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Abstract
Triangular gamut area plots on chromaticity diagrams (e.g., CIE xy
or CIE u'v') have long been used in attempts to describe and
compare the range of colors that can be produced on displays. This
has been done despite the long-established recognition that three-
dimensional color gamut volumes in color appearance spaces (e.g.
CIELAB or CIECAM02) more appropriately describe display
performance. Since three-dimensional color gamut volumes are
often difficult to measure and compute, this paper suggests a simple
model to estimate color gamut volumes from chromaticity gamut
areas, CLO/WLO ratio, peak luminance, and diffuse white
luminance for RGB and RGBW wide-color-gamut and high-
dynamic-range displays.

Introduction
The visualization, comparison, and analysis of display color

gamut has a long history in the science of image reproduction.
Traditionally, and even to date in many analyses, gamuts are
visualized and compared in chromaticity diagrams, usually the CIE
xy diagram, but sometimes in the CIE u'v' chromaticity diagram
which has the potential to more uniformly represent the perceptions
of hue and saturation. It should be clearly noted that such 2D gamuts
cannot properly be called color gamuts since they neglect the basic
properties of color appearance as well as the all-important
dimensions of lightness and brightness. Examination of color
gamuts requires the use of at least 3D color appearance spaces such
as CIELAB or CIECAM02. In such spaces, color gamut volumes, a
more meaningful metric of display color performance, can be
computed [I]. The purpose of this paper is to computationally
analyze the relationship between simple gamut metrics and full 3D
color gamut volumes to determine whether a simplified set of
measurements and computations can be used to estimate gamut
volume.

While fundamental color science suggests that CIE u'v'
chromaticity gamut areas might be more meaningful for
comparisons of display appearance properties, Masaoka and Nishida
[2] have illustrated an interesting properties of chromaticity gamuts.
They showed that the CIE xy chromaticity gamut area is very highly
correlated with 3D color gamut volume expressed in any ofthe CIE
appearance spaces, including CIELAB, CIELUV, and CIECAM02.
The CIE u'v' chromaticity gamut area, on the other hand showed no
significant correlation with color gamut volume in any color space.
Thus, CIE -'Y chromaticity gamut area can be used as a proxy for 3D
color gamut volume for simple RGB displays [2]. That work is
utilized as part of the model for prediction of color gamut volumes
derived in this paper. Later, Masaoka[3] further analyzed the causes
of these correlations and showed that it was due to the relative
weighting of various chromaticity regions with respect to the display
gamut volume in those regions.

Masaoka [4] followed up that work by illustrating the
importance of 3D color gamut volume in CIELAB for the
comparison of HDR-WCG displays. In particularly this is critical
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when comparing RGB displays with RGBW displays or when
comparing displays with disparate peak luminance levels or ratios
between peak luminance and rendered diffuse white luminance.
This work also illustrated a strong correlation between color gamut
volume and peak luminance and CLO/WLO ratio [4]. CLO is the
Color Light Output defined as the sum of the full-on luminances of
the three (RGB) display primaries. WLO is the White Light Output
defined as the maximum luminance of the display. The two can
differ if a display incorporates a white primary (RGBW), or if the
display algorithm manipulates the power output for certain colors.
These relationships are further explored and exploited in the model
derived in this paper.

An alternative approach to visualizing and comparing 3D color
gamut volumes in 2D plots was recently published [5]. That work
converts gamut volume into "rings" of gamut areas as a function of
relative luminance represented at the appropriate hue angle. While
that work helps significantly in visualizing color gamut volumes it
does not provide a simplification to the computation process or
simple summary metrics that can be easily used in the display
industry. The purpose of the present research is to do just that.

This paper examines 3D color gamut volumes in CIELAB and
CIECAM02 JCh for a variety of simulated RGB and RGBW
displays with different assumptions about peak luminance, diffuse
white luminance, and surround relative luminance. Some of the
viewing conditions selected were derived from the
recommendations for HDR television in ITU-R BT.2100-1 [6].
Using the computed gamut volumes a model was derived to predict
color gamut volume from chromaticity gamut area (xy), CLO/WLO
ratio, and peak luminance. This model was then evaluated in a
second simulation using independent display parameters.

Analysis and Modeling
For initial analysis of HDR and WCG display gamuts, the

following parameters were evaluated to create a range of results.
Peak luminances of 500, 1000, 2000, and 4000 cd/m2 (nits) were
evaluated. Primary sets were selected to be those of Rec.709, DCI
P3, and Rec. 2020. Both RGB displays and RGBW displays with
CLO/WLO ratios of 0.1, 0.3, 0.5, 0.7, and 0.9 were considered.
(RGB displays have a CLO/WLO ratio of 1.0.) Color gamuts were
evaluated in both CIELAB and CIECAM02 JCh color spaces.
Limited experiments indicate that CIELAB remains approximately
perceptually uniform above diffuse white up to L* of at least 200
[7,8]. Computations were completed using diffuse white luminance
of 200 cd/m2 regardless of peak luminance and for diffuse white
luminance equal to 20% of the peak luminance. For the extended
CIELAB color appearance space, the same equations are used for
tristimulus values greater than those ofthe D65 reference white at a
luminance of200 cd/m2 (L * = 100.0) based on the ITU-R Report for
operational practices in HDR television production [9]. Due to
limited space in this paper, only examples of typical results and the
summary models are presented.
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luminance. This is because CIELAB is a relative color appearance
space that is independent of the peak luminance so long as the
diffuse white is taken as a constant percentage of the peak. In such
cases, peak luminance becomes irrelevant to the prediction of color
gamut volume (likely not a desirable outcome). Figure 4 shows
similar results in CIECAM02 JCh (which is also a relative space for
lightness and chroma, CIECAM02 QMh, predicting brightness and
colorfulness, would behave differently.). All CIECAM02 results are
shown for a dim surround. Similar trends are seen for computations
with other surrounds and adapting luminance levels.
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Figure 1. CIELAB gamut volume as a function of peak luminance for a 200cd/m2
diffuse white and three standard primary sets.
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Figure 1 shows CIELAB color gamut volume for three sets of
primaries as a function of peak luminance with the diffuse white set
at 200 cd/m2• Gamut volume grows substantially and essentially
linearly with peak luminance due to the fixed white point luminance
since the gamuts are growing well beyond the range of surface color
appearance to incorporate light sources and other extraspectral
appearances. These results suggest a simple relationship between
color gamut volume and peak luminance for any given set of
primaries. Figure 2 shows similar results for CIECAM02 JCh color
gamut volume. Again, there is a rather simple relationship between
gamut volume and peak luminance for any given set of primaries.
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Figure 2. CIECAM02 JCh gamut volume as a function of peak luminance for a
200 cd/m2 diffuse white, La = 20% of diffuse white, dim surround, and three
standard primary sets.

On the other hand, Figure 3 illustrates the color gamut volume
in CIELAB as a function of peak luminance when the diffuse white
is taken to be 20% of the peak white. As expected, the gamut
volumes depend on primary set, but they do not depend on peak
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Figure 3. CIELAB gamut volume as a function of peak luminance for a diffuse
white of 20% of peak white and three standard primary sets.
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Figure 4. CIECAM02 JCh gamut volume as a function of peak luminance for a
diffuse white of 20% of peak white, La of 20% diffuse white, dim surround, and
three standard primary sets.

Figure 5 illustrates the relationship between the normalized
color gamut volume, normalized to the volume for an RGB display
(CLOIWLO = 1.0) with the same primaries, as a function of
CLOIWLO ratio for the CIELAB LCh color space. Note that the
relationship is similar for all three primary sets and can be replicated
with a 4th-order polynomial (simply a description of the data, not a
physical model) within the domain of the data. Figure 6 illustrates
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similar results for the CIECAM02 color gamut volume. Thus, color
gamut volume can be related to both peak luminance and
CLOIWLO ratio for any given set of primaries. What remains is to
explore the definition of the primaries and their effects on color
gamut volume.

'" 0,8
E
::>g
0°,6
(5
<.>
-0

.~ 0,4
<ii
Eo
CO2

chromaticity of virtual primaries

0.8

0.6
>.

0.4

0.2

0 0 0.2 0.4 0.6 0.8
x

y = .Q,50S',· + 0.655'," + ·0,715',2 + 1,sao', + ·0.011

°° 0.2 0.4 0.6
CLOIWLO

0.8

Figure 7, Primary chromatlclt/es, along with Rec, 709, Rec, 2020, and DCI P3
gamut boundaries, used to create virtual displays for simulation and modeling,
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Figure 5. Relationship between CIELAB normalized color gamut volume and
CLO/WLO ratio for a variety of displays.
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Figure 6, Relationship between CIECAM02 JCh normalized color gamut volume
(dim surround) and CLO/WLO ratio for a variety of displays,

Figure 8, Normalized color gamut volume as a function of normalize
chromaticity area (xy) for four different appearance models, Each Is linear with
a high degree of correlation,

To examine the correlation and linearity between color gamut
volume and CIE -'Y area coverage as proposed by Masaoka [2, 3],
hundreds of virtual RGB primary sets were simulated and gamuts
were calculated. Primaries were selected by creating a grid of data
in the chromaticity areas between Rec. 2020 and Rec. 709 as
illustrated in Figure 7.1317 virtual primary sets in total were created
and analyzed. In this case, the simulated peak luminance was 4000
cd/m2 and diffuse white was equal to 800 cd/m2 with RGB displays.

Figure 8 shows the color gamut volumes (normalized for
comparison) in each of the four color spaces (CIELAB and
CIECAM02 with different parameters) as a function of CIE xy
chromaticity gamut area. In each case, the linear correlations are
quite high (lowest R2 = 0.976) and the fitted lines do a reasonable
job of describing the data. Figure 9 shows the same results as a
function of CIE u'v' chromaticity. Cleary the correlation is not as
high, and not useful for predictive modeling. This results is
consistent with the previous results.[2,3] These results suggest that,
together with the earlier information about CLOIWLO and peak
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Figure 9. Normalized color gamut volume as a function of normalized
chromaticity area (u'v? for four different appearance models. No meaningful
linear correlation exists.

luminance, chromaticity gamut area in CIE xy might be used as a
proxy for the more difficult computation of color gamut volume in
CIELAB or CIECAM02. Thus, a set of simulated displays was

constructed to simultaneously vary all these parameters and test an
implementation of a model to predict color gamut volume from
simpler measurements.

Parameter CIELABLCh CIECAM02
JChdim20

P1 -0.509 -0.583

P2 0.655 1.107

P3 -0.715 -1.383

P4 1.580 1.852

P5 -0.011 0.007

The RGBW (or CLO/WLO) ratio is computed from the fitted
forth-order polynomial as shown in Eq. 2 with parameters from table
2. The rgbw term is the actual CLO/CLO ratio for the display.

The peak luminance ratio is computed using Eq. 3 and
parameters in table 3. The peakLum term is the actual peak
luminance in cd/m2• Parameters are given for both constant 200
cd/m2 diffuse white and for diffuse white set to 20% of peak white.

rgbwRatio = PI *rgbw4 + P2*rgbw3 + P3*rgbw2 + P4*rgbw1 + P5
(2)

Table 2. Parameters for computing rgbwRatio in Eq. 2 as a
function of CLO/WLO ratio.
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peakLumRatio = PI *peakLum2 + P2*peakLum + P3 (3)

Model and Verification
Three HDR-WCG display properties were varied for creation

of independent data to test the predictive model. These were the CIE
xy chromaticity area coverage (definition of RGB primaries), the
peak luminance, and the RGBW CLO/WLO ratio.

The model is as follows:

predVol = xyRatio*peakLumRatio*rgbwRatio*Rec2020Vol (I)

The predicted volume is the product of the chromaticity ratio,
peak luminance ratio, RGBW (CLO/WLO) ratio, and the
normalizing Rec. 2020 volume as given below. Note that the model
parameters are disctinct for CIELAB and CIECAM02 and would be,
as expected, for other color spaces.

Table 3. Parameters for computing peakLumRatio in Eq. 3 as a
function of peak luminance.

CIELAB CIECAM02 CIELAB CIECAM02
Parameter LCh JChdim20 LCh JChdim20

(200cd/m2) (200cd/m2) (20%) (20%)

P1 0 -1.55e-8 0 0

P2 2.51e-4 3.00e-4 0 -5.94e-6

P3 -3.40e-4 4.67e-2 1 1.02

The constants Rec. 2020 color gamut volume is given in Table Table 4. Parameters for computing rgbwRatio in Eq. 2 as a
1. function of CLO/WLO ratio.

Table 1. Constant Rec. 2020 color gamut volume for examples
illustrated in this paper

Diffuse White CIELABLCh CIECAM02
Type JChdim20

Constant 3.8586e7 2.535ge7
200cd/m2

20% of Peak 0.9578e7 0.7486e7

Parameter CIELABLCh CIECAM02
JChdim20

P1 1.119 0.965

P2 -0.1159 -0.026

Finally, the xy ratio is computed from CIE xy coverage area
(xyarea) using Eq. 4 and parameters in Table 4. Rec2020area is
equal to 0.2119.
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Figures 11 and 12 show the prediction accuracy for displays
with a constant diffuse white of 200 cd/m2 and for displays with a
diffuse white of20% of the peak luminance respectively. Each plot
shows the predicted color gamut volume as a function of the
computed (i.e. measured) color gamut volume for each of four color
spaces. The CIELAB, CIECAM02 JCh_(three settings) are the ones
examined in this paper. The others simply illustrate that the model
works for other setting of CIECAM parameters. In all cases, the
predictions are good, but they are significantly better for
CIECAM02. The CIELAB predictions seem to be systematically
high, especially for larger gamut volumes, which suggests some
model improvement might be possible. The overall mean percent
error is about 3% for the constant white and about 2.6% for the 20%
white. Standard deviations of percent error are of similar magnitude.
This is roughly on the order of combined measurement and
computation uncertainty for deriving color gamut volumes, which
suggest that the described abridged method might be of practical
utility.

Figure 12. Predicted color gamut volume (from model) as a function of actual
computed color gamut volume for appearance calculations with diffuse white
equal to 20% of peak white.

Conclusion
It is well established that 3D color gamut volumes, rather than

2D chromaticity gamut areas, are required for meaningful
comparison of display color reproduction properties [8, 10]. With
the advent and commercial popularity of high-dynamic-range
(HDR) and wide-color-gamut displays the examination of color
gamut volumes in appropriate color appearance spaces is even more
important [1, 8]. However, it is difficult and time consuming to
accurately measure color gamut boundaries and also subject to
computational approximation in estimating continuous 3D functions
with discrete volume areas. This paper examined that problem by
algorithmically simulating displays with ideal behavior and then
analyzing the various parameters of the displays (e.g. peak
luminance, CLOIWLO ratio, etc.) in relation to computed color
gamut volumes. The results allowed derivation ofa relatively simple
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Figure 11. Predicted color gamut volume (from model) as a function of actual
computed color gamut volume for appearance calculations with a constant,
200 cd/m2 diffuse white.

Figure 10. Primary chromaticities, along with Rec. 709, Rec. 2020, and DCI-
P3 gamut boundaries, used to create virtual displays for independent
verification of the fitted models.

To validate the model 200 random RGB primary sets were
selected as illustrated in Figure 10. In addition, peak luminance was
randomized in the range from 500 to 4000 cd/m2• Lastly the
CLOIWLO ratios were set to six different values, 0.1, 0.3, 0.5, 0.7,
0.9, and 1.0_(normal RGB). Thus, a total of 1200 simulated HDR-
WCG displays were analyzed to compute actual color gamut volume
and compare that with the color gamut volume estimated from CIE
xy chromaticity gamut area, peak luminance, and CLOIWLO ratio.
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empirical model to relate color gamut volume (to typically better
than 3% error) to measured peak luminance, CLOIWLO ratio, and
CIE xy chromaticity gamut area. Thus, color gamut volume can be
reasonably estimated from CIE Y-'}' measurements of the RGB
primaries and peak white. This procedure could allow the display
industry to report more meaningful data (color appearance gamut
volume) based on a small number of relatively simple
measurements.

It should be noted, that the model parameters described in this
paper only apply to the color spaces and settings described. Any
future standard technique would require all those decisions to be
made (e.g. CIELAB vs. CIECAM02, 20% white vs. 200 cd/m2
white, etc.) prior to a re-derivation of the model parameters. This
paper simply shows that the technique works; it does not propose a
standard. Moreover, this model is only valid for RGB/RGBW
system now. It would need a verification ifused for multi-primary
system.
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