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Abstract
Objective Image Quality Metrics (IQMs) are introduced with

the goal of modeling the perceptual quality scores given by ob-
servers to an image. In this study we use a pre-trained Convo-
lutional Neural Network (CNN) model to extract feature maps at
different convolutional layers of the test and reference image. We
then compare the feature maps using traditional IQMs such as:
SSIM, MSE, and PSNR. Experimental results on four benchmark
datasets show that our proposed approach can increase the accu-
racy of these IQMs by an average of23%. Compared to I I other
state-of-the-art IQMs, our proposed approach can either outper-
form or peiform as good as the mentioned I I metrics. We can
show that by linking traditionalIQMs and pre-trained CNN mod-
els we are able to evaluate image quality with a high accuracy.

Introduction
Over the years a great amount of attention has been paid to

evaluating the quality of images both in the case of subjective
and objective [1] assessment. Image Quality Metrics (IQMs) are
objective methods which aim to evaluate the image quality with
the highest correlation possible to perceived image quality. Al-
though a high number of IQMs have been introduced in different
studies, there still exists room for improvement mainly with re-
gards to the fact that the performance of IQMs change when eval-
uated on different datasets and distortions [1, 2]. Other factors
such as geometric changes, multiple distortions, run-time perfor-
mance, and memory requirements have also been mentioned as
challenges when introducing new IQMs. When it comes to eval-
uating the quality of images, subjective quality assessment seems
to be the first option. Yet, compared to subjective evaluation, ob-
jective IQMs are superior when it comes to time consumption,
being consistent, and the fact that they can be used for quality
optimization [3].

Different approaches have been taken to objectively evaluate
image quality. Among these, structural similarity, color differ-
ence, spatial extensions of color difference formulae, simulation
of detail visibility, scene statistics, low- and mid-level visual prop-
erties, saliency, and machine learning are few of the many [4, 5].
Although IQMs are used to evaluate the general quality of im-
ages, some are designed specially to address specific tasks such
as printing, displays, spectral imaging, image compression, bio-
metrics, and medical imaging [6, 7].

In this work, we propose the use of traditional IQMs on fea-
ture maps of the reference and test images extracted from Convo-
lutional Neural Networks (CNNs). In other words, IQMs are used
to compare feature maps extracted from the images using CNN
models. This work could be seen as an extension of our previous
study in which we compared the strength of feature maps at differ-
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ent convolutional layers using a spatial pyramid approach [8]. In
this work, we take a step further and we compare matching feature
maps with each other. In recent years different tasks in the field
of computer vision and image processing have taken advantage of
CNNs resulting in dramatically better performance. Unlike these
works, image and video quality metrics have mainly focused on
using a limited number of handcrafted features [9]. Using CNNs
in our proposed approach allows us to take into account low, mid,
and high level features.

Due to the lack of large datasets in the field of image quality
assessment we are currently not able to train any full reference
IQMs using CNNs. For this reason, we have used pre-trained
networks to extract feature maps from the image. Though we
use simple IQMs such as MSE, PSNR, SSIM, etc., the proposed
scheme outperforms some of the state-of-the-art IQMs. In other
words, we will use already available methods to propose new
IQMs which increase the accuracy of traditional ones.

This paper is organized as follows: The first section is ded-
icated to a short review on a number of previous IQMs. In the
next Section we introduce our proposed approach, while the ex-
perimental results are presented thereafter. Finally, a conclusion
of the work is given.

Previous Metrics
There exists a large number of IQMs in the literature. These

metrics can be divided into three categories, Full Reference (FR)
metrics which we have access to both the reference and test im-
age, Reduced Reference (RR) metrics where we have access to
the test image and only partial information on the reference im-
age, and No Reference (NR) metrics that we only have access
to the test image, but no information about the reference image.
Since the proposed IQM in this work is a FR metric we will focus
on introducing few FR IQMs used in this work to compare our
proposed approach to. For an in depth review on FR IQMs we
refer the reader to [1].

Full Reference Image Quality Metrics for Color Im-
ages

A spatial extension of the M:b color difference equation is
the S-CIELAB metric [10]. To model the human visual system,
the images are filtered using contrast sensitivity functions. TheM:b color difference equation is used to calculate the quality of
the image.

Pedersen and Hardeberg [11, 12] introduced the Spatial Hue
Angle MEtrics (SHAME and SHAME-II). The mentioned IQMs
have a similar framework to S-CIELAB but uses a weighting
function based on the hue channel. The images are first filtered
using contrast sensitivity functions. A hue angle algorithm is then
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where N corresponds to the total number of convolutional
layers in our CNN model.

els. The matching histograms are then compared to one another
to first calculate quality scores for each convolutional layer and
then the image itself.

where M corresponds to the total number of feature maps in
convolutional layer M (Figure 1).

4. Finally, we calculate the quality score of the test image JfT
using geometrical mean similar to what was done in [8]

(2)

(3)
N

IQ(JfT) = N I1mIQM(JfT,n)
n=l

1 M
mIQM(JfT,n) = M L mIQM(JfT,n,m)

m=]

Proposed Approach
The proposed approach is based on comparing the feature

maps extracted at different convolutional layers of a pre-trained
CNN model. In our experiments the AlexNet model [30], which
is pre-trained on the ImageNet [31] dataset and implemented in
the MatConvNet toolbox [32], was used. We compare feature
maps between the test and reference images using IQMs. The
assumption is that feature maps of a test image would look similar
to the corresponding feature maps in the reference image. Due to
the nature of feature maps, it is clear that simple grayscale IQMs
which specifically deal with the structure seen in the feature map
would provide a better result compared to using complex metrics
that try to take into account the content of the image and take
advantage of complex handcrafted features. Below you can find a
step by step guide on how the proposed approach is calculated:

1. Feature maps from the reference (JfR) and the test (JfT) im-
age are extracted at different convolutional layers.

2. For an arbitrary feature map (§(JfT,n,m)) in the test im-
age, we calculate

As mentioned earlier, due to the nature of feature maps we
aim to use traditional gray-scale IQMs. Our aim is to investigate
whether the accuracy of simple IQMs could improve by combin-
ing them with modern computer vision techniques. In the follow-
ing we provide a list of the metrics used.

• Structural Similarity Index (SSIM) [33]
• Mean Square Error (MSE)
• Peak Signal to Noise Ratio (PSNR)
• Mean Average Error (MAE)
• Laplacian Mean Square Error (LMSE)
• Normalized Absolute Error (NAE)
• Maximum difference (MD)
• Structural Content (SC)

which represents the quality score of that feature map in JfT•
In Eq. (1), m represents the feature map number in the con-
volutionallayer n (Figure 1). IQM corresponds to the IQM
used in our calculations.

3. We calculate the average quality score of all the feature
maps in each convolutional layer,

applied on the image to take into account the systematic errors
over the entire image which might be noticeable and unaccept-
able. Another metric which is based on Adaptive Bilateral Filters
(ABF) is also based on the human visual system [13] where they
blur the image based on the viewing distance. The final quality
score is based on the M~b color difference equation. Apart from
the mentioned metrics, other IQMs have been proposed based on
different color difference equations [14].

The iColor-Image-Difference (iCID) metric [15] is based on
SSIM. iCID is designed to enhance the prediction of chromatic
distortions such as what is created by gamut-mapping algorithms.

Deep neural networks and CNN based metrics
A big challenge when trying to use CNNs in IQMs is the

lack of a dataset large enough to train and test a CNN model. To
address this issue, a number of studies have used images uploaded
and ranked or scored on photo-sharing websites such as Photo.net,
and Flickr to design a NR IQM using a new CNN model.

Kang et al. [16] proposed a NR IQM by calculating the av-
erage score of CNN quality estimates for all patches in a given
image. Their evaluation showed high correlation coefficients be-
tween their objective scores and perceptual scores.

DeepBIQ is another NR IQM which is based on calculat-
ing the average quality scores predicted for multiple sub-regions
in the image [17]. A Support Vector Regression (SVR) machine
is used over CNN features to calculate the quality scores of the
mentioned sub-regions.

Li et al. [18] proposed a general-purpose NR IQM using
shearlet transform and deep neural networks. Simple features are
extracted by the shearlet transform, which is used to describe the
behavior of natural images and distorted images. The features
are then enhanced to make them more discriminative. By looking
at image quality as a classification problem, as done in [19], a
classifier is used to estimate image quality.

Li et al. [20] introduced a NR IQM using Prewitt magnitude
based on CNN s. The image is first segmented using a graph-based
technique. Then the Prewitt operator is used to get the gradient
map. The CNN output is weighted by the gradient map.

A blind image evaluator based on a CNN (BIECON) was
introduced in [21]. BIECON has two steps; the first is to use a
CNN model that is regressed onto local metric score and in the
second step pooled features are regressed to the final score.

Lv et al. [22] used local normalized multi-scale Difference of
Gaussian (DoG) generated from the distorted images as features.
Then by using a deep neural network as a pooling strategy, they
introduced a blind IQM.

DeepSim [23] is a FR IQM that uses deep neural networks
to measure the local similarities between the features of the ref-
erence image and the distorted image. Then local quality indices
are gradually pooled to generate an overall image quality value.

We previously introduced a new FR IQM using a CNN
model [8]. Our proposed approach was inspired by [24, 25, 26, 27,
28] which self-similarity was calculated for images using a Pyra-
mid Histogram of Orientation Gradient (PHOG) approach [29].
Similar to the PHOG approach, a histogram is calculated for each
convolutional layer in the CNN model. The bins in the histogram
represents the strength of the feature maps extracted from the im-
age. These bins are not only calculated for each feature map but
it is also calculated for the feature maps at different spatial lev-
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Figure 1. Pipeline used to calculate image quality at a given convolutional layer II. Feature maps of the test and reference image extracted from the convolutional

layers are compared to each other using different IOMs.

Table 1: Summary of the datasets used in our experiments.

# reference # test image # distortions # observers

image

CID:IQ 23 690 6 17
CSIQ 30 866 6 35

TID2013 25 3000 24 971
LIVE2 29 982 5

Experimental Setup and Results
In this section we first describe the datasets used in our ex-

periments and then present the results of our new IQM.

Datasets Used
Over the years different subjective datasets have been col-

lected with the aim to evaluate IQMs [2]. We evaluate the IQMs
on four commonly used datasets. Table 1 provides information
about the datasets and key information as the number of reference
and test images, the number of distortions and observers.

• Tampere Image Database (TID2013) [34]
• Computational and Subjective Image Quality (CSIQ) [35]
• Colourlab Image Database: Image Quality (CID:IQ) [36]
• LIVE Image Quality Assessment Database release 2

(LIVE2) [37,38]

Results and Discussions
To measure the performance of the proposed approach we

calculate the Spearman correlation between the subjective scores
provided in each dataset and the objective scores calculated using
different IQMs. Using Fishers Z-transform, confidence intervals
are calculated giving us a 95% confidence interval for the corre-
lation values. In addition to the Spearman correlation, we also
calculated the Pearson and Kendall correlation coefficients. Re-
sults showed similar correlation rates close in value and order of
performance to that of Spearman, therefore we will only report on
the Spearman coefficients.

Overall, compared to traditional IQMs the proposed CNN

26th Color and Imaging Conference Final Program and Proceedings

Table 2: Difference between the Spearman correlation calcu-
lated for the CNN enhanced approach and the original IQMs
in different datasets. A positive value indicates that the CNN
enhanced approach performs better, while a negative value in-
dicates the opposite.

TID20l3 CSIQ LIVE2 CID:IQ CID:IQ

50 100

SSIM 0.25 0.11 0.05 0.00 0.22
PSNR 0.22 0.11 0.05 0.08 0.14
MSE 0.17 0.12 0.06 0.05 0.13
MAE 0.36 0.14 0.07 0.56 0.71
LMSE 0.22 0.09 om -0.04 -0.01
NAE 0.14 0.00 -0.01 0.41 0.53
MD 0.39 0.09 0.04 0.47 0.65
SC 0.64 0.68 0.80 0.40 0.34

enhanced metrics have a very good performance among differ-
ent datasets and distortions (Table 2). As mentioned earlier, a
drawback of most IQMs is that while they perform well in one
particular dataset and/or distortion type this performance is not
consistent over all datasets and distortions. This is not the case in
our proposed approach where we see a high correlation rate across
different datasets and distortions. In TID2013 and CSIQ the per-
formance increases for all IQMs, for LIVE2 all expect NAE has
a higher correlation value, and for CID:IQ all except LMSE has a
higher correlation value. In the rest of this section we first show
how combining traditional IQMs with CNN s improves the perfor-
mance of the IQMs. We then compare our approach with a few
state-of-the-art IQMs and finally assess the performance of our
approach with regards to different types of distortions.

In the case of the TID2013 dataset, the proposed approach
outperforms traditional metrics significantly (Figure 2(a)). It is
interesting to see the improvement in correlation values when cal-
culating the enhanced CNN metrics. It is also worth noticing that
the performance for the CNN enhanced metrics are approximatly
similar (above 0.8), and the largest improvement is seen for SC.

For the CSIQ dataset (Figure 2(a)), the enhanced metrics are
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Figure 2. Spearman correlation values for different traditionallOMs and their CNN enhanced approach calculated for the (a) T1D2013, CSIO, and L1VE2

datasets and (b) CID:IO dataset viewed at a distance of 50 and 100 cm shown with 95% confidence intervals.

statistically significantly better in all except for NAE. The correla-
tion values are for many of the enhanced metrics higher than 0.9.
Compared to the other datasets, the highest correlation rates are
observed in the LIVE2 dataset. Similar to the previous cases the
CNN enhanced IQMs show a better performance compared to the
original IQMs, except for LMSE and NAE (Figure 2(a)). Simi-
lar to the other datasets, the traditional IQMs show mostly lower
correlation rates compared to their CNN enhanced metrics in the
CID:IQ dataset at both a distance of 50 and 100cm (Figure 2(b)).

When comparing our methods to 11 different state-of-the-
art metrics (Figure 3(a)), our approach outperforms most metrics
for TID2013, CSIQ, and LIVE2 datasets. For LIVE2 many of
the CNN enhanced metrics is statistically significantly better than
metrics such as SSIM, MSSIM, and more. When comparing the
CNN enhanced metrics to the state-of-the-art for CID:IQ, our
proposed approach outperforms them significantly in both obser-
vation distances for most metrics (Figure 3(b)).

In general, in the majority of the datasets, our CNN en-
hanced IQMs outperform or match state-of-the-art IQMs (Figure
3). From the figures it is clear that the CNN enhanced SSIM,
PSNR, MSE, MAE, MD and SC IQMs perform better than the
other introduced approaches. Generally, these methods show a
better improvement compared to the other methods (Table 2). It
is interesting to observe that the same IQMs are also the "go to"
metrics when a speedy calculation is needed. From the results we
observed that the proposed approach is not only stable across dif-
ferent datasets, but it is rather stable when calculated on images
with different types of distortions.

To further investigate the results we also studied the Spear-
man correlation at different convolutional layers for the CNN en-
hanced IQMs for different datasets. From the results it is interest-
ing to observe that in the case of the CNN enhanced SC method
significantly lower values is seen in the first convolutional layer
compared to other layers. Keeping in mind the nature of the fea-
ture maps in the first convolutional layer this finding is not sur-
prising. While no other specific patterns can be observed when
all the CNN enhanced methods and datasets are taken into ac-
count, Amirshahi et. al. [8] showed that as we go deeper in the
convolutional layers, in their method, the correlation increased.

Finally, we study the role of different CNN models on the
proposed approach, we also calculated the enhanced CNN IQMs

using the VGG model [39] both in the case of VGG16 and
VGG19. From the results, it is clear that while the CNN en-
hanced metrics show a higher correlation compared to the original
IQMs, the change of the CNN models does not affect the results
in a dramatic manner. This finding is proof on how using CNNs
could significantly improve the performance of IQMs while the
results are stable across different models. Keeping in mind that
the VGG19 model is a deeper network than VGG16 the change in
the results show that deeper networks do not necessarily improve
the performance of the approach. It is also interesting that no pat-
tern can be observed between the depth of the convolutional layer
and its calculated image quality. Keeping in mind the computa-
tional costs needed to perform the metric on deeper networks, it is
our assessment that the AlexNet model would be a better choice
for calculating the proposed approach.

Conclusion
A new approach for calculating FR IQMs using CNNs is in-

troduced in this study. The proposed approach is based on us-
ing traditional IQMs such as the MSE, PNSR, and SSIM IQMs
to compare the feature maps on a pre-trained CNN model. Re-
sults show that by combining classical IQMs with modern com-
puter vision techniques we are able to dramatically improve the
performance of the IQMs (on average an increase of 23%). Our
proposed approach not only works as good or better than state-
of-the-art IQMs, but its performance is similar across different
datasets and distortion types. For future work we aim to extend
our investigation to other types of CNN models and IQMs. Find-
ing relevant feature maps in the CNN models and giving a higher
weight to those features are also another direction we are aiming
for.
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Figure 3. Spearman correlation values the enhanced CNN based IOMs along with other state-of-the-art IOMs calculated for the (a) T1D2013, CSIO, and L1VE2

datasets and (b) CDI:IO dataset viewed at a distance of 50 and 100 cm shown with 95% confidence intervals.
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