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Abstract

Objectively predicting the discernibility of color differences is
a common requirement when assessing the performance of a display
device and is the domain of color difference metrics. Metrics
commonly used for this task assess the color discriminability of two
stimuli based directly or indirectly on the viewing environment with
a known, constant adaptation luminance level Ly.

These metrics were originally derived for color assessment of
reflective and transmissive media as well as low dynamic range
displays, where Ly can both be maintained and estimated with
reasonable certainty for any likely stimulus pair. With High
Dynamic Range (HDR) and Wide Color Gamut (WCG) displays,
using Steady State metrics is becoming increasingly challenging
when assessing the discernibility of two similar stimuli over the
display s full range of capability. This is especially true if spatially
or temporally varying HDR content is displayed, causing the Human
Visual System (HVS) to frequently and unpredictably change Ly,
and with that visual sensitivity.

To overcome these challenges, we present the concept of an
“Adaptation Hull” color difference metric. Rather than using a
specified adaptation luminance that is in most cases substantially
different than the stimuli under test, an Adaptation Hull metric
instead considers an optimal adaptation state where the HVS has
the highest sensitivity to color differences.

Introduction

The mass-market adoption of High Dynamic Range (HDR) and
Wide Color Gamut (WCG) technologies has led to display devices
that are capable of rendering brighter highlights, deeper blacks and
more intense colors compared to traditional displays. Due to this
development, the demand to assess the rendering capabilities of
elements in HDR imaging ecosystems has also significantly
increased over the previous years, for example to guide content
mapping as well as display design, calibration and comparison.

One important aspect when determining the performance of
HDR imaging ecosystems is the objective assessment of color
discernibility or color difference, for which several metrics have
been proposed and standardized. Generally, these metrics are based
on color models that assume a static, known or well-defined viewing
environment. Viewing a static stimulus under a static viewing
environment keeps the HVS in a balanced simultaneously
perceivable dynamic range or Steady State [1]. Therefore, we refer
to those metrics and their underlying color models as “Steady State”.

It can be argued that the reason why the reproducible color range
(intensity and chromaticity) could have been modelled sufficiently
while assuming a single state of adaptation is because typical
reflective, transmissive and SDR display color targets are often
assumed to not significantly invoke many of the human visnal
system’s (HVS) local or temporal adaptation processes. With
emissive HDR and WCG imaging systems this assumption no
longer holds true as the content shown on HDR-capable displays is

336

more likely to cause significant changes in adaptation state of the
HVS [2, 3, 4]. For example, recent work shows that pupil area, one
of'the constituent mechanisms responsible for luminance adaptation,
could vary within the ratio of 3:1 during HDR content viewing [5].
Moreover, increasing screens sizes cause the image to occupy more
of the visual field which in turn causes the display luminance to
become the dominant factor driving the HVS adaptation.

In the following, we discuss how viewing HDR and WCG
content causes larger changes in adaptation and why this is
significant for determining discernibility of colors. Given that the
state of adaptation cannot be feasibly established during content
playback, we argue that a sensible choice for evaluating color
differences is to instead take the conservative approach and assume
that the adaptation is at its most sensitive state. As a consequence,
we propose the establishment of a new class of color difference
metrics called “Adaptation Hull” metrics. Using this approach
improves efficiency when assessing the rendering capabilities of an
HDR/WCG display by separating display specific properties from
viewing environment- and content-dependent aspects of Steady
State models that are not required or unknown.

Previous Work

Objective color difference metrics have been a long-time
research subject. In 1976, the CIE standardized its first AE metric
which was developed alongside the CIELAB color space and is
today known under the name AE7¢ [6]. This metric was further
improved in the revision of the standard now known as AEq [7].
The latest revision of the standard, AEyuo [8], is the industry
standard in color difference estimation. In all three standards, the
input data is represented by two CIELAB triplets of the colors being
compared. Because of the use of CIELAB to represent the input,
these models require a known white point and a controlled
adaptation. The error metric is calculated as the Euclidean distance
between the colors, either in CIELAB space or in the transformed
LCh space (lightness, chroma and hue). In the later revisions, the
distance along each axis is additionally scaled by the functions that
compensate for hue nonlinearity of the CIELAB space, add the
crispening effect (highest HVS sensitivity around adaptation point)
and model the effect of chroma.

Another CIE standard that can be used to predict color
differences is a color appearance model known as CIECAM.
Originally released as CIECAM97s, it was later revised as
CIECAMO2 [9]. Even though the main goal of the model is
predicting absolute and relative color correlates such as lightness,
colorfulness, hue, etc., it can be converted into a color space with
uniform color differences. There exist several such conversions, the
most popular of which is the CIECAM-UCS [10]. CIECAM-based
models require information about the contents of the visual field,
including the relative CIEXYZ coordinates of the patches compared
and those of the white point, luminance of the background, absolute
adaptation luminance and the viewing conditions, including the
degree of adaptation. The model is intended to be used only with
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single patches and does not take spatial information about the
stimuli into account.

This limitation of not considering spatial information was
addressed by Kuang et al. in iCAM [11], an image color appearance
metric which incorporates local adaptation by using lowpass-filtered
image luminance as an approximation of adapting luminance. The
model uses the IPT color space [12] to improve hue linearity while
retaining the color correlate calculation formulas from CIECAMO2.
Because of this, the model still belongs to the Steady State family
because the knowledge about the adaptation state is necessary for its
calculation, even though it is implicitly calculated based on the
contents of the image.

For completeness, we should mention CMC [13] which is also
based on the CIE LCh color space. Although CMC is a tolerance
instead of a difference metric, it serves a similar purpose. Tolerances
predict color errors, but with the distinct goal of determining when
color errors become objectionable.

The aforementioned color difference metrics have found
widespread use in the paint, material and textile industries. They are
also widely used to assess the accuracy and rendering performance
of stimuli shown on emissive display devices. Using Steady State
metrics for this task has been acceptable because until now most
displays have offered a fairly limited dynamic range and color
gamut. Nevertheless, there has been an interest in approaches that
are not based on Steady State principles.

Properties of adaptation hulls can already be attributed to earlier
models such as DICOM [14], developed in 1992 for use in
interchange of achromatic medical images. The part of the standard
related to storing of images uses an encoding scheme which does
not expect adapting luminance when viewing the content, instead
assuming the conservative full adaptation to the stimulus. This
allows for a more efficient quantization of the luminance space, up
to the limits of visual detection. To predict the detection threshold,
the contrast sensitivity function (CSF) by Barten [15] is used, with
a constant stimulus spatial frequency of 4 cyc/deg, which is close to
the highest sensitivity of the HVS across the majority of the
photopic range.

A similar model was developed under the name Perceptual
Quantizer (PQ) [16] and standardized by SMPTE as ST.2084 [17].
PQ makes an even more conservative prediction than DICOM on
detection thresholds by using the spatial frequency at which the
contrast sensitivity is the highest at each luminance. As a result, it
can be used to encode the range between 0.0 and 10,000 cd/m?
where, when using 12-bit codewords, the luminance differences
between consequent code words never exceed the detection
threshold.

An early approach on extending PQ to also include a chromatic
component was proposed by combining it with CIECAMO02-UCS
[18]. This is achieved by defining the CIECAMO(2 white-point, La
and background Y}, to be relative to the stimulus luminance.

More recently, PQ became the basis of the IC+Cp color space
[19], which is calculated by applying the PQ nonlinearity to LMS
cone responses assuming Degs adaptation and then converting the
result into three channels, chromatic Cr and Cp and achromatic L.
The conversion matrix was optimized to maximize hue linearity
using the Ebner and Fairchild dataset [12] that is the basis of the IPT
color space. Starting from data from MacAdams’ experiments [20],
a new color difference metric called AIC+Cpwas proposed with the
goal of predicting near-threshold color differences. The metric does
not predict color differences in specific conditions, instead offering
insight into the possibility of perceiving differences under the
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highest visual system sensitivity, when fully adapted to the
compared colors.

In the following sections, we will explain the need for such a
color difference metric, evaluate its performance and offer insights
into typical use cases. There has been a recent experiment
comparing the accuracy of AICtCp against other color difference
metrics conducted by Safdar et al. [21]. Because their assumed use
case reflected a Steady State scenario for which AICTCp is not
intended, AICtCp performed worse than the other tested metrics.

Behavior of the HVS when Displaying HDR

Content

Due to the HVS’ adaptive processes, color differences that may
not be discernible under a static state of adaptation can become
visible if adaptation is variable and can manifest, for example, as
contouring or color inaccuracies. At the same time, the range and
rate of adaptation change is difficult to predict as it would not only
have to include the time course of adaptation but also predict
fixations and saccadic motion of the eyes (in the following, we relate
the term ¢ stimulus’ to what the HVS perceives for the duration of a
fixation, independent of the complexity of the imagery content).
One potential but complex option could be to apply existing Steady
State models exhaustively over all potential states of adaptation
from the lower to the upper boundary of the display in order to
identify the discernibility of two stimuli.

To avoid such complexity, a new metrical approach is desirable
that factors in unpredictable adaptive processes that hinder the use
of Steady State metrics. In order to support the concept behind the
proposed new metrical approach, we first discuss several aspects
that facilitate adaptive processes in the context of consuming typical
image and video content on HDR/WCG displays.

Spatial Impact on Adaptation

Perceptual color models factor in the spatial properties of the
HVS. For example, CIECAMO2 describes the area covered by a
stimulus to be 2°, which in turn is extended to 10° by the background
of the stimulus [9]. Everything beyond 10° visual angle is the
stimulus surround which is intended to comprise the ambient
illumination. Conceptually, the surround attributes the vision cues
that motivate adaptation.

When applying color models in context of an SDR display, the
background and surround parameters have to be defined as well,
which is typically not straight-forward. It is therefore alluring to
resort to a simplification when providing those parameters to the
color models: the background consists of the active screen area
while the surround is defined as everything beyond such as room
illumination.

With large HDR/WCG display devices, this problem becomes
more complex. HDR displays and TVs in general are constantly
increasing in size, with 55” and 65” displays being common and
even 75 or larger becoming available to average consumers. At the
same time, the viewer’s distance to the display is typically not
changing e.g. due to the way their living room is set up. Therefore,
when viewing content, a modern display subtends an increasing
viewing angle of the viewers’ visual field, for example from 37° and
65° when viewing 3 and 1.5 picture height away, respectively (in
accordance with UHD TV design). Further, content such as video
imagery is not necessarily well defined in size.

With such viewing set-ups, the color model’s 10° visnal angle
covering the background area might easily fall inside the viewing
area of the display and with that, the displayed content can impact
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the surround and consequently the state of adaptation. This concept
is illustrated in Figure 1.
ne 2¢

=
= Surround

Surround

Figure 1: The area of the background (BG) and surround as defined by
CIECAMO?2 in context of a large HDR/WCG display. The visual area of images
often extends beyond the 10° visual angle for the background specified in
CIECAMO2. Therefore, the displayed content has a direct impact on the
surround and with that potential changes in adaplation.

Further, it is well known that visual glare and light scattering in
the optical media reduces perceivable contrast (e.g. [22]). Therefore,
it has been argued that very dark areas requiring dark adaptation do
not occur even on HDR displays [23]. However, that work did not
consider a wide range of image statistics or video content.
Nevertheless, if spatial properties such as fixations of the eyes to
different areas of the displayed content are considered, the
distribution function of glare in a scene has also to be factored in. In
the latter scenario, there will be areas where glare is pronounced,
reducing perceivable dynamic range. However, it is also realistic
that glare might not have a significant impact even though a bright
stimulus is present on the screen. For example, if a viewer fixates on
an area sufficiently far from the high-luminance area, veiling glare
will trail off to insignificant values beyond 16° visual angle [24, 25].
This is feasible with today’s TVs and viewing behavior and needs
to be accounted for when predicting discernibility of colors.

Temporal Impact on Adaptation

Typical content displayed on HDR/WCG displays is not limited
to still images and usually contains a temporal component that is not
only defined by the progression of actual imagery but also
influenced by creative storytelling. For example, a dark scene can
directly follow a bright one, and a scene with higher dynamic range
can follow one with a lower dynamic range, causing the HVS’
adaptation to change. Example scenes where this would be the case
are given in Figure 2. There, the histograms are calculated from the
source HDR images, illustrating their respective dynamic range
(DR) brackets and central tendencies. It is visible that over time, the
DR covered by all three scenes, spans more than the 3.6 Orders of
Magnitude (OoM) identified for the HVS’ Steady State [2].

In this context, the time-course of adaptive processes has also to
be considered. Some of those processes happen faster than others
when watching content. Even though full adaptation to low scotopic
luminance can take tens of minutes [26], Stokkermans and
Heynderickx [27] have shown that at least partial dark adaptation
such as from 25 to 0.001 cd/m? is carried out in the order of seconds,
which is a realistic assumption for scene length.
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Figure 2: Typical luminance distribution of an HDR image as well as a very
dark and bright scene. All these ranges can be displayed on today’s
HDR/WCG displays. When shown in sequence, e.g. as elements of artistic
storytelling, the scenes will be long enough for the HVS to adapt to each
luminance range in order to optimize sensitivity. Images from ‘One-Way-
Ticket’ (Dolby). The images are tone-mapped for print.

Deriving an Adaptation Hull Metric

We have established that the HVS’ state of adaptation cannot be
predicted easily when watching content on emissive HDR/WCG
displays because adaptive processes can change the sensitivity of the
HVS in an unpredictable manner. Therefore, the discernibility of
two stimuli shown on such displays will also differ as a function of
adapting luminance. For example, at some adaptation luminance
levels those stimuli are discernible while at others they are not.

Figure 3 illustrates, on a simplified level, how to establish an
adaptation hull from a Steady State color volume. A Steady State
color volume can be illustrated as a double cone that has its largest
diameter where the contrast sensitivity is the highest for the
prevailing environment (here a function of the state of adaptation
La,1). This double cone converges to white on the top and to black
at the bottom due to non-linear (sigmoidal) response compression
[28]. Due to this, the sensitivity to distinguish color differences can
be considered highest where the cone has the largest diameter. This
is where a 1 JND ‘thick’ disc can be extracted (1) as contrast
sensitivity would be lower at any other intensity under L1 such as
depicted by (2). Now, the adapting luminance can be changed to L »
(3) and the procedure (1) is carried out again. Because of the shift of
adaptation, there are colors shifted in and out of the discernibility
region when moving from a Steady State based on La,; to Laz (4).
The extraction of ¢ discs’ can now be repeated for a range of adapting
luminances, here denoted La, to Las (5) forming a stack of the
highest sensitivities at their given La. If carried out at each IND step
along the intensity axis, we end up with an adaptation hull which is
limited by the display boundaries, here denoted La min t0 La max (6).
This cylindrical representation is a simplification as the sensitivity
of the HVS to chromatic stimuli is reduced when lowering La,
ultimately leading to achromatic stimuli in the scotopic range. Also,
the actual capabilities of a real display would have an impact on the
shape of the ¢ cylinder’.

It is important to note that due to this process of just considering
the highest sensitivity at each adaptation luminance, the concept of
lightness as it is described in the color appearance literature [9] is
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Figure 3: Establishing an Adaptation Hull Model from a Steady State Model. Explanation in text. Please note that this illustration only serves to explain the concept.

not modelled. The model predicts if the differences between colors
are discernible while making no predictions on the appearance of
such differences. Table 1 summarizes the conceptual differences
between Steady State and adaptation hull approaches.

Table 1: Comparison of Features between Steady State and
Adaptation Hull Metrics

to be known?

Steady State Adaptation Hull
. : Their color Highest sensitivity
c?izzlegr:iet?ilitf 2:,?3\;? appearance under [ of HVS of any
salors basesé P a single state of plausible state of
’ adaptation adaptation
Adaptation Level has Yes No

Efficiency to identify
highest sensitivity
throughout the PQ
Range?

Metric would have
to be calculated
for each JND step
of the desired
range

Metric is run once

Metric can predict
lightness?

Yes

No (not required
for task)

In summary, when the color differences being evaluated are in

the region of maximum discernibility for a Steady State space the
results are similar to the adaptation-hull space which is independent
of the state of adaptation. However, when the color differences are
in a region of lower discrimination in the Steady State space, the
results diverge, and the Steady State space is likely to under-
represent the discernibility in comparison to the adaptation hull.

Accuracy of an Adaptation Hull Metric based
on ICtCp

After we have introduced the concept and application field of
adaptation hull metrics, we are interested in how an actual
adaptation hull metric based on ICtCp compares against a Steady
State one. We have chosen CIEAEqq (called AE;qq for simplicity)
for this task because of its widespread adoption and its common use
in context of our application with HDR/WCG displays.
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Pieri & Pytlarz [29] created a color difference dataset covering
the adaptation luminance levels of 1000, 25 and 0.1 cd/m? (all
luminance levels are reported in photopic luminance only) and
compared them against the aforementioned metrics. These results
are shown on the right side of the plot in Figure 4. Discernibility
errors between the dataset and the AEgq predictions are based on a
Dgs adapting white point, with adapting luminance equal to the
luminance of the test pairs. We see that the error is significantly
higher with the Steady State AEspp metric for the 0.1 cd/m? case.
AIC1Cp, which is based on an adaptation hull shows a low
discrepancy between metric and dataset for all three adaptation
levels, supporting the applicability of the adaptation hull concept.

We also analyzed the effect of adaption on this data set using the
AEjg0 metric. The results are shown in Table 2. We used the
STRESS metric [30] for objective analysis.

Table 2: Comparison of STRESS Performance with Different
Assumed Adaptation States

AICTCp | AE2000
Constant Adapt to

Topic Hull Adapt 1 cd Color and

Luminance | 203— Des ;

m Luminance

All 44.5 78.7 70.2 84.1
Color 43.1 80.8 60.5 82.0
Neutral 42.5 64.7 67.3 63.4
015 56.8 66.4 74.9 75.6
255 36.0 51.0 442 87.2
1000 ;—i 32.2 55.9 63.0 88.9

In the STRESS metric, a lower value means better performance.
We see that no matter the tested adaption state or range of colors,
the adaptation hull metric, AICtCp performs better. We also see that
the best performing adaption state of AEx is different depending
on the colors being analyzed. The constant adaptation state
introduced by ITU-R BT.2408-1 [31] of 203 cd/m? at Des performed
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Figure 4: Predicted color differences for measured detection thresholds from the Pieri and Pytlarz experiment [29] (in grey area on the right starting at 0.1 cd/m?)
with the results of the experiment described in this paper on the left (0.01 cd/m? and below). The error bars represent standard deviation of the mean calculated
using bootstrapping over 1000 iterations. The vertical dash-dotted lines separate adaptation luminance levels.

well for the saturated colors and the 25 cd/m? patches, whereas
adapting to the color and luminance level performed better for
neutrals. Then again, adapting to only the luminance (keeping color
fixed at Dgs) performed the best for low and high luminance patches.
So, even in this experiment with a well-controlled adaption state, it
is difficult to determine the proper adaptation parameters to get the
best performance from AExqg0.

Color Difference Experiment at Mesopic
Luminance

To determine whether AE;qo continues the trend of over
predicting color differences at mesopic luminances below 0.1 cd/m?,
we conducted an experiment at even lower adapting luminance
levels than the ones reported by Pieri & Pytlarz. We consider this a
pilot study for a larger experiment in the future where we intend to
measure color perception at or around the absolute threshold of color
vision.

To achieve the necessary stability at low luminance, we used a
Dolby PRM-4220 reference monitor. Because the native black level
of a PRM is 0.005 cd/m?, we used two stacked sheets of Rosco
E-Colour #211 ND 0.9 filters, lowering the peak luminance from
600 cd/m? to 8.2 cd/m? This allowed us to test two new luminance
levels, 0.005 cd/m? and 0.01 cd/m?, as well as repeat the experiment
at 0.1 cd/n? as a sanity check. We chose those luminances following
an earlier session aimed at determining at what luminance the
authors could no longer discern colors. The native primaries of the
PRM were shifted by the filters to the values shown in Table 3. The
display was calibrated with the filters attached using a
PhotoResearch PR-740 spectrophotometer before carrying out the
experiment.

Table 3: Chromaticities and peak luminance of the primaries
and white point of PRM4220 display used in the experiment

Color X y Y

Red 0.6718 0.3243 1.554

Green 0.2705 0.6827 5.8924

Blue 0.1492 0.0529 0.7567

White 0.2773 0.2958 8.203
340

We initially attempted to ensure equiluminance of the test
stimuli at mesopic levels by using the CIE 191:2010 standard for
mesopic luminance [32]. However, the tested colors were more
saturated than the street lighting for which CIE 191:2010 was
designed. As a result, the red and blue primaries had, respectively,
lower and higher ratios of scotopic luminance to photopic luminance
than allowed by the model. Even after a 30-minute adaptation
period, the difference between the apparent brightness of these two
colors when matched in mesopic luminance was highly
conspicuous.

We decided to take a different approach than the previous
experiment and rather than allowing the observer to fully adapt to
the patch luminance, we instead showed an adaptive field at 8 cd/m?
peak luminance across the entire display between each set of
comparisons. The sets were composed of 30 stimuli comparisons
and took on average about 135 seconds for each participant to
complete. We designed the experiment this way with the intention
of preventing significant rhodopsin regeneration and minimizing the
influence of rod activation during the comparisons. Previous
research has shown that only a small amount of rhodopsin can be
regenerated during a period of a single set of comparisons [26]. This
experiment setup allows for readaptation to photopic levels, which
produces results that are more applicable to predicting color
differences in creative media. This is because even on HDR
displays, scenes that are fully in the mesopic range are not long
enough for complete dark adaptation.

In the experiment, prior to viewing the test stimulus, each
observer was shown the 8 cd/m? adaptation stimulus for 30 seconds.
The test stimulus consisted of a noise image with 1/f spatial
frequency composition and a mean luminance equal to the chosen
adaptation level in photopic luminance. The noise pattern had the
same color as the reference stimulus which matched the
chromaticity of one of the primaries (see Table 3). We followed a 4-
alternative-forced-choice design in which four uniform squares
were shown in the middle of the screen in a 2-by-2 pattern. The side
of each patch subtended 2 degrees of visual angle with a 0.5-degree
gap between the squares.

During each comparison, one randomly chosen patch was mixed
with some amount of the test color, either one of the other primaries
or white. The goal of the observer was to choose which patch was
different from the others by pressing a corresponding button on a
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HORI Fighting Stick Mini 4 controller. We decided not to limit the
time the stimulus was displayed on the screen. After each
comparison, only the noise pattern was shown for two seconds
before the onset of another comparison stimulus. We used the
QUEST procedure [33] to provide suggestions for color mixes and
to fit a psychometric function to the results. After 30 comparisons,
the final QUEST estimate of a 62.5% correct choice threshold was
used as the result of the comparison set. The observer was then
shown a bright adaptive field at 8 cd/m? for 15 seconds before
starting another set of comparisons, switching either test color,
reference color or adapting luminance.

Five observers, two male and three female, completed the
experiment, all with normal or corrected-to-normal vision. All of the
observers have extensive experience in color imaging, three of
whom are authors of this paper. The age of the observers ranged
from 24 to 36. Due to the strenuous nature of the experiment, which
had to be conducted in a dark room with very low luminance stimuli,
the task was split into two sessions, with comparisons at 0.005 cd/m?
and 0.1 cd/m? conducted one day and comparisons at 0.01 cd/m?
conducted another day.

The results from each observer were averaged and are shown on
the left side of Figure 4, alongside the results from the previous
experiment. These results show AICtCp and AEyo differences
calculated between the test and reference color pairs and then
averaged across observers. The error bars represent standard
deviation of the mean calculated using the bootstrap method with
1000 iterations. For AE;q, a reference white was not provided as
part of the stimulus so we assumed the white point to be 1/0.18
(approx. 5.55) times higher than the adapting luminance to simulate
the highest sensitivity of the HVS. In reality, inferring the white
point luminance in a scene that does not contain pixels that appear
white (such as our stimuli) is a much more difficult task than
inferring adaptation. This is another advantage of the AICtCp metric
because it can be used accurately with less information about the
scene.

The results at 0.1 cd/m?, measured only as a sanity check, follow
the results from the previous experiment closely and thus are
omitted from this plot for the sake of simplicity. The same trend that
was apparent from the results of the previous experiment can also
be seen at low luminance, where the performance of AExgq suffers
due to the lower adapting luminance levels. This is because AE2000
was based on datasets measured mostly at photopic levels.
Compared to AEn9, AICTCp provides a better estimate of chromatic
JNDs in mesopic conditions, on average. As a result, we suggest the
use of AICtCp for color difference prediction, especially when
mesopic vision is involved.

Linearity Above Threshold

While AIC:Cp was designed with near-threshold color
differences in mind, it does not mean that the model is incapable of
predicting suprathreshold differences. The term ¢ suprathreshold’
refers to the extended range of color differences with delta values
larger than the in the previous section identified threshold at 1.0. In
the context of color difference metrics, it is desirable that such
values are linear, i.e. doubling the error value should make the
subjective error magnitude twice as high. Please note that this
linearity is only meaningful for the extent of the verification dataset
and not for arbitrarily large values,

To test the suprathreshold performance of AIC+Cp, we compared
its predictions with experimental results from Witt [34] which were
measured for reflective patches in a controlled environment with
known adapting luminance. The data represents subjective
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magnitude estimation of color differences between painted color
patches. The data is represented in CIE 1964 XYZ 10° observer
space which we transformed to 1931 2° observer by applying a
diagonal matrix which is the ratio between the Dgs white point in
both spaces. This is only an approximation of the correct conversion,
but a more accurate matrix would require the knowledge of the
paints used by Witt in the experiment.

As mentioned earlier, for the data to be useful above the
detection threshold, it needs to be linear with perceivable
differences. To model whether this is the case, we performed linear
regression for each of the color directions to fit a straight line
between the experimental results and predictions of AIC1Cp for the
same colors. We omitted one of the patches in the dataset, number
8 in the 'Yellow' set, because we suspect that the luminance of that
yellow patch was misreported (as it is half that of the other patches),
although we have not been able to confirm this. All the remaining
patches were used in the comparison, which is shown in Figure 5.
To help us establish if there exists a certain point at which AICtCp
is no longer linear with subjective assessments, the results are
presented as r* and RMSE of the linear regression of AICtCp to the
experimental results. A perfect color difference metric would have
an 1 very close to 1 and a low RMSE, up to the limits of the noise
in the experimental data. If a model stopped being linear with the
experimental data above a certain error level, its r> would drop and
RMSE would increase.

1? (higher is better)

RMSE (lower is better)

0.4 — AIG,C,
o AE:ouu
1

78 "1 23 45 6

2 3 4 5 6 2
Delta Cutoff

-Dclla Cutoff

Figure 5: Linearity above threshold for both AEzc00 and AICTCe. The line colors
represent the color quadrants and achromatic colors of the dataset [34].

We plotted the 2 and RMSE values for both AE2q00 and AICTCp
as a function of a maximum error value considered. At delta cutoff
8, we present errors across all the samples because AICTCp error
never exceeded that value. At error cutoff 7, we ignored all samples
whose AIC1Cp is above 7 and so on, down to a cutoff of 1, indicating
only samples at or below detection threshold. A sudden dip in the 12
and an increase in RMSE above a certain value would indicate that
the model is no longer linear with the experimental data and the
errors above this value are no longer perceptually meaningful. We
performed the same calculations for AExq to provide a comparison.
As can be seen, both AICTCp and AEygg remain relevant across the
whole range tested in the experiment. While this is unsurprising for
AEzqg0, which was fitted to this dataset and is known to be useful for
suprathreshold color errors, AICTCp was never intended for such
large differences. Nevertheless, it still performs well.

The linear regression resulted in different slopes of the line
depending on the color tested for both color difference metrics. This
means that even though it is possible to compare the errors along a
single hue direction, comparing the error between different hues or

R0



between the chromatic and grey patches will not necessarily produce
a meaningful result.

Conclusions

Steady State metrics have many benefits for predicting if two
stimuli on reflective targets, textiles, as well as emissive SDR
displays, can be distinguished under the same, known viewing
environment,

However, in order to predict the rendering requirements for
HDR/WCG display systems where the state of adaptation of an
observer is not known, we have introduced the concept of an
“Adaptation Hull” metric class using AICtCp as an example. This
new approach increases efficiency, shows low errors predicting
existing datasets and provides linearity above thresholds while at the
same time not requiring the prior knowledge of the state of
adaptation.
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