
Reprinted from
Journal of Imaging Science and Technology® 62(5): 050402-1-050402-6, 2018.

© Society for Imaging Science and Technology 2018

Quantifying Spectral Sensitivity Mismatch Using a
Metameric Color Rule

David R. Wyble ..•..
Avian Rochester LLC, PO Box 1210, Webster, NY, 14580, USA

E-mail: dave@avianrochester.com

RoyS.Bems
Rochester Institute of Technology, 54 Lomb Memorial Dr., Rochester, NY, 14623, USA

Abstract. A new camera metric is proposed based, in concept, on
the vision test devised by Davidson and Hemmendinger. The "D&H
Color Rule" is a set of two linear patch arrays containing at most
one match for near-normal color observers. The match selected by
an observer can provide an indication of how that observer's color
vision relates to others. Comparisons may be made to a group of
interest, or more commonly, to a CIE Standard Observer. For this
research, two image targets have been created, one physical and
one virtual, each with a family of spectra related in much the same
way as the colors in the original D&H Rule. These targets can be
physically imaged or virtually modeled to predict camera RGB, and
then CIELAB with a color profile. The camera can then be judged as
to what degree its output matches that of a CIE Standard Observer.
© 2018 Society for Imaging Science and Technology.
[001: 10.2352/J.lmagingScLTechnoI.2018.62.5.050402]

1. INTRODUCTION
The performance of digital cameras can be evaluated using
numerous methods, which should be relevant for each given
imaging application. For many applications, the ability of the
camera and software systems to accurately predict imaged
colors is critical. Other uses for the digital data might be to
predict chemical concentrations, to detect the presence of
contaminants, etc. Ultimately, in all cases the output camera
signals must be related to a set of known input samples.
Unknown samples are then assumed to be similarly related to
their respective camera output signals. When the application
is accurate color, the final metric is how closely the camera
replicates the perception of a human, and some additional
concerns arise.

Traditionally, the reference color or reflectance of a
calibration target is measured, and then the same target
is imaged with a test camera. A mathematical relationship
is derived between the output digital counts (usually RGB
coordinates) and the reference color or reflectance data. This
process has been standardized by the International Color
Consortium [1] through the use of device profiles. Once
a profile is created, arbitrary test charts can be imaged,
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and the camera color output can be compared with the
measurements for those charts in order to verify the profile
accuracy. The comparison is made using one or more color
difference formulas and statistical measures such as mean,
maximum, and/or a specific percentile.

The literature has described several metrics for evaluat-
ing spectral sensitivities [2]. Vora and Trussell [3] proposed
an approach where a camera's spectral sensitivity is compared
to a set of color matching functions, based on an idea first
proposed by Neugebauer [4]. The Vora and Trussell metric,
"J-t factor," is similar to a correlation coefficient where a value
of unity defines a camera having spectral sensitivities which
are a linear transformation of color matching functions.
There are three limitations to this metric. First, it has
non-intuitive magnitudes that may not predict perception.
Second, it does not take into account the improvement
in color accuracy through profiling. That is, the metric is
based solely on the spectral sensitivities, while actual camera
performance is generally improved by profiling, such as that
described by the ICC [1]. Third, it requires knowledge of
a camera's spectral sensitivities, which require specialized
apparatus and experimental skill to properly measure.

The approach proposed here is to use the tools already
in place for camera characterization, but to apply a method
that has traditionally been limited to the evaluation of human
color vision. One potential advantage of this approach is that
it may serve as a generalized evaluation target rather than
material specific targets.

2. THE D&H COLOR RULE
The D&H Color Rule, [5] produced by Davidson and
Hemmendinger, is a color vision test used successfully for
decades [6]. It relies on two sets of color patches, each
consisting of a family of similar spectra. The observer under
test adjusts the position of the two sets of patches until the
best color match is found. When viewed by a near-normal
observer, there will be only one such match. To judge the
metameric effect of a pair of light sources, the observer
should make another match under a second light source. The
degree of closeness of the two matches is an indication of
nearness of the colorimetric renderings of the light source
pair. Similarly, two different observers can make a match
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Figure 1. Spectral reflectance of a D&H Color Rule.
-25

Figure 2. C1ElAB b* versus a* plot of the reflectance data shown in
Figure 1. The circle symbols were calculated using the C1E D50j2°, the
x sym bois with the C1E D50j 10°. Large sym bois show the match for each
respective standard observer.
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Figure 3. D50j2° C1ElAB for the virtual target patches.

2.1 Virtual Target
Using the underlying theory of the D&H Color Rule, four
sets of seven reflectance spectra each were formulated. The
two-constant opaque form of Kubelka-Munk turbid media
theory was used to predict matches using Golden Heavy
Body artist acrylic dispersion paints. This model has been
shown to have good accuracy [8]. Paint combinations were
sought that spanned ±25C:b at a specific hue angle and
produced spectra that would be sensitive to changes in
observers. Four groups were formulated in unique vector
directions, shown in Figure 3 for D50/2° as a CIELAB
projection onto the a* b* axes. All the formulations had an
L* = 70. The four specific paints for each set of patches are
listed in Table 1. Each set of paints is unique; their spectra
are plotted in Figure 4. The identifiers (first row) are the
hue angles of the endpoints. Each of Figs. 4(a)-( d) show six
theoretical spectral reflectance factors calculated by mixing
the pigments in the columns of Table 1.
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2.2 Camera Testing Procedures
Two cameras were tested for this research, selected because
of different spectral sensitivities (shown below). Both are
high quality devices in regular use in professional archiving
laboratories. A reference target [9]was measured and imaged
by both systems. From the reference measurements and the
average RGB of the patches, a simple profile was created.
The camera profile, transforming camera digital counts into
tristimulus values is shown in Eq. (1):

under the same source, and the closeness of those matches
indicates the similarity of color vision of the observers.

Figure 1shows spectral reflectance data of a D&H Color
Rule. Figure 2 shows two sets of CIELAB data [7], both
derived from the reflectance data shown in Fig. 1.The circles
in Fig. 2 indicate the a* and b* coordinates calculated using
CIE Standard Illuminant DSOand the CIE 1931 20 Standard
Observer; the x's using CIE Standard Illuminant DSOand the
CIE 1964 100 Standard Observer. What is of interest is the
point of intersection (the match) between the two respective
lines (red points). The color difference between these points,
4.0~Eoo, is an indication of the difference between the
1931 and 1964 Standard Observers. A color difference is a
familiar metric that we believe is more useful than spectral
dissimilarity when plotting the two standard observers. [

DR/ DR, max - DR, Offset]

x DG/DG,max - DG,offset ,

DB/ DB, max - DB, offset

(1)
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Figure 4. Reflectance spectra of four sets of the virtual target patches: (0) 0-180, (b) 45-225, (c) 90-270, and (d) 135-215. Each line represents a
unique mixture of the pigments listed in the respective column of Table I.

Table I. Pain~ used far each set af patches.

Paint O-IBO 45-225 90-270 135-315

1 Pyrrole orange Arylide yellow Bismuth vonadate yellow

Phthalocyanine
2 Phthalocyanine green Cerulean blue Ultramarine blue

blue

3 Quinacridone magenta Arylide yellow Quinacridone magenta

4 TItanium white

where: DR, DG, and DB are the mean patch digital counts;
DR,max, DG,max, and DB, max are the maximum digital counts;
and X, Y, and Z are the estimated tristimulus values.

The 12 terms (3 x 3 RGB to XYZ transform matrix and
channel offsets) were optimized where the objective function
minimized the average ~EOO(SL=l) color difference between
the CIELAB coordinates calculated from the estimated
tristimulus values and the reference CIELAB data from the
measurements of the characterization target. The derived

matrix and offset parameters will be used for the camera
modeling for the balance of this article.

In addition to the derivation of the camera model the
relative spectral sensitivities for these two cameras were also
measured. The technique is similar to that described in [10].
The spectral sensitivities will be used for the virtual imaging
of the targets described in the next section. These sensitivities
are shown in Figure 5. The red spectral sensitivities are quite
different, often a cause of poor color accuracy. The simple
camera model, shown in Eq. (2), assumes no internal matrix
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Figure 5. Relative spectral sensitivities for the two test cameros.

DCR, i is the normalized red digital count for the ith patch;
SSR,A is the spectral sensitivity of the red channel; and
RA, i is the spectral reflectance of the ith patch.

The green and blue channels are calculated similarly.
The cameras reported in this work are a Canon ID Mark

III and a Metis DRS2000 DCS large format flatbed scanner.
Starting with Table II and thereafter, two additional camera
configurations based on the Metis are reported. These will be
described below in the section titled Adjustment of Spectral
Sensitivities.

corrections or white balance:

Table II. Color difference (.ifOOSL = 1) summary for the intersection points
colculated using CIE2° /050. For reference the Vorn and Trussell JL fador is also shown.

Camera Moo to CIE2° /050 Vorn and Trussell
Virtual Target PhysicoI JL factor

Mean Max Std Oev Torget

Canon 10 1.3 1.8 0.6 0.4 0.901
Metis 4.9 6.1 1.5 8.4 0.735
Metis+BG40 3.5 4.8 1.0 4.7 0.791
Metis+BG60 2.9 4.5 1.1 1.7 0.814

2.3 Testing Using Virtual Targets
The patch reflectances of the virtual target, shown in Fig. 4,
were processed through the camera model in Eq. (2), and
the resulting digital counts were further processed through
the camera profile shown in Eq. (1). This yielded estimated
tristimulus values, from which CIELAB coordinates were
calculated in the usual fashion.

Figures 6(a,b) show the CIELAB results for the two
cameras. These are analogous to the ideal results shown
in Fig. 3 for the D50/2° data. The interesting aspect of
Fig. 6(a,b) is the location of the six crossover points (black
circles, shown for each combination). To mimic D50/2°
perfectly, the crossovers should all be at the origin (as shown
in Fig. 3 above). This is because the virtual target is designed
to place the intersection of the four lines precisely at the
origin (for D50/2° CIELAB). Therefore a deviation from
this intersection point indicates that the camera deviates
from the performance ofD50/2° CIELAB.The cameras have
markedly different rates of success toward this goal.

(2)
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Figure 6. C1ElAB data from the virtual targets for Canon 1D (0) and Metis flatbed scanner (b). The block circles are the six points of intersection for each
combination of the four lines.
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Figure 7. Spectral reflectance of the patches in the physical target "MCSL
Spectral Target 3."
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data are all based on a camera model (Eq. (2)) using
spectral sensitivities that have been adjusted by pre-filtering
all imagery with a light blue-green filter. This technique [11]
alters the sensitivities to create more overlap between
the green and red channels. Without the overlap the
camera cannot distinguish between wavelengths above about
650 nm, where the green sensitivity drops to zero. The
effect of the filters is to move the peak sensitivity of the red
channel to a shorter wavelength, creating much more overlap
with the green channel, and allowing the camera to better
distinguish red wavelengths. Figure 9 shows the base and
adjusted spectral sensitivities for the Metis scanner, as well
as the transmittance of the two blue-green filters.

As can be seen by the results above, the pre-filtering
improves the colorimetric accuracy of the Metis considerably.

As a reasonable summary metric, the mean color
difference for each of the seven points of intersection were
calculated. The color difference results are shown in Table II.

2.4 Testing Using Physical Targets
A physical target with similar features to the virtual target
has been produced. This target is designated "MCSLSpectral
Target 3." Spectral reflectance and CIELABdata are shown in
Figures 7 and 8, respectively. The color differences between
the camera intersection points (large colored circles in Fig. 8)
and CIE D50j2° (large black circle) are listed in Table II.

2.5 Adjustment of Spectral Sensitivities
Several of the results above make reference to the camera
configurations "Metis+BG40" and "Metis+BG60." These

14

3. DISCUSSION
The benefit of using these targets for camera analysis is
that they do not require knowledge of a camera's spectral
sensitivities. However, ifknown, it was of interest to compare
this metamer approach with J-t factor. Figure 10 shows
the color differences from the various cameras and targets
plotted against the J-t factor for each camera. Symbol shape
designates the camera configuration: open symbols are
results from the virtual target, filled symbols are those from
the physical target. The results reasonably correlate; linear
fits have R2 = 0.99 and 0.85 for virtual and physical targets,
respectively. The reduced correlation for the physical target
resulted from the samples not lying in a straight line in
CIELAB.
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Figure 8. C1ELAB b* versus 0* projection for patches in the physical target "MCSL Spectral Target 3." Large circles show intersection points for each
camero.
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Figure 9. Bose and adjusted spectral sensitivities for the Metis scanner
(curves without symbols) and filter transmittances used to adjust those
sensitivities (circle and triangle symbols). The solid colored curves are
identical to the dotted curves in Fig. 4. The dashed and dotted curves
show the effective spectral sensitivity after the filtering.
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of the target is to estimate the colorimetric accuracy of an
imaging system (camera or scanner). It has been shown
to correlate well with existing metrics designed to analyze
spectral sensitivities, but the use of the new target does not
require the complex procedures and instrumentation needed
to measure sensitivities .

Future work should include a theoretical analysis of
more cameras for which spectral sensitivities have been or
will be measured, as well as empirical evaluation of the
technique using a variety of cameras and light sources.
The target also needs to be compared with traditional
independent color targets. Additionally, the physical target
may need to be augmented by adding patches formulated to
be similar to the virtual targets described here. Finally, an
analysis should be made to determine what levels of ~Eoo
are required for various imaging applications.

Figure 10. Comparison between JL foetor and color difference for the
camero and targets described here.

4. CONCLUSIONS AND FUTURE WORK
A new spectral camera target has been developed based on
the theory underlying the D&H Color Rule. The purpose

open symbols: virtual target
filled symbols: physical target
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