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Abstract

Translucency and factors impacting its perception is not yet
fully understood. Various studies have examined the correlation
between physical material properties and perceived translucency.
Furthermore, the concept of translucency constancy has been in-
troduced. However, to the best of our knowledge, no study has
been conducted to identify how image quality impacts perceived
translucency. In this study, we address to one particular image
quality attribute - blurriness. We quantified blur with objective
image quality metric and conducted psychometric scaling exper-
iments to identify how blurring impacts the perceived degree of
translucency. The analysis of the results show some indications
that blur impuirs translucency perception.

Introduction & Background

Translucency is among the least studied appearance at-
tributes [1]. No single agreed definition of translucency exists.
According to Eugene [1], "translucency occurs between the ex-
tremes of complete transparency and complete opacity... If it is
possible to see only a “blurred” image through the material (due to
some diffusion effect), then it has a certain degree of transparency
and we can speak about translucency”; while Gerbino [2], defines
distinction between transparency and translucency as “transparent
substances, unlike translucent ones, transmit light without diffus-
ing it.”

The most extensive survey of the image cues affecting
translucency perception has been carried out by Fleming and
Biilthoff [3]. They review a broad range of the factors affecting
the perceived translucency, like specular highlights, color, object
scale, image contrast and illumination direction.

Furthermore, the study by Xiao et al. [4] concludes that per-
ceived degree of translucency depends strongly on the illumina-
tion direction, phase function used in rendering (i.e. a probability
distribution over directions, which describes the angular distri-
bution of scattered light), and object geometric properties. In the
same paper, they introduce the concept of translucency constancy,
i.e. an ability of human beings “’to estimate translucency in a con-
sistent way across different shapes and lighting conditions.”

It has been illustrated that the background and the pattern
seen through the translucent material can also have dramatic im-
pact on translucency perception [5].

In computer vision, translucency perception is often con-
sidered within the broader problem of material identification
[6, 7, 8, 9]. Even though image quality has been considered an
important factor for identification tasks in other fields, e.g. bio-
metrics [10, 11], references to image quality as one of the factors
impacting material identification and object appearance, is lim-
ited. Motoyoshi [12] argues that blurring non-specular regions,
while keeping the specular highlights intact, increases the per-
ceived degree of translucency, but blurring the whole image is not
mentioned in the paper.
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An interesting study has been conducted by Sharan ez ul.[9],
where the authors demonstrated that blurring impairs material cat-
egorization. They tried to study the role of surface properties,
like color, texture and gloss, in material categorization. They cre-
ated a database using images from Flickr image sharing website!
and sorted the images into nine material categories. The authors
conducted psychophysical experiments, where observers had to
categorize the materials. Afterwards, they introduced different
degradation in the images, which they believed removed or de-
creased the role of the different surface properties (e.g. they used
grayscale images to remove the role of color), conducted another
material categorization experiment with the degraded images and
compared the categorization accuracy with that of the original ex-
periment. In order to remove high spatial information and impair
texture recognition, the authors blurred the images and demon-
strated that blurring the images decreased categorization accuracy
from original 91% to 75.5%.

Sharan et al.[9] did not explicitly refer to image quality, but
the authors obviously degraded the quality of the images when
they blurred them. Blurring the images impairs not only tex-
ture recognition, but also makes surface geometry, shadings and
highlights more ambiguous, because the luminance histogram is
shrunk and the high contrast areas get smoother, as demonstrated
by Motoyoshi[12]. The fact that blurring the images decreases
material categorization accuracy on the one hand, and degrades
the cues that are demonstrated to be correlated with translucency
perception [3, 4, 12], on the other hand, we found it interesting
to investigate further, how image quality, in terms of blurriness,
impacts perceived degree of translucency.

The key research question is the following:”can blur of the
image impact perceived degree of translucency?”

However, dilemma was whether to blur the whole image,
or just the object. Therefore, as mentioned above, two different
experiments were held with different stimuli: one with the im-
ages with the whole scene and context, and another one with the
translucent objects cropped and displayed on neutral gray back-
grounds. Hence, another research question arouse:”do blurred
objects seen in the blurred scene demonstrate higher degree of
translucency constancy than blurred objects seen in isolation?”

There are two major points that motivated us study the cor-
relation between blur and translucency perception: first of all, in
broader perspective, we are interested how different translucency
perception is between the people with impaired and normal vi-
sion. Secondly, we want to identify how image quality impacts
the perception of appearance attributes - translucency, in this case,
and whether there is any threshold, when the quality becomes not
acceptable when addressing the images of the translucent objects.
In contrast with full scene images, isolated object images look un-
natural. However, in non-blurred versions of them, we still have
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enough cues to consider the objects translucent. In the broader
perspective, we want to identify, what are those cues, when they
vanish and when a translucent object becomes a non-translucent
blob.

To the best of our knowledge, no study has been conducted to
examine the impact the blurriness of the image has on perceived
degree of translucency of the materials. The aim of the study is
to identify, and if possible, quantify, the impact blurriness of the
image has on perceived translucency. The subsequent chapters
are organized as follows: in Research Methodology & Experi-
mental Setup chapter, we will discuss the approach applied to the
problem. Afterwards, we will illustrate and discuss the results in
Results & Discussions and finally, draw the conclusions from the
latter and define directions for the future work.

Research Methodology & Experimental Setup
Design of the Experiments

The psychometric experiments were conducted using Quick-
Eval web-based tool[13] . The experiments were held in two
parts: one for the whole-scene images, and another one for the
isolated objects. As mentioned above, full-scene experiments in-
cluded the original images and blurred versions of them, while in
isolated-object experiments, the translucent objects were cropped
from the original images (and blurred versions of them), and
placed on the neutral gray background, in order to remove scene
and contextual information. Both experiments were pairwise
comparisons [14], where the observers were shown two images
and were given the following instruction: “Select the object with
higher degree of translucency, i.e. transmitting higher amount of
light”” Additional oral instructions given, if needed. The experi-
ment was conducted in forced-choice regime, where the observer
necessarily had to select either object of the pair. The same pair
was displayed twice in a flipped order. No reference image was
displayed separately. Three different versions of each image were
used in each of the experiments: original, moderately blurred and
highly blurred. This totals to nine images within each experi-
ment. All the images were compared against each other - hence,
considering that the pairs were shown in a flipped order as well,
72 comparisons and about 10 minutes were needed for each of the
experiments.

The observers could recognize the objects shown in isolated
object experiments on the gray background were simply cropped
from the full-scene images that they had already seen in full-scene
image experiments. In order to discard the effect of this issue, we
used different triplets of the images for full-scene and isolated
object experiments. All the observers completed the experiments
in the following order: 1. Full Scene Image-based experiment. 2.
Isolated Object Image-based experiment.

Stimuli

We used the Flickr Material Database created by Sharal et
al.[9] As the focus of this research is translucency, we used the
images from the single category “Glass”. Six different images
were selected in total - three for full-scene image experiments,
and three for isolated object image experiments. All images were
RGB color images, provided in JPEG format and with resolution
of 512384 pixels. In order to avoid confusion among observers,
only images with a single translucent object were selected.

The images were randomly selected from the database (with
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the constraint of including just single translucent object). "Moder-
ate” and "High” Gaussian blur was applied to each of the images,
with standard deviation of 5 and 25 respectively (with default ker-
nel size of MATLAB imgaussfilt function [15]). The examples
of the blurred images are illustrated on Figures 1 - 6. We under-
stand that the number of images is low. However, we focused on
the number of observers, rather than the number of images, as
according to Sharma [16] “given the amount of time necessary
to perform these experiments,it is often more desirable to have u
larger number of observers.”

Display

The experiments were conducted in controlled conditions.
The images were displayed on EIZO CG246 display, with
1920x1200 resolution and 59 Hz refresh rate. The display
was calibrated according to the following parameters: Gamut:
sRGB; Gamma: 2.20; Brightness: 80 cd/mz; Black point: 0.19
cd /m?; White Point: 6502K, with the following x,y coordinates:
(0.3127,0.3293); Contrast Ratio: 412:1;

The experiment was held under dim ambient illumination.
The illumination was 27 lux in front of the keyboard and the color
temperature of the ambient illumination was 4450K. The distance
to the screen was approximately 50 centimeters.

Observers

20 observers, 12 males and 8 females, with normal, or
corrected-to-normal vision voluntarily participated in the experi-
ment. Average age of the observers was 28.1 years. The observers
had technical background, but were naive to translucency studies.

Analysis of the Collected Data

Collected subjective evaluation data was analyzed in the fol-
lowing way: first of all, Z-scores and their 95% confidence inter-
vals [14] were used to illustrate the responses of the observers.
Furthermore, binomial sign tests were conducted to examine the
significance of the difference between the observations [17, 18].
The raw data, as well as the p-values out of the binomial sign tests
are reported below.

On the other hand, objective metric was used to quantify the
degradation of the image quality. Namely, Structural Similarity
(SSIM) - Full Reference image quality metric [19] - where the
original image was considered a reference, with SSIM score of 1,
while the SSIM score was found for two blurred images. 1 is con-
sidered best score (full similarity), while O is the worst case (no
similarity). SSIM is one of the metrics used to measure Gaussian
blur degradations [20]. It’s worth mentioning that metrics, like
BRISQUE, or blur-specific [21, 22], CPBD [23] and JNBM [24]
failed to adequately quantify very high amount of blur.

Finally, Pearson’s Linear Correlation Coefficients were
found between the objective image quality assessment metric and
the mean z-scores obtained for each of the psychometric scaling
experiments.

Results & Discussion
Image Quality

SSIM metric reflects the changes in the image quality and the
score has a decreasing tendency as the image is blurred. Please,
refer to the Figure 7.
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Figure 1. "Glass” full-scene image: Original (left), moderately blurred (mid-
dle), and highly blurred (right)

Figure 2. "Horse” full-scene image: Original (left), moderately blurred (mid-
dle), and highly blurred (right)

eee

Figure 3. "Pot”full-scene image: Original (left), moderately blurred (middle),
and highly blurred (right)

Figure 4. "Scull” isolated object image: Original (left), moderately blurred
(middle), and highly blurred (right)

Figure 5. “Frog” isolated object image: Original (left), moderately blurred
(middle), and highly blurred (right)

Figure 6.

"Horse” isolated object image: Original (left), moderately blurred
(middle), and highly blurred (right)
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Figure 7. SSIM score as a function of the amount of blur

Psychometric Scaling Experiments

Z-scores of the psychometric scaling experiments are illus-
trated on Figure 8 and Figure 9. Figure 8 summarizes the z-scores
of the three full-scene images with three different degrees of blur-
riness. As we can see on the figure, mean z-score for the undis-
torted image is always higher than that of its blurred versions. For
all three images, there is no overlap of the confidence intervals
between more blurred and less blurred versions of a particular
scene (although there is a substantial overlap between 95% con-
fidence intervals for different images (Cup, Horse, and Teapot)).
Considering this clear separation, we can conclude that perceived
degree of translucency decreases for a given object when the im-
age is blurred. This is logical and intuitive for the images with
high amount of blur, as high blur removes all the cues necessary
for translucency perception (highlights, shades, background that
is seen through, surface geometrical properties) and transforms
the translucent object into a nearly homogeneous patch. On the
other hand, when blur is moderate, translucency perception is im-
paired less dramatically in comparison with the original. There-
fore, we can conclude that translucency perception impairment is
correlated with the amount of degradation introduced.

Figure 9 illustrates z-scores for three isolated object images
with three different degrees of blurriness, when the objects are
seen in isolation on the neutral gray background. The trend re-
mains the same as in case of the full-scene images: mean z-scores,
i.e. perceived degree of translucency decreases, as the blurriness
increases. However, in contrast with the full-scene images, the
gap between mean z-scores, as well as between the confidence in-
tervals of the different versions of the same image is less than that
of full-scene images.

This is opposite to our expectation that access to the
full-scene context might lead to higher translucency constancy.
Whether impact of the full-scene information is statistically sig-
nificant, needs further examination with larger dataset. As the
images used for the two experiments are different, they are not di-
rectly comparable. The reason for the difference can be content of
the image and characteristics of the objects, rather than the lack of
access to the full context information. However, one of the expla-
nations for this indication is that cropped objects, in contrast with
the objects in blurred full-scene images, still stand out from the
homogeneous background, considering that the edges are clear,
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Figure 8. Translucency z-scores for each of the examined full-scene im-
ages. The number after image name indicates the standard deviation of the
Gaussian blur. The error bars and the blue circles show 95% confidence
interval and the mean z-scores respectively. Same variance assumed for all
the samples.

Figure 9. Z-scores for each of the examined Isolated Object images. Same
variance assumed for all the samples.

evoking a perception of the object as a hole transmitting light.
Besides, the highlights, texture other translucency cues might be
more apparent when observing on the homogeneous background.
This can be a topic for further investigation.

Pearson’s Linear Correlation

The fact that image quality distortion is correlated with im-
pairment of translucency perception, means that image quality
assessment is important while working on quantification of per-
ceived translucency and image quality metrics could be used to
predict the extent to which translucency constancy could hold. In
order to further examine this hypothesis, Pearson’s Linear Corre-
lation coefficients between SSIM values and mean z-scores were
found. For Full-scene images, the correlation coefficient was sig-
nificantly high - equal to 0.91. On the other hand, SSIM values
and z-scores for Isolated Object images demonstrated little corre-
lation, as the coefficient was equal to 0.36.

This can be explained with the fact, that the large area cov-
ered with neutral gray background in the isolated object images,
leads to high structural similarity even for highly blurred images,
while as we have already seen, blur significantly decreases mean
z-scores for those kind of images (refer to Figure 10). Therefore,
we found SSIM values from cropped objects only, disregarding
gray background in the SSIM pooling step. However, correla-
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Figure 10. The Quality Maps for moderately (left) and highly (right) blurred
"Scull” (top) and "Glass” (bottom) images. Lighter areas mean higher simi-
larity, darker areas mean less similarity with the original.

tion coefficient between new SSIM values and mean z-scores in-
creased insignificantly - up to 0.42. The reason for this could be
the content of the images: as shown on Figure 10, the scull has
very complex shape and fine details that lead to higher structural
dissimilarity when blurred. Hence, need for further investigation
with larger and more diverse dataset, as well as for the application
specific image quality metric arises and should be considered in
the future work.

In this particular case, we could have found correlation be-
tween z-scores and the amount of blur introduced (standard de-
viation of the Gaussian blur function) avoiding objective image
quality metrics. In this case, high correlation has been demon-
strated even for isolated images. However, in real-life situations
information about the distortion might not be available. This is the
primary reason, why it is very important to have objective metrics
that quantify the amount of degradation and correlate well with
the perceived degree of translucency.

Sign Tests

In order to further substantiate the credibility of our find-
ings, we studied the raw data and conducted binomial sign tests on
them. The raw data can be found in Tables 1 and 2, for full-scene
- and isolated object images, respectively. The number in the cell
signifies the number of the observers, which considered the object
of the corresponding row more translucent than the object of the
corresponding column. The names of the objects without numbers
represent the original images, while the names with the numbers
signify the blurred images with the number signifying the stan-
dard deviation of the Gaussian blur. The number of responses
for each pair sums up to 40, as there were 20 observers and each
pair was shown twice, in a flipped order. In order to compensate
the problem of multiple comparisons, we applied Bonferroni[25]
correction to our data.

As we observe for full-scene images, objects with high
amount of blur are mostly significantly less translucent, except
for the cases, when compared against other highly blurred images.
Moderately blurred images are also significantly less translucent
than the original ones. Refer to Table 1. The results are color-
coded: if object in the corresponding row is significantly more
translucent than the object in the corresponding column, the cell
is green; if it is significantly less translucent, the cell is red; while
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Table 1. The raw data of the observer responses for full-scene images. Raw p-values obtained from the binomial sign tests

are given in the parentheses. Gr

ell: object in the corresponding row is significantly more translucent than the object in

the corresponding column; Red cell: object in the corresponding row is significantly less translucent than the object in the
corresponding column; White cell: no statistically significant difference.

[ 33 (0.4295) [ 6 (0.0506) |

) | 33(4.23e-05)

00T) |3
(29 (0.0064) | 35(1.38e-06)

[ 18 (0.6358) |

Table 2. The raw data of the observer responses for isolated object images. Raw p-values obtained from the binomial sign

tests are given in the parentheses. C

object in the corresponding row is significantly more translucent than the object

in the corresponding column; Red cell: object in the corresponding row is significantly less translucent than the object in the
corresponding column; White cell: no statistically significant difference.

Fro Frog-5 Frog_25 Horse Horse 5 Horse 25 Scull Scull.5 Scull.25
1o 56 35(1.386-0¢ 19 (0.57 34(8.36 (13860 (0.0064 30 (0.0022) |
rog. 1.38 14 (D.0806 D j (0.4295 29 (0.0064) |
Froa.25 (0.0165 15 (0.63 30 (0. 70 (0.0022 25 (0.1538) |
Horse 0.0022 29 (0.0 - 25 (D.1538) |
Horse 5 . . : 27 (0.6358) |
Horse.: 70 (0.0022 71 (0.0064) . (0.0354)
Scull 3 6) | 35(1.38e-06) 1.38e-06)0| 30 (0.0022 .38¢ (1.866-01 (8.3 36(1.866-07,
Scull5 | ) 3 (0. 30 (0.0022) | 19(0.8746 33 (0.63 31 (0.000! 36(1.866-07)
Scull.25_[ 10(0.0022) | 11 (0.0 .1533) | 15(0.1538 15(0.6 :

white cells signify no statistically significant difference. The rows
of the original images (Cup, Horse, and Teapot) are composed of
16 green, 8 white, and 0 red cells. The number of green cells
decreases down to 8 for moderately blurred image rows, while
there are 7 red, and 9 white cells. Finally, the rows corresponding
highly blurred images are composed of just 17 red and 7 white
cells. There is a clear trend that less blurry versions are consid-
ered more translucent by the observers.

On the other hand, difference is not significant in many cases
when judging cropped objects. The original image rows are com-
posed of 11 green cells, and 7 out of them is accounted for the
”Scull” image that is considered the most translucent one among
the nine images.

Besides, the amount of blur does not make significant differ-
ence between the versions of the Horse image. It is very inter-
esting that this object at some extent demonstrates translucency
constancy. One of the reasons for this could be the dark texture
that can be perceived as being inside the object and that is present
even on the blurred image.

Furthermore, highly blurred version of the Scull is signifi-
cantly different only from other less blurry images of the Scull.
Considering this, we could hypothesize that the impact of blur on
the perception of very translucent objects is limited. However, the
observers might be biased with their knowledge about the origi-
nal Scull image - relying on that information regardless the ap-
pearance of the actual blurred version. Another reason could be
that the Scull is achromatic with a lot of specularities that as has
been demonstrated by another study [26] might also significantly
impact translucency perception.

It is also worth mentioning that many differences might be-
come more significant, if the experiment is conducted with higher
number of observes. Example of this is illustrated on Table 3.
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Table 3. P-values decrease, when the number of observers
increases, but the portion of the observers with similar
response remains the same.

Number of observers
. e P-values
with similar responses

15 out of 20 0.04138947
30 out of 40 0.002221434
45 out of 60 0.000134514
60 out of 80 8.58E-06
75 out of 100 9.58E-07

Conclusion and Future Work

To summarize, we have introduced different amount of
Gaussian blur to the Flickr Material Database images. After-
wards, the blurriness were quantified by objective image qual-
ity assessment metric and psychometric scaling experiments were
conducted to determine, how introduction of blur impairs percep-
tion of translucency.

The data analysis has shown that for given images, blur sig-
nificantly impairs translucency perception and the degree of im-
pairment is correlated with the amount of image degradation.

We have also demonstrated that for full-scene images, SSIM
objective image quality assessment has significant correlation
with the perceived degree of translucency, while introduction of
homogeneous background in isolated images, decreases this cor-
relation. As examined image quality metrics, like BRISQUE,
CPBD, and JNBM failed to adequately quantify high amount of
blur, needs for more application specific metric arise.

Furthermore, there are some indications that the effect of
blur is more dramatic when full scene is blurred. We hypothe-
size that cropped blurred images with sharp edges are unnatural
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and might evoke the perception of the object as a hole transmitting
the light. Besides, the translucency cues might be more apparent
on the homogeneous background. This can be a topic of the fur-
ther study comparing appearance of identical objects in those two
setups.

In order to model the impact of blur on translucency percep-
tion and identify the limits of translucency constancy, larger num-
ber of images, as well as smaller steps in blurriness variation are
needed in the future study. More diverse database will also help
figure out the fundamental reasons why blur impairs translucency
perception and what are the cues people use for translucency as-
sessment.

Finally, we were limited just to a single type of image distor-
tion in this paper. In further study, we will examine how distor-
tions other than blur, e.g noise, or compression artifacts, impact
translucency perception and translucency constancy.
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