
https//doLorg/10.2352/ISSN.2169-2629.2018.26.324
© 2018, Society for Imaging Science and Technology

Modelling Contrast Sensitivity for Chromatic Temporal
Modulations
Xiangzhen Kong1,3, Mijael R. Bueno Perez1, Ingrid M.L.C. Vogels1, Dragan SekulovskP, Ingrid Heynderickx1

1 Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, P.O. Box 513, 5600MB,
Eindhoven; The Netherlands
2 Signify Research, High Tech Campus 7, 5656 AE, Eindhoven; The Netherlands
3 School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan; China

Abstract
The temporal contrast sensitivity to isoluminant chromatic

flicker was measured for three observers using the method of
adjustment. The isoluminant stimuli were createdfor each observer
individually, based on a technique similar to heterochromatic
flicker photometry. The chromatic flicker stimuli were sinusoidal
modulations, defined in the CIE 1976 UCS (u',v') chromaticity
diagram. The chromaticity varied around a base color along a
certain modulation direction with a certain amplitude at a certain
frequency. Nine base colors, four modulation directions and seven
frequencies were used, resulting in thirty-six temporal contrast
sensitivity curves per observer. An exponential model was fitted to
the resulting contrast sensitivity expressed as lIL1(u: v'), lILJLMS
and 1/L1lms.The model resulted in an average R2 value higher than
0.93 for the three different measures of contrast sensitivity. The two
parameters of the model (i.e. the slope /31 and intercept /30) were
found to significantly depend on the base color and direction of the
chromatic modulation. This means that L1(u',v'), LJLMS and L1lms
are not suitable measures to predict the sensitivity to temporal
chromatic modulations in different locations of the color space.

Introduction
The development of light emitting diodes (LEDs) technology

has enabled inexpensive ways to easily create dynamic colored light.
However, current knowledge on human perception of dynamic
colored light is limited and still insufficient to provide guidelines for
comfortable and attractive implementations. Some studies aiming at
understanding the perception of dynamic light have concentrated on
the perceived smoothness [I], the preference [2], and the perceived
subtlety [3] of temporal color transitions. The limited number of
studies show that existing spatial color spaces cannot be used to
accurately predict these phenomena and that a temporally uniform
color space is needed. The sensitivity to temporal modulations in
luminance and chromaticity is a useful paradigm to collect data for
building such a model.

The sensitivity of the human visual system to temporal
modulations is known to depend on the modulation frequency.
Above a certain critical fusion frequency (CFF), the modulation
cannot be perceived independent of its magnitude. Below the CFF,
the relationship between temporal frequency and sensitivity is called
the Temporal Contrast Sensitivity Function (TCSF). TCSFs have
been extensively studied in the past mainly for two purposes. First,
in clinical vision science, for instance, to detect a variety of
pathologies affecting the visual system [4], [5]. Second, to
understand the underlying mechanisms of human vision [6] - [14].

In order to build a temporal color space a large amount of data
has to be collected over the entire color space. Therefore, an efficient
way of sampling the color space is required. As a first step, it would
be beneficial to have a model describing the TCSFs with a small
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number of parameters, so we can use less temporal frequencies to
subsequently study the TCSF in various locations ofthe color space.
Researchers have found that the TCSF for luminance modulations
is generally a band-pass function [15]. For chromatic modulations
the TCSF is usually a low-pass function, where the sensitivity
decreases with increasing frequency [16], [17]. However, some
studies have found a small decrease in sensitivity also at low
frequencies [18]. The TCSF has also been found to depend on the
demographics (e.g., age) of the observers as well as stimulus
features (e.g., stimulus size, retinal illuminance, characteristics of
the surrounding) [8], [19].

Several models for TCSFs have been proposed. For instance,
Dobkins et al. [17] used a double exponential function to fit the
TCSFs for luminance and found that a single exponential function
was sufficient to describe the TCSF for chromaticity. Other
physiologically based models exist based on stimuli that activate
only part of the visual system (e.g., the red-green opponency
channel) [10]. Due to technical limitations at the time, most
experiments on chromatic TCSFs have been carried out for limited
color stimuli, usually red-green chromatic flicker. In this study, we
investigate ifthe relationship between chromatic contrast sensitivity
and temporal frequency can be described by the same exponential
function for a wide range of chromatic flicker stimuli. In particular,
we vary the base colors (i.e. the mean color of the chromatic
modulation) and the modulation direction in the 1976 DCS (u',v')
chromaticity diagram.

Method
In this study, the detection threshold of chromatic flicker was

measured for 9 base colors, 4 directions of chromaticity change and
7 temporal frequencies, using a full-factorial within-subject design
with 3 participants. Before the main experiment, a preparation
experiment was performed to determine the luminance ratios
between two alternating colored stimuli that minimizes the visibility
of luminance flicker for a given participant using a method similar
to heterochromatic flicker photometry (HFP). The luminance ratios
were determined for the 36 color pairs used in the main experiment
with a chromaticity difference of 0.05 !'.(u', v') at a flicker frequency
of 25 Hz. The individual luminance ratios were used to make the
isoluminant chromatic flicker stimuli of the main experiment.

Experimental Setup
A specially designed LED system, with 36 Cree XP-E LEDs

arranged in a square panel (12 red, 8 green and 16 blue LEDs), was
used. The system was calibrated with a spectrometer and shown to
be reliable and stable over time. The LEDs were driven by means of
pulse width modulation (PWM) at a driving frequency of2 kHz and
having 16-bit dimming. The PWM signals were generated by an
Arduino Due microcontroller, which was connected to a lab
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Table 1. The stimulus variables of the 252 conditions

0.60.50.40.30.20.1

0.1

Be u' v' Modulation FrequencyDirection
1 0.1273 0.5213
2 0.2251 0.1663 2 Hz
3 0.4509 0.4826

0° 4 Hz
4 0.2891 0.5019 8 Hz
5 0.1762 0.3438 45° 10 Hz90°
6 0.3380 0.3245 135° 15 Hz
7 0.2678 0.3901 20 Hz
8 0.2393 0.2409 25 Hz
9 0.3899 0.4517

-;;:>

Procedure
The experimental procedure was approved by the Daily Board

ofthe Human-Technology Interaction group, Eindhoven University
of Technology for ethical considerations. The main experiment was
divided into different sessions on different days since it was too
fatiguing for the participant to measure all conditions at once. The
task of the experiment was explained both in text and orally by the
experimenter. Before the start of the first session, participants were

modulation varied between 0.00004 ,'.(u', v') and 0.05 ,'.(u: v'). The
luminance ratio of the two extreme colors of each sinusoidal
modulation was based on the individual isoluminance, as
determined by the preparation experiment. The average luminance
of the stimulus was 35 cd/m2• The temporal frequency of the light
modulation was 2, 4, 8, 10, 15, 20 or 25 Hz. Table 1 shows the
variables ofthe 252 (Le., 9 base colors x 4 directions x 7 frequencies)
conditions.

0.6

0.5

1/
Figure 2. Nine base colors and four modulation directions (shown

around BCs) in the CIE 1976 UCS (u', v') chromaticity diagram.

0.2

Participants
Three participants performed the experiment (AM, female, 25

years; MR, male, 27 years; XK, male, 27 years). The participants
received elaborate training and two ofthem had previous experience
with chromatic flicker experiments. All participants had normal
color vision, as measured with the Ishihara test for color deficiency
and one of them was wearing glasses for corrected visual acuity.
None ofthem were susceptible to migraine and/or epileptic seizures.

(b)
Stimulus, ---r-'

150 em
___L_.

Stimuli
The stimuli consisted of light sinusoidally modulated in time.

The chromaticity of the light varied around a base color in a
predefined direction specified in the CIE 1976 UCS (u',v')
chromaticity diagram. Depending on the individual luminance
ratios, the luminance of the light varied at the same temporal
frequency as the chromaticity to make the stimulus isoluminant for
each participant.

Nine base colors (BCl to BC9) were selected (see Figure 2).
The chromaticities of BCl,BC2andBC3 were close to the green, blue
and red LED, respectively. BC4, BCs and BC6were the middle points
between BCl and BC3, BCl and BC2, BC2 and BC3 respectively,
while BCT was located in the center of the gamut. During the
experiment we discovered that it was impossible to make the entire
IO-degree visual field non-flickering for BC2 and BC3 at the selected
frequencies and amplitudes. Instead, the colors could be fused either
for the center of the field or at the outer edge, but not for the entire
field at the same time. Therefore, two other base colors (BCs and
BC9), which were less saturated versions of BC2 and BC3, were
added. The chromaticity coordinates ofthe base colors are shown in
Table 1.

Four modulation directions were chosen, namely 0° (Le.
parallel to the direction ofthe u' axis), 45°, 90° (i.e. parallel to the v'
axis) and 135° (as shown in Figure 2). The amplitude of the

(a) (c)
Figure 1. (a) Overview of the lab environment (b) Front view of the

stimulus (c) Top view of the participant and stimulus.

The LED panel was placed in a box (height: 1.5 m, depth: 0.8
m, width: 1.5 m) with a circular opening of26.4 cm in diameter (see
Figure 1).Participants were seated at a predefined position of 1.5 m
from the front of the box, which resulted in a stimulus covering a
visual angle of 10-degrees. Since we are interested in using the data
for realistic lighting applications, a 10-degrees field was preferred
over 2-degrees. Participants could only see the stimuli from this
circular opening. The inner surfaces of the box were smooth and
colored natural white. The LEDs were mounted in such a way that
the visible light field was quite uniform (Le., the luminance deviated
by a maximum of3.3% at the stimuli luminance level of37.5 cd/m2,

while the chromaticity deviated by a maximum ,'.(u',v') = 0.0013).
The inner edges of the box and the luminaries were not visible.

To avoid head movements of the participants, a chinrest was
used. Additionally, a standard keyboard was provided as an input
device for the participants.

computer. The drivers of the LEDs accepted RGB values, in the
device dependent color space of the LEDs. The target stimuli were
defined in CIE 1976 UCS (u',v') and transformed via XYZ to the
RGB values of the LEDs.
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asked to sign an informed consent form, in which they were
informed on their voluntary participation. Then an Ishihara color
deficiency test was performed, followed by the collection of
demographic information.

In each session, participants were instructed to sit down in the
chair at the predefined position. They could adjust the chinrest and
the height of the chair to a comfortable position before the
experiment started. The method of adjustment was used to find the
detection threshold of chromatic flicker. In a previous unpublished
study, this method was shown to be both accurate and efficient to
measure chromatic flicker thresholds. In order to correct for a
possible error of anticipation, the adjustment was performed once
with a relatively high starting amplitude and once with a low starting
amplitude. In addition, participants were trained to use a consistent
decision criterion to minimize the variance within participants [20].

Each trial started with a beep sound, indicating the participant
could start with the adjustment. The first stimulus of the trial had
either a modulation amplitude of 0.05 !'.(u', v'), for which flicker was
clearly visible, or an amplitude of 0.0004 !'.(u', v'), which appeared
to be static. Participants were instructed to look at a fixation point in
the center of the circular opening of the apparatus and to find the
smallest amplitude at which the flicker was just visible, by
increasing or decreasing the amplitude ofthe chromatic modulation.
They could use the up and down arrow keys of a keyboard to
increase or decrease the modulation amplitude with a large factor,
while the left arrow and right arrow keys could be used to change
the modulation amplitude with a small factor. The modulation
amplitude was changed by a factor F:

where An refers to the amplitude ofthe current stimulus, An+l refers
to the amplitude of the next stimulus, and a equals 2 for the small
factor, while a equals 5 for the large factor. When participants
reached the lowest or highest amplitude of the stimulus range, they
heard a warning signal indicating that they could not go lower or
higher, respectively. When participants were satisfied with the
stimulus that represented their detection threshold, they were
instructed to look at the final stimulus for one or two seconds before
deciding to really end the adjustment procedure. After pressing the
Enter key, the next trial was presented.

The first session was a training session, which aimed to get the
participants familiar with the method of adjustment and the
experimental task. Participants were instructed to find a useful
strategy and to stick to that strategy during the rest of the
experiment. Subsequently, each base color was presented in a
separate session, and the order of the base colors was the same for
all participants (from BCl to BC9). At the beginning of a session, a
static adaptation stimulus with the chromaticity ofthe base color and
a luminance of37.5 cd/m2 was presented for two minutes. Next, the
conditions were presented in a random order. For each base color,
there were 56 conditions (i.e., 7 frequencies x 4 directions x 2
starting amplitudes). Each session took about 30 minutes, and the
experiment took 4.5 hours in total (without the preparation
experiment and the training session).

After each session, participants were asked to write down some
notes regarding their experience with the experiment. During the
experiment, the chromaticity values of all stimuli that were shown
were stored together with a time log. These data were used to look
at the strategy of the participant and for further analyses.
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Figure 3. The chromatic flicker threshold in Ll(U',v') as a function of
modulation frequency for BC, for the four modulation directions for participant
MS. The two dashed lines show the thresholds for the two starting amplitudes
(SA) and the solid line represents their average.

These conclusions were confirmed by a linear mixed model
analysis (LMM) with Detection Threshold as dependent variable
and Base Color, Modulation Direction, Frequency and Starting
Amplitude as fixed independent variables and with a random
intercept for Participant. The analysis revealed a significant main
effect of Base Color (F(8,1509)=36.854, p<O.OOI), Modulation
Direction (F(3,1509)=126.435, p<O.OOI), Frequency
(F(6,1509)=892.323, p<O.OOI) and Starting Amplitude
(F(I,1509)=5.234, p=0.022). A low starting amplitude resulted in a
slightly lower detection threshold compared to a high starting
amplitude (MD = 0.001, P = 0.022), which was also found in the
unpublished study. The detection thresholds were averaged over the
two starting amplitudes for further analysis.

Modelling of TCSFs
In order to model the TCSF for chromatic modulations, we

expressed the data in terms of contrast sensitivity (i.e. the reciprocal
of the detection threshold expressed as chromatic contrast). Three

Analyses and Results
The experiment resulted in 504 detection thresholds (i.e. 252

conditions x 2 starting amplitudes) expressed in CIE 1976 DCS
!'.(u', v') for each participant. The thresholds can be plotted as a
function of frequency for each base color, modulation direction and
participant. Figure 3 shows an example of the data of participant
MB at BCl for the four modulation directions. From Figure 3, we
can see that the threshold increases as the frequency increases. There
also seems to be an effect of modulation direction, which is most
visible at 25 Hz. Moreover, the thresholds of the two starting
amplitudes are quite consistent with each other.

BCI - Direction 0° BC, - Direction 45°

(I)F=An+1=1.1±a
An
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where S is the contrast sensitivity, C the detection threshold and!
the temporal frequency. Equation (4.1) can be rewritten as:

measures of contrast were used: !J.(u', v'), !J.LMS (using Equation (2»
and Mms (using Equation (3».

where !J.L, !J.M, !J.S are the differences between the L-, M-, and S-
cone responses of the two extreme colors of the chromatic flicker
stimulus at threshold modulation, which are calculated using the
cone fundamentals of Stockman and Sharpe [21], and M, !J.m,!J.s are
the differences between the L-, M- and S-cone responses normalized
with respect to the sum of the cone responses.

For each contrast measure, the contrast sensitivity was plotted
as a function of frequency, resulting in 36 (i.e. 9 base colors x 4
directions) TCSFs per participant. These TCSFs were fitted with:

R2 averaged over all conditions was 0.86, 0.97 and 0.96 for
participant AM, MB and XK, respectively. As an example, Figure
4 shows the data and the fitted functions for all the TCSFs of
participant MB.

_O.04~Slope - AM _O.04~Slope - MB -O.04~Slope - XK
-0.0Ii ·0.06 ·0.06
-ll.OM ~ -O,OM ,;),OH
-0,10 rr· ...,o, 'V' -0,10. -0,10
-0,12 -0,\2' -0,12' .
-0,14 -0,14 ·0,14 '
-0,16 -0,16 -0,16
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Figure 5. The slopes and intercepts of the fits of all conditions for the
three participants.

(2)

(3)

(4.1)S = 2c = e{3d+{3o
c

For all three contrast measures, the average goodness-of-fit
expressed in R2 was higher than 0.93 and they were all very similar
to each other (i.e., the average R2 differed by a maximum of 0.0002).
For further analysis, we chose !J.LMS as our contrast measure. The

MB -BC7 MB -BC8 MB -BC;

i~j~-l~~~i~'j~
24~IUI';202> 248101,202> 24~1U152025

Frequency (Hz) Frequency (Hz) Frequency (Hz)

_0° .45° _90° .135°
Figure 4. The contrast sensitivity as a function of frequency for all base

colors (BC, to BC.) and the four directions (0°, 45°, 90° and 135°) for participant
MS. The straight lines represent the fitted functions according to Equation (4.2).

MR-BC, MB-BCl MB-BC3

i~j~-l~'~~i~t~~
24 810 1, 20 2, 24 810 I' 20 25 24 810 I' 20 25

Frequency (Hz) Frequency (Hz) Frequency (Hz)

MB -BC4 MB -BC5 MB -BC6

i~j~i(~il~

with 131being the slope and /30 the intercept of the function.

Figure 5 gives the slopes (131 from Equation (4.2» and
intercepts (130 from Equation (4.2» of the fits for the three
participants. The figure shows that there are differences between the
participants in the absolute values of the slope and intercept of the
TCSF, but also in the effect of base colors and modulation direction,
especially for the slope. In order to test the overall effect of base
color and modulation direction, two separate linear mixed model
(LMM) analyses were performed: (I) with Slope (131) as the
dependent variable and (2) with Intercept (130) as the dependent
variable. In both analyses, Base Color and Modulation Direction
were the fixed independent variables. We also included the
interaction term between these two variables and a random intercept
for Participant. The resulting p-values were obtained from a Type
III sum of squares. Post-hoc analyses with Bonferroni correction
were performed for the significant effects.

For the Slope, the LMM analysis showed a significant effect of
Base Color (F(8,105)=16.375, p<O.OOI).BCl had the lowest slope,
BC3,BC6 and BC9 had the highest slope and the slopes of the other
base colors were in between and not significantly different from
each other. There was also a significant interaction effect between
Base Color and Modulation Direction (F(24,105)=2.586, p<O.OOI).
However, no significant main effect was found for Modulation
Direction (F(3,105)=0.762, p=0.518). The effect of Modulation
Direction on Slope was different for different base colors, for
example, BC3 had the highest value of the slope at Direction 0°,
while BC2 had the highest value at Direction 90°.

For the Intercept, the effect of Base Color (F(8,105)=41.949,
p<O.OOI), Modulation Direction (F(3,105)=179.595, p<O.OOI) and
the interaction between Base Color and Modulation Direction
(F(24,105)=3.249, p<O.OOI) were significant. BC2 had the lowest
value of the intercept, which was significantly lower than all the
other base colors, and BCl, BC3 and BC4 had the highest intercept.
We also found that the intercept was lowest for Direction 90° and
highest for Direction 0°. The intercept of the other two directions
was in between and not significantly different from each other. For
all base colors, the trend of the Intercept over the four modulation
directions was the same. Direction 0° always had the highest
Intercept, followed by Direction 135°, Direction 45° and Direction
90°. However, the difference was not significant for all base colors.

(4.2)

2 4 ~ 10 I'; 20 2';
Frequency (Hz)

InS = Pi! + Po

24 ~101'; 20 2';
Frequency (Hz)

24 8 lUI'; 20 2';
Frequency (Hz)
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Discussion
In this study, we measured the detection threshold of chromatic

flicker and obtained TCSFs for nine base colors and four modulation
directions for three participants. Instead of exploring inter-observer
differences or modelling an average observer, we aimed at
measuring and modelling individual observers. We found that the
TCSF of all participants could be described by the same exponential
model, the parameters of which changed from person to person.
More research is needed to investigate if the model depends on
demographic factors, such as the age of the observer.

The contrast sensitivity was defined as the reciprocal of MMS,
Le. the difference between the LMS cone responses of the two
extreme colors of the chromatic flicker stimulus at threshold
modulation. The TCSFs were fitted with an exponential function
(see Equation (4.1». The model fitted the data very well, with R2

values around 0.90. The two parameters ofthe model (Le. the slope
/31 and intercept /30) were found to be dependent on the base color
and modulation direction. This means that the visibility of a
chromatic temporal modulation at a given frequency does not only
depend on the MMS ofthe two (extreme) colors ofthe modulation,
but also on the LMS values themselves. So, MMS itself cannot be
used to accurately predict the visibility of temporal changes in light.

The results indicate that the chromatic TCSF is a low-pass
function, which is in line with other studies using isoluminant
stimuli [22], [23]. Even though we did not directly measure the CFF,
we can conclude that it must be higher than 25 Hz, since participants
still could see flicker at some modulation amplitudes. The CFF
probably depends on base color and modulation direction, as can be
seen in Figure 4.

In our experiment the average luminance of the chromatic
flicker stimuli was fixed at 37.5 cd/m2• However, retinal illuminance
has been found to influence the chromatic TCSF [8], [19]. Therefore,
it is important to explore the effect ofluminance level in future work.

Since the contrast sensitivity for chromatic temporal
modulations can accurately be described by a simple exponential
model for a wide range of color stimuli, it is not necessary to use a
large number of frequencies to determine the TCSF in a certain
location of the color space. Instead, only a few frequencies are
enough, which would greatly reduce the duration of the experiment.
For future studies, we plan to measure the TCSF for more base
colors, modulation directions and average luminance values in order
to ultimately develop a representative temporal color model.

Conclusion
The contrast sensitivity for chromatic temporal modulations

expressed in 1/MMS was found to be a good indicator to describe
the relationship with frequency. An exponential model with two
parameters (Le. slope and intercept) described the TCSFs with very
high accuracy (with an average R2 higher than 0.93 for the three
observers). The two parameters of the model were found to
significantly depend on the base color and direction ofthe chromatic
modulation.
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