pools
use a splay tree [9] to organize the memory chunks. Splay trees
are essentially binary search trees that can reorganize themselves
when an item is accessed. This reorganization can ensure more
commonly used items are near the top of the tree and therefore
more quickly accessed. If the threads had a shared memory pool,
it would be neccessary to place a mutex lock around the splay
tree operations to avoid concurrent problems. Use of a mutex
in this case would result in a severe performance penalty. The
thread’s memory pool manager is the context information passed
to LittleCMS-MT with every call to the library. When the library
needs to do a memory allocation, it calls back to a memory al-
location function in Ghostscript, which will then ensure that the
allocation occurs with the proper memory pool manager.

In LittleCMS, the fact that the wrong memory pool manager
can be passed back to a thread, means that concurrency issues can
occur. To avoid this problem when using LittleCMS, structures
such as links and profiles can not be shared between threads, and
each thread must maintain its own cache of link transforms. This
limitation can have a significant impact on performance. For ex-
ample, consider a document with eight vertical strips on a page as
shown in Figure 5, each defined with different ICC color spaces.
If there are four threads processing bands on this page there would
need to be 32 different links created. This can have an impact on

Figure 5. PDF Document with eight CMYK rectangle fills each defined by

a different ICC profile

the performance boost that should occur when rendering the page
with multiple threads on multiple cores. With LittleCMS-MT, it
is possible to have the threads share a common cache. In this
case, for the above example, only eight different links would need
to be created. We will study the performance impact this has on
standardized files in the results section below.

MuPDF
MuPDF[8] is an open source dual licensed (GNU AGPL

and commercial) project designed for the rendering, manipula-
tion, editing and converting of PDF, XPS and EPUB document
formats. The code is designed to work well in mobile environ-
ments. It is currently at version 1.12, which was released in De-
cember 2017. To achieve managed color output, LittleCMS-MT
was included in the project. In the case of MuPDF, the context
passed to LittleCMS-MT and passed back during memory allo-
cations includes a pointer to the thread’s exception stack. Using
LittleCMS in MuPDF with shared objects would lead to issues as
one thread could alter the exception stack of another thread. The
LittleCMS-MT library avoids this problem by ensuring the proper
context is always provided in the callback to the thread.

LittleCMS-MT Optimizations
Ghostscript and MuPDF both require the ability of the color

transforms to operate on a variety of different data formats. These
different formats could all occur on a single page of a document.
For example there could be color data that is 8-bit or 16-bit, planar
or chunky image data, different endianness, and include/exclude
an alpha component. Little CMS is designed to handle these vari-
ous formats. The LittleCMS-MT project has introduced optimiza-
tions in this design, providing an increase in performance over
LittleCMS.

Due to the cost of creating a link between ICC profiles, it
is desirable to avoid creating an entire new link due to a simple
input or output format change. Little CMS has a method to do
this, but it is not thread-safe. Therefore LittleCMS-MT removes
this method and provides a thread-safe solution.

38526th Color and Imaging Conference Final Program and Proceedings



Pack/unpack
The core LittleCMS buffer transformation routine takes a set

of input values, and transforms them into a set of output values,
with or without a cache, or gamut check. The exact format of
the values in these buffers can be set by the caller to match the
formats of the data most natural to the calling routines.

Little CMS provides interpolation routines that work in both
floating point and 16-bit integer ranges. In order to accommo-
date the other input and output formats used, the LittleCMS buffer
transformation code breaks the process down into various stages;
1) Unpack, 2) Cache Check, 3) Gamut Check, 4) Transform, and
5) Repack.

The unpack stage takes the data from the supplied buffer and
converts it to the required internal format (normally 16-bit inte-
gers). The cache check compares this unpacked data against the
previous input values, and if it finds that they match, can short
circuit the rest of the process by reusing the previously computed
values. The gamut check (a relatively rarely used option) checks
to see whether the values are out of range for the profile, and if
they are it copies in known “alarm” values, short circuiting the
rest of the process. The transform stage performs the interpolated
lookup of the input values to get the output values (both in the
standard internal form). Finally, the pack stage copies this inter-
nal data back (converting if required) into the output buffer.

In Ghostscript and MuPDF, we always feed data in either 8
or 16-bit integer form. In the 16-bit case, the pack/unpack stages
resolve to a copy operation and in the 8-bit case they resolve to a
quickly performed operation.

In the original LittleCMS code, the packers and unpackers
were held as function pointers, so every pixel processed would
involve at least 3 function calls (one to unpack, one to transform,
and one to pack again). Function call overhead for such trivial
operations (or NOPs) is significant when taken in bulk, so a way
to reduce this cost was sought.

Accordingly, we created a “templated” routine that can be
used to generate optimized code for given color transformation,
in the form of a header file that can be repeatedly included with
different definitions. In this process, some defines are made, and
then inclusion of them generates a new instance of a transforma-
tion routine optimized for the given formats.

We have deployed these optimized routines for all the com-
mon gray/RGB/CMYK in/out operations with both 8 and 16-
bits. Operations on 16-bit data now operate “in-place” with no
unpacking/packing required. Operations on 8-bit data have the
pack/unpack operation performed directly, avoiding the function
call overheads. If a user discovers cases that are not optimized
already, adding new cases is a trivial matter of a few #defines, and
another include.

ChangeBuffers vs. Cloning
Once a link has been created between given input and out-

put formats, LittleCMS provides a mechanism for changing these
formats without recalculating the entire link (for certain classes of
input/output formats at least). For example, if a link is created to
consume and return 16-bit data, but it is later discovered that the
same link is required to handle 8-bit data, LittleCMS would allow
you to change the buffer format without the expense of creating a
new link and recalculating the internal tables.

The mechanism for this involved LittleCMS changing the

pack/unpack pointers within a link. This causes problems for
multi-threaded use, as one thread may be in the process of us-
ing a link when another changes the formats for which it is setup,
causing undefined results.

Accordingly, in LittleCMS-MT, we remove this operation
and replace it with a new operation to “clone” a link with different
input/output formats. Both the clone and the original link share
the internal tables in a reference counted, thread-safe fashion, thus
avoiding the overhead of holding or calculating the internal tables
multiple times.

In Ghostscript, a cached link object could contain 128 po-
tential clones of one single link from the color management li-
brary. These clones share the same core object and have different
input and output buffer settings to handle the variety of differ-
ent input and output formats (e.g. planar/chunky data, 8/16 bit,
big/little endian on the input and output settings as well as the in-
clusion/exclusion of an alpha value). The cloning occurs on an
as-needed basis. The clones are maintained in a linked list and
can be readily shared among threads.

Results
To measure the performance gain achieved by using

LittleCMS-MT in Ghostscript, the PDF files shown in Figures 6-8
were rendered. The PDF file shown in Figure 6 consisted of six
images in sRGB color space each of size 4608x3456 pixels and
the PDF page size was 23.9 x 26.7 cm. We will refer to this file as
the Images file. The PDF file shown in Figure 7 is the Altona 1.2
Visual test page. It contains a number of elements in various color
spaces, the details of which are discussed in [10]. This PDF page
size was 44.1 x 31.8 cm. Finally, the PDF file shown in Figure 8
is the Altona 2.0 test file [11] and is sized at 29.7 x 42.0 cm. This
file provides transparency objects that can be difficult for some
rendering solutions. Together, these files provide a wide variety
of different color types and elements that can be encountered in a
PDF file.

An Intel R© 24-core Xeon R© X5650 CPU 1.6-2.67 GHz was
used for the rendering. To minimize thermal throttling issues
when collecting timing data, the CPU was set into a slower con-
stant speed of 1.6GHz. The files were rendered to a CMYK color
space defined by the eciCMYK ICC profile (FOGRA53)1 [12]
with a bit depth of 32bits/pixel at 1200dpi resolution. For the
Images, Altona Visual and Altona 2.0 files this amounts to ap-
proximately 0.57 GB, 1.25 GB and 1.11 GB of data respectively.
The eciCMYK color space was selected as the destination color
space since it was not present in any of the files, forcing signifi-
cant color conversions. To avoid timing overhead due to file out-
put, the actual output data was written to the null device. The
exact command line used was:

./gs -sDEVICE=bitcmyk -Z: -dMaxBitmap=1
-dNumRenderingThreads=#
-r1200 -o /dev/null
-sOutputICCProfile=eciCMYK.icc
-dGrayValues=256 -f input file.pdf

where the option -dNumRenderingThreads=# varied using from

1The eciCMYK.icc profile was included in Ghostscript’s ROM file
system at compile time.

386 Society for Imaging Science and Technology



Figure 6. PDF Images document with six images in sRGB color space

1 to 24 threads.2

Ghostscript used the contents and size of the file to render
each file with a particular number of bands. The Images file was
rendered using 168 bands, the Altona Visual file was rendered
using 376 bands and the Altona 2.0 file was rendered using 1804
bands.

Using LittleCMS and LittleCMS-MT with Ghostscript, each
PDF file was rendered ten times using from 1 to 24 threads. To
reduce timing errors caused by the system doing other processes,
the minimum rendering time of the ten runs was determined. Fig-
ures 9-11 show the minimum timing results (over the 10 runs)
for the files comparing LittleCMS to LittleCMS-MT where the x-

2The actual numbers used were 0,2-24. The value of 1 has a special
meaning in Ghostscript for this parameter and was not used in this testing
[2].

Figure 7. Altona 1.2 Visual test file

Figure 8. Altona 2.0 test file

38726th Color and Imaging Conference Final Program and Proceedings



2 4 6 8 10 12 14 16 18 20 22 24
4

6

8

10

12

14

16

18

20

Number of threads

S
ec
o
n
ds

Images File

 

 

lcms2

lcms2mt

Figure9.

2 4 6 8 10 12 14 16 18 20 22 24
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Number of threads

S
ec
o
n
ds

Altona 1.2 Visual File

 

 

lcms2

lcms2mt

TimingresultsfortheImagestestfile

Figure10. TimingresultsfortheAltona1.2Visualtestfile

axisisthenumberofrenderingthreadsandthey-axisisthetime
insecondstorenderthepage.Figures12-14showthepercent
speedupofusingLittleCMS-MTvsthenumberofthreadsused
foreachfile.Thepercentspeed-upwascomputedusing

P=
Tlcms Tlcmsmt
Tlcms

(1)

whereTlcmsisthetimeforthepagetorenderusingLittleCMSand
TlcmsmtisthetimeforthepagetorenderusingLittleCMS-MT.
Figures12-14areallshownwiththesameaxisrangetoallow
easiercomparison.

Discussion

2 4 6 8 10 12 14 16 18 20 22 24

40

60

80

100

120

140

160

Number of threads

S
e
c
o
n
d
s

Altona 2.0 File

 

 

lcms2

lcms2mt

TheresultsshowaclearadvantageusingLittleCMS-MT
overLittleCMSforrenderingwithGhostscript.Figure12,which
isforthePDFfilethatcontainedonlyimagesinsRGBcolor
space,showedapproximatelyan8percentspeedimprovement.
Thesourceofthisspeed-upisthereductionofthefunctioncall
overheadthatwasdiscussedinthePack/unpacksectionabove.
Forthisfile,approximately43percentofthefileprocessingtime

Figure11.

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

Number of threads

P
er
c
e
nt
 
S
p
e
e
d 
U
p

Images File

TimingsresultsfortheAltona2.0testfile

Figure12.

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

Number of threads

P
er
c
e
nt
 
S
p
e
e
d 
U
p

Altona 1.2 Visual File

Percentspeed-upresultsfortheImagestestfile

Figure13. Percentspeed-upresultsfortheAltona1.2Visualtestfile

388 Society for Imaging Science and Technology



2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

Number of threads

Pe
rc

en
t S

pe
ed

 U
p

Altona 2.0 File

Figure 14. Percent speed-up results for the Altona 2.0 test file

was spent in the CMM when running with LittleCMS, indicating
that the speed-up within LittleCMS-MT is more like 19 percent.
One percent of the processing time was in creating the ICC links
while 42 percent was in actually transforming colors. The fact that
only one link had to be created for this file is the reason that there
is little change in Figure 12 as the number of threads increases.

Figures 13 and 14, which are for the PDF files that contain a
large variety of object types and color spaces, show a significant
advantage of using LittleCMS-MT as the number of rendering
threads increase, with over a 20 percent speed advantage using
LittleCMS-MT at 24 threads. The source of this speed-up is the
ability of the threads to share links in a common cache and avoid
having to each create their own copies or require a lock when
they use the links. With the Altona 2.0 file, running with a single
thread, approximately 7 percent of the rendering time was spent
creating ICC links and 16 percent time was spent transforming
colors. With the Altona 1.2 Visual file, approximately 29 percent
of the rendering time was spent creating links and 12.5 percent
was spent transforming colors for the single threaded case.

Since color conversion is a significant portion of PDL ren-
dering, our work will continue to improve LittleCMS-MT to en-
sure that it works as efficiently as possible with Ghostscript and
MuPDF. With it’s liberal MIT license, these improvements should
be useful for others who are currently using LittleCMS and faced
with multi-threaded bottlenecks or who are transforming signifi-
cant amounts of data.

References
[1] M. Maria. Little CMS Engine How to use the Engine in Your Appli-

cation, Available from http://www.littlecms.com (2017)
[2] Source code at http://git.ghostscript.com/ghostpdl.git/. Documenta-

tion at https://www.ghostscript.com/Documentation.html (2018)
[3] PostScript R© Language Reference, Third Edition, Adobe Systems,

Addison-Wesley, Reading Massachusetts (1999)
[4] ISO 32000-1:2008. Document management – Portable document for-

mat – Part 1: PDF 1.7 (2008)
[5] ECMA 388 Open XML Paper Specification. Available at

http://www.ecma-international.org/publications/standards/Ecma-
388.htm (2009)

[6] PCL5 Printer Language Technical Reference Manual Part 1, Hewlett
Packard (1992)

[7] Source code at http://git.ghostscript.com/?p=thirdparty-
LittleCMS2.git;a=shortlog;h=refs/heads/LittleCMS2-art (2018)

[8] Source code at http://git.ghostscript.com/?p=mupdf.git;a=summary
(2018)

[9] Daniel D. Sleator and Robert E. Tarjan, Self-Adjusting Binary Search
Trees, Journal of the ACM, vol. 32, no. 3, pp. 652-686 July (1985)

[10] Altona Test Suite 1.2 – Application Kit 16 Reference prints, 7 Color
specimens (process color solids), 25 Test suite files, 11 Characterisa-
tion data, 11 ICC profiles, documentation, Bundesverband Druk und
Medien (bvdm), Wiesbaden, www.altonatestsuite.com (2004)

[11] Altona Test Suite 2.0 - Technical 2, European Color Initiative,
www.eci.org, July (2012)

[12] European Color Initiative, profile and details available at
http://www.eci.org/en/colourstandards/workingcolorspaces Au-
gust (2017)

Author Biography
Michael Vrhel was awarded his PhD from North Carolina State Uni-

versity in 1993; during his PhD, he was an Eastman Kodak Fellow. He has
many years’ experience working in digital imaging, including biomedical
imaging and signal processing at NIH; color instrument and color soft-
ware design at Color Savvy Systems Ltd, and positions at Conexant Sys-
tems, TAK Imaging and Artifex Software. A senior member of the IEEE, he
has a number of current and pending patents and is the author of numer-
ous papers in the areas of image and signal processing including a book,
The Fundamanentals of Digital Imaging. His current interests include ef-
ficient computational color rendering methods as well as deep learning
applications.

38926th Color and Imaging Conference Final Program and Proceedings


	page1
	titles
	images

	page3
	titles
	images

	page4
	titles

	page5
	titles
	images

	page6
	titles
	images

	page7
	titles
	images

	page8
	titles

	page9
	titles
	images

	page10
	titles

	page11
	titles
	images

	page12
	titles

	page13
	titles
	images

	page14
	titles

	page15
	titles
	images

	page16
	titles

	page17
	titles
	images

	page18
	titles

	page19
	titles
	images

	page20
	titles

	page21
	titles
	images

	page22
	titles

	page23
	titles
	images

	page24
	titles

	page25
	titles
	images

	page26
	titles

	page27
	titles
	images

	page28
	titles

	page29
	titles
	images

	page30
	titles

	page32
	images

	page1
	titles
	images

	page2
	titles
	tables

	page3
	titles

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles

	page1
	titles

	page2
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images

	page6
	images

	page7
	titles
	images
	tables

	page8
	titles
	images
	tables

	page9
	titles
	tables

	page10
	titles

	page11
	titles

	page12
	titles

	page1
	titles
	tables

	page2
	titles
	tables

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images
	tables

	page6
	titles
	images

	page7
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles

	page6
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images

	page1
	titles
	images
	tables

	page2
	titles
	images
	tables

	page3
	titles
	images
	tables

	page4
	titles
	images

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles

	page1
	titles
	images

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images
	tables

	page6
	titles
	images

	page7
	titles
	images
	tables

	page8
	titles
	images

	page1
	titles
	images

	page2
	titles
	images
	tables

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles
	images
	tables

	page7
	titles
	images
	tables

	page8
	titles

	page1
	titles
	images

	page2
	titles
	images

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles

	page1
	titles
	images

	page2
	titles
	images
	tables

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles

	page1
	titles
	images

	page2
	titles
	images

	page3
	titles

	page4
	titles
	images

	page5
	titles
	images

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	tables

	page4
	titles
	images

	page5
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	tables

	page4
	titles
	tables

	page5
	titles
	tables

	page6
	titles

	page1
	titles

	page2
	images

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles
	images

	page7
	titles
	images
	tables

	page8
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles
	images

	page7
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles

	page1
	titles
	images
	tables

	page2
	titles
	images
	tables

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles

	page1
	titles

	page2
	titles

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles
	images

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles

	page1
	titles
	images

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images
	tables

	page6
	titles
	images

	page1
	titles
	images

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles
	images

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles

	page1
	titles

	page2
	titles

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images
	tables

	page6
	titles
	tables

	page7
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles

	page1
	titles
	images

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles

	page1
	titles
	images

	page2
	titles

	page3
	titles

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles

	page7
	titles
	images

	page8
	titles
	images

	page9
	titles
	images

	page10
	titles
	images

	page11
	titles
	images

	page12
	titles
	images

	page13
	titles

	page14
	titles

	page15
	titles
	images

	page16
	titles
	tables

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images

	page6
	images

	page7
	titles
	images

	page8
	titles

	page1
	titles

	page2
	titles

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	tables

	page6
	titles
	images

	page7
	titles
	tables

	page8
	titles

	page1
	titles
	images
	tables

	page2
	titles
	tables

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images
	tables

	page6
	titles
	images

	page1
	titles
	tables

	page2
	titles
	images
	tables

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles

	page1
	titles
	images

	page2
	titles
	tables

	page3
	titles
	images
	tables

	page4
	titles
	tables

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles

	page1
	titles
	images

	page2
	titles
	images

	page3
	titles
	tables

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images
	tables

	page4
	titles
	images

	page5
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images
	tables

	page4
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images

	page4
	titles

	page1
	titles

	page2
	titles

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images
	tables

	page6
	titles
	tables

	page7
	titles
	images
	tables

	page8
	titles

	page9
	titles

	page1
	titles
	images

	page2
	titles
	images
	tables

	page3
	titles
	images

	page1
	titles

	page2
	titles

	page3
	titles
	images
	tables

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles

	page1
	titles
	images

	page2
	titles
	images
	tables

	page3
	titles
	images
	tables

	page4
	titles
	tables

	page1
	titles

	page2
	titles
	images

	page3
	titles

	page4
	titles
	images
	tables

	page5
	titles

	page6
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images

	page6
	titles
	images

	page7
	titles
	images

	page8
	titles
	tables

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images
	tables

	page4
	titles

	page5
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles

	page6
	titles

	page1
	titles

	page2
	titles
	images
	tables

	page3
	titles
	images
	tables

	page4
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles
	images
	tables

	page1
	titles

	page2
	titles

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles
	images
	tables

	page7
	titles

	page8
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles

	page1
	titles
	images

	page2
	titles
	images

	page3
	titles
	tables

	page4
	titles

	page1
	titles
	tables

	page2
	titles
	images
	tables

	page3
	titles
	images
	tables

	page4
	titles
	images

	page5
	titles

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images
	tables

	page4
	titles
	images
	tables

	page5
	titles
	tables

	page6
	titles

	page1
	titles
	images

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles

	page1
	titles
	images

	page2
	titles
	images
	tables

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles

	page1
	titles

	page2
	titles

	page3
	titles
	images

	page4
	titles
	images
	tables

	page5
	titles
	images
	tables

	page6
	titles

	26th Color and Imaging Conference
	Copyright 2018
	Welcome to CIC26!
	Conference Sponsors
	Conference Exhibitors
	Program Committee
	Cooperating Societies
	Short Course Program
	CIC26 Workshops
	W1: Virtual and Augmented Reality: Challenges and Perspectives
	VR: from Static Cube Maps to Light Fields, Guarnera, p. xxii
	Color and Object Appearance in Optical See-Through AR Applications, Murdoch, p. xxiv

	W2: Deep Learning and Color
	W3: HDR and Movie Production

	IS&T Corporate Members
	IS&T Board of Directors
	Welcome and Opening Keynote
	Scale-Adaptive Superpixels, Achanta, p. 1

	Picture Perfect
	Multiscale Daltonization in the Gradient Domain, Simon-Liedtke, p. 7
	Recovering a Color Image from its Texture, Finlayson, p. 19

	Wrangling Color
	OLED Power Consumption Model and its Application to a Perceptually Lossless Power Reduction Algorithm, Gerhardt, p. 25
	Perceptually-based Restoration of Backlit Images, Vazquez-Corral, p. 32
	Color Color Processing, Morovic, p. 38

	Playing With Color
	Appearance Reconstruction of 3D Fluorescent Objects under Different Conditions, Tominaga, p. 44
	Constant Hue Loci Covering High Dynamic and Wide Gamut Regions, Zhao, p. 49
	A Study of Visible Chromatic Contrast Threshold based on Different Color Directions and Spatial Frequencies, Xu, p. 53

	Interactive Paper Previews I
	Rank-based Radiometric Calibration, Gong, p. 59
	Using Chromaticity Error Minimisation for Fast Camera Spectral Responsivity Measurement, Karge, p. 67
	Deep Residual Network for Joint Demosaicing and Super-Resolution, Zhou, p. 75
	Illumination Content Player, Simonian, p. 81
	An Alternative Multiscale Framework for Variational Perceptually-Inspired Contrast Enhancement of Color Images, Mazin, p. 86
	Reversible Colour Appearance Scales for Describing Saturation, Vividness, Blackness, and Whiteness for Image Enhancement, Cho, p. 91
	A Colour Appearance Model based on Jzazbz Colour Space, Safdar, p. 96
	Color Matching Criteria in Augmented Reality, Zhang, p. 102
	Comparative Evaluation of Color Differences between Color Palettes, Pan, p. 110
	Color Quality and Memory Color Assessment, Anku, p. 116
	A Parametric Colour Difference Equation to Evaluate Colour Difference Magnitude Effect for Gapless Printed Stimuli, Mirjalili, p. 123
	The Effect of Surface Texture on Color Appearance of 3D Printed Objects, Ronnenberg, p. 128
	A Robust Algorithm for Computing Boundary Points of the Metamer Mismatch Body, Stiebel, p. 134
	White Balance under White-Light LED Illumination, Chen, p. 140
	Converting the Images without Glossiness into the Images with Glossiness by Using Deep Photo Style Transfer, Fukumoto, p. 145
	LMMSE Demosaicing for Multicolor CFAs, Amba, p. 151

	Putting Color to Work
	Comparison of Non-Contact Camera based Methods to Measure the Pulse Rate for Awake Infants, Kiyokawa, p. 157
	Can Image Enhancement be Beneficial to Find Smoke Images in Laparoscopic Surgery?, Wang, p. 163
	Dual-Band Infrared Video-based Measurement Using Pulse Wave Maps to Analyze Heart Rate Variability, Mitsuhashi, p. 169
	Multi-Spectral Pedestrian Detection via Image Fusion and Deep Neural Networks, French, p. 176

	Wednesday Evening Talk
	Thursday Keynote
	Exposing Color
	Using a Simple Colour Pre-Filter to Make Cameras more Colorimetric, Finlayson, p. 182
	Efficient Multispectral Facial Capture with Monochrome Cameras, LeGendre, p. 187
	Demosaicing of Periodic and Random Colour Filter Arrays by Linear Anisotropic Diffusion, Thomas, p. 203
	Demosaicing Using Dual Layer Feedforward Neural Network, Amba, p. 211

	Interactive Paper Previews II
	Evaluation of High Dynamic Range TVs Using Actual HDR Content, Kim, p. 219
	Colour Image Gradient Regression Reintegration, Finlayson, p. 225
	Effective Boundary for White Surface Colour, Wang, p. 231
	Effect of Choosing a Different Number of Linearization Samples on Display Characterization, Vazirian, p. 237
	Reviving Traditional Image Quality Metrics Using CNNs, Amirshahi, p. 241
	Deep-STRESS Capsule Video Endoscopy Image Enhancement, Mohammed, p. 247
	Color-based Non-Contact Analysis of Skin Changed by Sweating for Emotion Estimation, Uchida, p. 253
	Optimal Text-Background Lightness Combination for Enhancing Visual Comfort when Using a Tablet under Different Surrounds, Huang, p. 259
	An Extension of CAM16 for Predicting Size Effect and New Colour Appearance Perceptions, Li, p. 264
	Does Colour Really Matter? Evaluation via Object Classification, Funt, p. 268
	Effects of Material Pairs on Warmth Perception in Interiors, Ulusoy, p. 272
	The Effect of Neighboring Colors on Color Appearance, Oh, p. 281
	Color-based Data Augmentation for Reflectance Estimation, Sial, p. 284
	The Preferred Type of Tone-Curve in a Transparent OLED Display, Kim, p. 290
	Behavioral Investigation of Visual Appearance Assessment, Gigilashvili, p. 294
	Lightweight Estimation of Surface BRDFs, Ferwerda, p. 300
	Effect of Stimulus Luminance and Adapting Luminance on Viewing Mode and Display White Appearance, Wei, p. 308

	Do You See What I See?
	Investigating Chromatic Adaptation via Memory Colour Matching Method on a Display, Zhu, p. 313
	Can Trichromacy Equal Tetrachromacy?, Bangert, p. 318
	Modelling Contrast Sensitivity for Chromatic Temporal Modulations, Kong, p. 324
	Quantifying Spectral Sensitivity Mismatch Using a Metameric Color Rule, Wyble, p. 330

	A Nose for Color
	Closing Keynote and IS&T and CIC Awards
	Bright Ideas
	Assessing Color Discernibility in HDR Imaging Using Adaptation Hulls, Kunkel, p. 336
	Estimation of HDR WCG Display Color Gamut Volume, Jiang, p. 344

	Illuminating Color
	Rehabilitating the ColorChecker Dataset for Illuminant Estimation, Hemrit, p. 350
	Light Sources with a Larger Gamut Area Can Enhance Color Preference under a Lower Light Level, Bao, p. 354
	Illumination Source Metrics and Color Difference – Selecting Sources for Cinematography, Holm, p. 359

	Color Matters
	Single Anchor Sorting of Visual Appearance as an Oriented Graph, Moroney, p. 365
	BRDF Estimation with Simple Measurement and Data-driven Model, Hirasawa, p. 371
	Blurring Impairs Translucency Perception, Gigilashvili, p. 377

	Subtractive Additions
	LittleCMS-MT: A Thread-Safe Open Source Color Management Library, Vrhel, p. 383
	Perceptual Uniformity Improvement of Sampling with LCH based Look-up Tables Using iccMAX Profiles, Luo, p. 390
	Color Management in 3D Fine-Art Painting Reproduction, Jackson, p. 396
	Calculation of Scalars in Neugebauer-Like Models. II: Final Scalar Function is Copula, Viggiano, p. 402
	Halftone Structure Optimization Using Convex Programming, Morovic, p. 410

	Closing Remarks and Best Student Paper Award

	page1
	titles
	images
	tables

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images
	tables

	page6
	titles
	tables

	page1
	titles

	page2
	titles
	images

	page3
	titles
	images

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles
	images

	page1
	titles

	page2
	titles

	page3
	titles
	images

	page4
	titles

	page5
	titles

	page6
	titles
	images

	page7
	titles
	images
	tables

	page8
	titles

	page1
	titles

	page2
	titles

	page3
	titles
	images
	tables

	page4
	titles
	images

	page5
	titles
	images

	page6
	titles
	images
	tables

	page7
	titles


