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Abstract

We propose a variant to polarized gradient illumination fa-
cial scanning which uses monochrome instead of color camerus
to achieve more efficient and higher-resolution results. In typi-
cal polarized gradient fucial scanning, sub-millimeter geometric
detuil is acquired by photographing the subject in eight or more
polarized spherical gradient lighting conditions made with white
LEDs, and RGB camerus are used to acquire color texture maps of
the subject’s uppearance. In our approach, we replace the color
cameras and white LEDs with monochrome cameras and multi-
spectral, colored LEDs, noting that color images can be formed
from successive monochrome images recorded under different il-
lumination colors. While a nuive extension of the scanning pro-
cess to this setup would require multiplying the number of images
by number of color channels, we show that the surfuace detail maps
can be estimated directly from monochrome imagery, so that only
an additional n photographs are required, where n is the number
of added spectral channels. We also introduce a new multispec-
tral optical flow approach to align images across spectral chan-
nels in the presence of slight subject motion. Lastly, for the case
where u capture system’s white light sources are polarized and its
multispectral colored LEDs are not, we introduce the technique
of multispectral polarization promotion, where we estimate the
cross- und parallel-polarized monochrome images for euch spec-
tral channel from their corresponding images under a full sphere
of even, unpolarized illumination. We demonstrate that this tech-
nique allows us to efficiently acquire a full color (or even mul-
tispectral) fucial scan using monochrome cameras, unpolarized
multispectral colored LEDs, and polarized white LEDs.

Introduction

Creating high-quality digital human characters, particularly
those based on the likeness of real people, is a long-standing goal
in computer graphics, with applications in films, video games,
simulations, and virtual reality. Computational imaging and il-
lumination systems have been developed to faithfully capture a
subject’s facial shape and appearance to produce highly photo-
realistic renderings of the subject’s digital double. Such systems
can be broadly grouped into two categories: (1) those using even,
diffuse illumination and multiple camera viewpoints to estimate
facial geometry using multiview stereo approaches, and (2) those
using multiple camera viewpoints in combination with special-
ized illumination patterns, generating facial geometry of a com-
paratively higher resolution using variants of shape from shading
or photometric stereo for surface normal estimation [43].

For the methods of the second category, such as that of Ma
et al. [32] and subsequent approaches [17, 40], polarization fil-
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Figure 1: a,b,e,f: Monochrome photographs of a subject lit by red, green,
blue, and white LEDs; ¢: Colorized diffuse reflection image produced by
mixing a,b,e, and f; g: Monochrome polarization difference image show-
ing specular reflections; d Full-color rendering of the subject; h: Geom-
etry rendering of the subject with no diffuse albedo. Renderings are pro-
duced using only monochrome images.

ters are placed in front of the lights and the cameras, and polar-
ization difference imaging separates the sub-surface and specular
reflections from images for each gradient illumination condition,
exploiting the polarization-preserving aspect of specular reflec-
tions from the skin. Ma et al. [32] demonstrated that separat-
ing sub-surface and specular reflections improved 3D reconstruc-
tion, since surface normals estimated from the sharp, unblurred
specular reflections more accurately captured the pore-level de-
tails of facial geometry. Additionally, the cross-polarized images
provided a better representation of the subject’s colored diffuse
albedo, recording light that has traveled through the skin, hav-
ing undergone multiple sub-surface scattering events and there-
fore depolarization before reflecting back towards the camera.

Since a color diffuse albedo texture map is required for ren-
dering a photo-realistic digital double, most facial scanning sys-
tems of both categories [4, 5, 32, 17, 40] use tristimulus RGB
cameras and broad-spectrum white light sources for acquisition.
One recent exception is the work of Fyffe et al. [14], where
monochrome machine vision cameras were used in combination
with unpolarized LED-generated blue light. This shorter wave-
length light revealed more texture cues in the skin for multiview
stereo and optical flow computations. However, this single-shot
approach only generated facial geometry and did not capture re-
flectance information or produce the colored texture maps needed
to produce photo-realistic renderings.
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Photography with monochrome cameras offers a few obvi-
ous theoretical advantages. First, for a color camera, the light-
absorbing color filters placed in front of the imaging sensor may
absorb more than two thirds of the total incident light per pixel,
requiring a light-boosting compromise somewhere else in the sys-
tem across the exposure triad (increasing sensor gain, exposure
time, or aperture size, none of which are desirable for high-
resolution facial scanning), or the use of even brighter lights,
which could be uncomfortable for live subjects. Additionally,
most modern color cameras include RGB filters in the color fil-
ter array (CFA) arrangement of a typical Bayer pattern, reduc-
ing the effective image resolution for each color channel. Full-
color images are produced using various up-sampling methods
(referred to as debayering or demosaicing algorithms). In con-
trast, monochrome cameras allow for imaging with comparatively
less incident light at a higher true image resolution, while only
generating a single-channel intensity image. In this work, our
goal is to gain the aforementioned benefits of monochrome cam-
era image acquisition in a high-resolution facial scanning system,
without sacrificing the color information that is required for ren-
dering.

While color images are most often produced using tristim-
ulus RGB cameras with spectral sensitivity functions similar to
the human visual system, they can also be produced using active
illumination — by sequentially illuminating a subject with at least
three differently colored light sources, capturing images using a
monochrome sensor with a broad spectral response. This tech-
nique trades the spatial multiplexing of typical RGB cameras for
temporal multiplexing, increasing the image resolution for each
color channel at the expense of requiring more photographs. The
resulting color images will be similar if the power spectra of the
narrow band light sources (modulated by the monochrome cam-
era’s spectral response curve) are similar to those of the broad-
spectrum white light source modulated by a color camera’s spec-
tral response curves. LED light sources have been used for this
technique, though their emission spectra are often narrower than
typical camera spectral sensitivity functions.

While the lighting systems used for high-resolution facial
scanning [32, 17, 40] were comprised of broad-spectrum white
LEDs, other omnidirectional lighting rigs have been built using
red, green, and blue LEDs [8, 22]. These systems were not de-
veloped for facial scanning, but systems like these could enable
monochrome camera color imaging via time-multiplexed RGB il-
lumination. Furthermore, several omnidirectional multispectral
light stages have been built [1, 21, 28, 30, 9], incorporating RGB
LEDs along with other LEDs of distinct spectra, often with six
or more spectral channels per light source. Such systems would
enable multispectral image acquisition, rather than just RGB.

The computational lighting-based facial scanning techniques
already employ time-multiplexed illumination, requiring at least
eight images [32] of a subject under different lighting conditions
for a complete scan. At first glance, one might assume that us-
ing a monochrome camera and colored LEDs instead of a color
camera and white LEDs would require at least 3 times the origi-
nally required number of images, assuming three-channel output.
Or, in the multispectral case, one might expect to need at least n
times as many images, where # is the number of desired spectral
channels of the output. Such a large number of images would be
impractical to acquire for live subjects, where scan time should be
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minimized to reduce the negative effects of slight subject motion
across frames.

However, in this work, we evaluate for each stage of the
high-resolution facial scanning process, whether or not full color
imaging is necessary. From this analysis, we show how to ef-
ficiently capture a full color (or multispectral) facial scan using
monochrome cameras and colored LEDs, requiring only # addi-
tional images, where z is the desired number of added spectral
channels used for producing the diffuse albedo texture map. We
also introduce a new multispectral optical flow approach that cor-
rects for subject motion and chromatic aberrations, based on the
method of complementary flow [40].

Additionally, for the case where a system’s broad-spectrum
white LEDs are already polarized for facial scanning while its
multispectral colored LEDs are not, we introduce an approach
that we call multispectral polarization promotion, which allows
us to hallucinate cross- and parallel-polarized images of a subject
for each spectral channel even when all but one are unpolarized.
‘We compute the per-pixel amount of light reflected specularly rel-
ative to the quantity of incident light for a given lighting condition
using the polarized white LEDs and polarization difference imag-
ing. Since skin is a dielectric, the proportion of incident light
reflected specularly should mostly not depend on the spectrum
of the incident illumination. Therefore, the specular reflection
image can be approximated as consistent across the other spec-
tral channels, up to a scale factor accounting for the monochrome
camera’s potentially different sensitivities to each of the spectral
channels or differing LED intensities. With this information, for
each spectral channel we can hallucinate its cross-polarized image
of sub-surface scattered light by subtracting the hallucinated per-
pixel specular reflection image from a captured photograph of the
subject under an unpolarized lighting condition for that incident
spectrum.

In summary, our contributions are:

e We demonstrate that full-color or multispectral high-
resolution facial scans using state-of-the-art techniques [32,
17, 40] can be efficiently acquired using monochrome cam-
eras and colored LEDs instead of color cameras and broad-
spectrum white LEDs, thereby increasing image resolution
and reducing light requirements.

e We show that such a scan can be acquired by adding only
n photographs to the normal scan sequence, where 7 is the
number of added spectral channels.

e We introduce a new multispectral complementary flow ap-
proach to align images captured under illuminants of differ-
ent spectra.

e We show that polarized light sources are only required for
one spectral channel of the illumination system, and for the
remaining spectral channels we can promote unpolarized
images to cross- and parallel-polarized as required.

Related Work
3D Facial Capture

There are several related goals in computer graphics that re-
quire high-resolution facial scanning techniques. For some appli-
cations, it may be desirable to capture a live actor’s performance
and then have the ability to replay the performance from a new
camera or viewpoint, or under new illumination. Active illumi-
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nation techniques have been proposed to synthesize the required
new views and the subject’s appearance under novel lighting us-
ing image-based relighting approaches [7, 38], although these are
data-intensive captures requiring on the order of hundreds of pho-
tographs per scan.

Another goal is to enable computer graphics artists to pro-
duce an entirely novel performance for a given actor by animat-
ing the actor’s digital double. For photo-realistic visual results,
high-resolution skin geometry and reflectance information are re-
quired, and so static high-resolution scans of the subject in a va-
riety of extreme facial expressions are captured. After a topologi-
cal registration step, animators can mix or cross-dissolve between
these facial expressions to create a new animation [31]. The static
facial scans are often generated using computational illumination
techniques [32, 17], which we extend for the monochrome camera
case in this work.

Ma et al. [32] introduced one such system using a series
of eight lighting patterns designed to produce surface normal esti-
mates. These patterns were produced using a Light Stage, a spher-
ical lighting rig comprised of broad-spectrum, white LEDs. Not-
ing the symmetry of bidirectional reflectance distribution func-
tions (BRDFs) around the surface normal or reflected light direc-
tions for diffuse and specular BRDFs respectively, they derived
per-pixel estimates for these directions by photographing the sub-
ject lit by a sequence of polarized spherical, linear gradient light-
ing conditions. Intuitively, these lighting conditions produced es-
timates of the centroids of the BRDFs, yielding diffuse and spec-
ular normals.

Since the high-resolution capture methods [32, 17] are lim-
ited to static facial poses, significant research has endeavored to
capture dynamic human facial performance. Such captures allow
for an actor’s performance to be transferred to a new digital char-
acter or allow the actor’s performance to be re-rendered in some
other novel way. Multi-camera video recording setups enable dy-
namic multiview stereo based 3D reconstructions [11, 4, 5, 14].
Since these techniques only require an image of the subject in
a single, even lighting condition per viewpoint, they can be ap-
plied to video sequences of an actor’s performance. However,
such methods do not capture skin reflectance information, and
they estimate high resolution geometric details using the tech-
nique referred to as “dark is deep,” where dark pixels are assumed
to represent surface concavities. This assumption breaks down
for the commonly-occurring cases of skin pigmentation or blem-
ishes, where dark pixels are the result of light absorption rather
than shadowing. As such, multiview computational illumination
approaches [17, 32], though requiring multiple input photographs
of the subject under different time-multiplexed lighting condi-
tions, still provide superior geometric accuracy. Dynamic scan-
ning methods can be augmented or initialized by one or more high
resolution static scans [3, 2, 13, 25, 16], providing an additional
application for our monochrome imaging approach.

To capture the details of a high-resolution scan for dynamic
facial performances, Wilson et al. [40] extended the work of Ma et
al. [32] by introducing a novel optical flow based approach. They
added gradient illumination conditions that were complementary
to those of Ma et al. [32], such that pairs of images of a sub-
ject under different lighting conditions could be added together to
produce an image of the subject as lit by a full sphere of even il-
lumination, enabling temporal image alignment by satisfying the
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brightness constancy constraint of optical flow. This flow-based
image alignment also improved the quality of static scans, offer-
ing superior image alignment and better signal-to-noise ratios as
an over-complete image basis was acquired. The monochrome fa-
cial scanning approach that we describe is applicable to this tech-
nique as well, specifically as we define a custom optical flow step
that aligns images captured under different illumination spectra.

Polarization-based Analysis of Reflected Light

When light reflects from a dielectric surface such as human
skin, the specular component can be polarized while the diffuse
reflection is largely unpolarized. This difference has been lever-
aged in the classic computer vision literature [42, 41, 34] to aid
in the separation of diffuse and specular reflections. Debevec et
al. [7] actively polarized a light source and employed polariza-
tion difference imaging to separately model diffuse and specu-
lar reflectance lobes of a human face. The previously described
high-resolution facial scanning approaches [32, 17, 40] polarize
spherical lighting conditions to estimate per-pixel surface normals
from each reflectance component. Color space analysis may also
be used for diffuse-specular separation [34, 33], which Fyfte et
al. [12] extended for facial scanning without polarization filters.
In another filter-free approach, Tunwattanapong et al. [37] used
continuous lighting patterns of higher order spherical harmonics
to separate diffuse and specular reflections as well as to estimate
specular roughness and anisotropy. In this work, we use polariza-
tion difference imaging with monochrome cameras for diffuse-
specular separation, but other filter-free approaches would be of
interest for future work.

Multispectral Illlumination and Reflectance Mea-
surement

Multispectral LEDs have been used in recent years for time-
multiplexed lighting, due to the advancement of solid state light-
ing technology. One application has been for spectral reflectance
estimation of materials, which can be performed using a small
LED array [27, 35, 19, 36] or a multi-source rig capable of pro-
ducing light from many directions [1, 21, 28]. Multispectral LEDs
have also been used for lighting reproduction, where the goal is
to reproduce a particular illuminant’s power spectrum or match
its color rendition properties in a studio environment. This tech-
nique has been practiced again for a single LED array [39, 10]
or for an omnidirectional lighting rig [30, 9]. Such a rig has also
been used for multispectral image-based relighting [29], extend-
ing to the multispectral domain the work of Debevec et al. [7],
in which a subject’s appearance in any lighting environment can
be produced by summing together its appearance as illuminated
by a set of basis lighting conditions. Our objective is different
from each of these previous works, as we seek to generate a high-
resolution 3D facial model with multispectral textures. However,
our work uses the image-based metameric reflectance matching
technique of LeGendre et al. [29, 30] to produce color images
from a set of multispectral basis images.

Multispectral light sources have been used directly for
3D reconstruction as well, extending photometric stereo [43]
to a single-shot and therefore video-rate approach by trading
temporal-multiplexing for spectral multiplexing [23]. Fyffe et
al. [15] extended this approach to the dynamic 3D reconstruction
of faces, although they used cross-polarized images and assumed
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Lambertian skin reflectance, limiting the resolution of the recov-
ered 3D geometry.

Analysis and Equations

In this section, we analyze which parts of a high-resolution
facial scanning pipeline can be achieved with monochrome cam-
eras alone, and which parts require the addition of multispec-
tral LEDs to obtain color information. In our analysis, we con-
sider a monochrome camera extension to the scanning approach
of Ghosh et al. [17], which incorporates the gradient illumina-
tion patterns of Ma et al. [32] and the optical flow techniques
of Wilson et al. [40], but with a spherical polarization scheme
that enables diffuse-specular reflection separation across multiple
camera viewpoints. We also justify our technique of multispectral
polarization promotion and introduce a method for multispectral
optical flow.

Monochrome Multiview Stereo

Initially, a low-resolution 3D reconstruction of the face is
generated using passive multiview stereo. Images of the subject
are captured under a single even, diffuse lighting condition from a
variety of viewpoints. Multiview stereo approaches do not require
RGB images; they even operate more efficiently when using only
intensity information (RGB data converted to gray-scale), extract-
ing cross-view correspondences on one third of the input data. As
noted by Fyffe et al. [14], skin texture cues are highly visible un-
der shorter wavelength blue light, which is absorbed by spatially-
varying skin pigmentation (see Fig. 3). Thus, color images are
trivially not required for multiview stereo, and blue illumination
with monochrome cameras will improve stereo matching.

Monochrome Specular Normals

Ma et al. [32] describe spherical gradient illumination con-
ditions used to infer surface normals, for surfaces that primar-
ily reflect light diffusely (Lambertian) and specularly. They in-
troduced “specular normal maps,” showing that polarization dif-
ference imaging combined with gradient illumination conditions
could yield geometry with resolution comparable to that achieved
with laser scanning. Cross-polarized images were subtracted from
parallel-polarized images, producing specular reflections image
for each gradient lighting condition, from which the specular nor-
mals were derived.

Since skin is a dielectric, specularly-reflected light is mostly
of the same spectrum as the incident illumination. Fresnel’s equa-
tions describe the amount of light incident to an interface that is
reflected versus refracted, depending on the indices of refraction
of the interface materials. For typical dielectric materials, the in-
dex of refraction has some dependency on wavelength, but this de-
pendency is very slight across the visible spectrum, and computer
graphics practitioners commonly assume that reflectivity is not a
function of wavelength. This is a reasonable assumption for di-
electric materials. Accordingly, the specular reflection image of a
face produced via polarization difference imaging is largely “col-
orless” (see Fig. 2). Therefore, we do not need color cameras to
compute “specular normals.” This makes sense intuitively, since
specular normals encode geometry rather than color. Therefore,
to compute specular normals, we could theoretically generate po-
larized gradient illumination conditions using any illuminant to
which a monochrome camera has some sensitivity.
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So far, both 3D reconstruction steps of a high-resolution
facial scan, the multiview stereo coarse reconstruction followed
by the specular reflection based surface normal computation, do
not require color images. If we only wanted to measure high-
resolution facial geometry without computing the subject’s dif-
fuse albedo texture map, then a monochrome camera scan would
require exactly the same number time-multiplexed lighting condi-
tions as a color camera scan.

cross-polarized

(parallel - cross)

Figure 2: Left: Cross-polarized color photograph of a subject under an
even sphere of white light (sSRGB). Right: Specular reflection image com-
puted via full color polarization difference imaging. The image has been
white-balanced to the color of the white light source. Specular reflections
are largely colorless.

Diffuse Reflectance

However, to render a subject’s digital double in color, artists
require a colored texture map of the subject’s diffuse reflectance,
which is approximated using a view-dependent synthesis of color
images of the subject illuminated by a full sphere of cross-
polarized white light. If our light stage includes polarized colored
LEDs in the same polarization arrangement as the white LEDs of
Ghosh et al. [17], then we could capture a cross-polarized image
of the subject under a full even sphere of illumination for each of
the available spectral channels, producing the images required to
generate a multispectral diffuse texture map of the subject. This
multispectral diffuse texture map could then be used to generate
an RGB texture map of the subject’s appearance under a particular
illuminant (see subsection: Color Channel Mixing).

Note that up to this point, despite capturing the spherical
gradient images with a monochrome camera, the only additional
images that must be captured are those of a subject under a full
sphere of cross-polarized illumination for each added spectral
channel. For n added spectra (excluding the white LED, for which
we already have the full sphere cross-polarized condition), we
have only added n images to the scan process. Importantly, we
do not need to capture the full polarized gradient illumination se-
quence for each spectral channel (or even with just RGB LEDs)
to obtain a high-quality scan complete with the subject’s color or
multispectral diffuse albedo.

Multispectral Polarization Promotion

However, polarizing all the colored LEDs of a lighting rig
not only adds complexity, but it also absorbs over half of the
light emitted by the LEDs. Since colored LEDs are often used
for applications like live-action compositing with lighting repro-
duction [8, 22, 30] where video-rate recording demands short ex-
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posure times, halving the light output of the colored LEDs is
undesirable. As an alternative, we develop a technique that we
call multispectral polarization promotion in which we hallucinate
cross-polarized images for each spectral channel from unpolar-
ized lighting images, so that we can generate a multispectral dif-
fuse albedo texture map of the subject. Our process requires that
only one of the spectral channels in the lighting rig is polarized in
the pattern of Ghosh et al. [17].

For clarity, we extend the variable naming conventions of
Ma et al. [32]. We define a gradient illumination image of the
subject Ly ; , where { describes the gradient condition, i describes
the polarization state (one of cross or parallel), and s defines the
index of spectrum of illumination, ranging from 0 to # — 1 where
n is the number of spectral channels in the lighting rig, and 0 rep-
resents the white LED. The gradient illumination images required
[32] are therefore:

L, .0, cross-polarized, x gradient

Ly ¢ 0, cross-polarized, y gradient

L, .o, cross-polarized, z gradient

Ly . 0, cross-polarized, full sphere
Ly 0. parallel-polarized, x gradient
Ly 0, parallel-polarized, y gradient
L, p.o, parallel-polarized, z gradient
Ly p 0, parallel-polarized, full sphere

When linear polarizers over the light sources are oriented
perpendicularly to the those in front of the camera, the polarizer
will block all of the specularly-reflected light and about half of
the diffusely reflected light, such that L; . s = %Dhs, representing
an image of the diffuse or sub-surface scattered reflections. When
the polarizer in front of the camera is parallel, the polarizer will
block about half of the diffusely reflected light, and none of the
specularly-reflected, such that Z; , s = %Dl, s+ 5. Therefore, for
each gradient lighting condition / and spectrum s, the specular
reflection image S; 5 is produced via polarization differencing:

Sl,s = Ll,p,s _Ll,c,s (€))

Using a monochrome spectral camera model, a pixel value
Ps,j of a material j lit by spectrum s is produced by integrating
a fully-spectral modulation of the scene illuminant I;(A) by the
reflectance spectrum of the material R;(A) and the monochrome
camera’s spectral sensitivity function C(A4):

pos= [ BOIR(ICR) @

We again assume that light reflected specularly from the
skin preserves both the polarization and spectrum of the incident
source. This assumption implies for an image pixel representing
specular reflection, that the reflectance spectrum R;(A) of Eq. 2
is a constant value over the visible wavelength range. This value
represents the per-pixel reflectivity or specular albedo (pspec) of
the surface, modulated by a per-pixel constant scale factor Fj that
only depends on the geometry of the illumination relative to the
geometry of the surface. The intuition behind the constant F; is
that a different amount of light will be reflected specularly to-
wards the camera for a pixel depending on the incident illumina-
tion condition / and the pixel’s surface normal. Both constants
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can be pulled out from the integral, and the pixel values of the
specular reflection image S; ; are computed as:

700
Sis = (Papechi) [ BAIC(A) ®

In Eq. 3, the integral represents the intensity of I;(A) as ob-
served by the monochrome camera with spectral response C(4).
We call this quantity Wi:

700
W, = A 0 BCR) )

W; can be directly measured as a calibration step by pho-
tographing a reflective white spectralon disk or the white square
of a color chart as lit by each spectrum of illumination s (scaled
up to represent the true reflectance of these calibration targets).
No spectral measurements are required. By substitution, we can
write that the specular reflection image S; ; is a scaled multiple
of the incident light intensity, depending on the per-pixel specular
albedo and per-pixel geometric factor: S; ; = (Pspec F7)Ws. Or, by
rearranging:

Sis
Fiy=—* 5
(PspecFr) W, 5)
We can equate these ratios across spectral channels for a
given gradient illumination condition /. Without loss of gener-
ality, we can compare the white LED with another spectrum s:

Sto _ Sis

Wo _ W, ©®

We assume that with our lighting rig we are able to capture
cross- and parallel-polarized images Ly . o and Ly, , o for the white
LED for the full sphere lighting condition f, producing Sy g using
Eq. 1. After measuring W; for each spectral channel, we therefore
solve for Sy for each spectral channel, by substitution into Eq.
6. The intuition behind this step is again that the amount of light
reflected specularly does not depend on the incident spectrum,
but rather depends only on the relative intensity of the different
spectral channels as observed by the camera.

However, the specular reflection images S f,s are not suffi-
cient. For the texture maps cross-polarized images Ly . ; are re-
quired for each spectral channel (or, equivalently, D ;). So, using
the unpolarized multispectral LEDs of the lighting rig, we capture
the unpolarized (“mixed polarization”) image M ; for each spec-
trum s. An unpolarized lighting image M; ; for lighting condition
[ can be approximated as the sum of cross- and parallel-polarized
images:

Ml,s = Ll,p,s +Ll,c,s @)
Or equivalently, by substitution:
Ml,s = Dl,s +Sl,s ®)

Since we capture images My and estimate Sy s for each
spectral channel, we can compute Dy or equivalently Ly . ;. The
multispectral set of hallucinated images Dy ; provide the diffuse
albedo maps required for rendering, after RGB images are formed
via color channel mixing. Again, for » added spectra, we have
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only added n unpolarized multispectral images to the scan pro-
cess.

With polarization promotion, we have effectively halluci-
nated cross- and parallel-polarized images for all spectral chan-
nels using only the polarized lighting conditions of one spectral
channel and the corresponding unpolarized lighting conditions of
the others. Theoretically the polarized spectral channel could be
any — polarizing the white LED channel is not a requirement of
our approach. However, since the index of refraction has some
slight wavelength dependence, comparing specular images un-
der the broad-spectrum white LED with those of the other spec-
tra is advisable to minimize errors caused by the assumption of
spectrum-preserving reflections.

Monochrome Diffuse Normals

Ma et al. [32] introduced “diffuse normals,” which could be
used in a “hybrid normal” shader to simulate the effects of sub-
surface scattering in a real-time rendering application. In our mul-
tispectral polarization promotion approach, we only photograph
diffuse gradient lighting conditions for a single monochrome im-
age channel for the white LED, so we generate single-channel
diffuse normals rather than typical RGB diffuse normals. In
our results section, we visualize the colorized spherical gradi-
ent illumination images by considering that the ratio of a cross-
polarized gradient condition to a full sphere cross-polarized con-
dition should be approximately the same across spectral channels.
After photographing L; ¢ o, Ly, 0, and hallucinating Ly . ; for each
spectral channel, we can approximately compute L; . ; for lighting
conditions / of gradients x,y,z:

Lics _ Lico

AR €
Lics  Lyeo

This is an approximation that does not consider the
wavelength-dependent optical properties of the skin demonstrated
through diffuse normals computation.

Color Channel Mixing

Once the diffuse or sub-surface scattered reflection images
for each spectral channel have been photographed or computed
via polarization promotion, we generate an RGB image of the
diffuse reflections using image-based multispectral metameric re-
flectance matching as in LeGendre et al. [30], extended to the
monochrome imaging case [29]. The weights of the different
spectral channels, ¢, must be computed separately for each de-
sired output color channel, yielding 3s degrees of freedom. The
pixel values of a color chart for a given target illuminant are rep-
resented by pixel values Pj. where j is the index of the given color
chart patch and ¢ is the target camera’s ¢’th color channel. Nj; is
the average pixel value of color chart square j under LED spec-
trum s, and N is the j X s matrix whose columns correspond to
the LED spectrum s and whose rows correspond to the color chart
square j. Eq. 10 should be minimized for each color channel
of the target color chart, producing in our case three « vectors,
which are the lighting primaries. This locks in the RGB diffuse
albedo to the lighting condition illuminating the target chart and
specific camera. Optionally, a color matrix may also be applied.

m i
Y (Pi— Y aNjs)* =||P—Na||? (10)
j=1

s=
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Optical Flow

As in other high-resolution facial scanning approaches [40,
17, 32], temporal alignment between photographs is a prerequisite
for all computations requiring more than one pattern, i.e. estima-
tion of diffuse and specular normals, polarization promotion, and
color channel mixing. For the monochrome imaging approach,
we need to flow across spectral channels, not only to account for
potential movement between frames but also to correct for chro-
matic aberrations. Formally, our optical flow approach must addi-
tionally align Ly, s—1., 10 Ly 0, where m indicates the mixed
polarization condition. Below, we discuss the special case of
adding spectral channels comprised of the red, green, and blue
LEDs (spectra in Fig. 5).

The appearance of skin illuminated by red, green, and blue
light is different owing to the wavelength-dependent effects of
sub-surface scattering [18, 26]. When skin is illuminated by a
broad-spectrum light source, shallow sub-surface scattered light
appears blueish in color, while deeper scattered light appears red-
dish in color from this wavelength-dependent scattering and light
absorption by the skin’s chromophores. For the narrow-band LED
illumination, the image under the red LED exhibits less distinct
skin texture and a more diffused, soft appearance, in contrast with
the image under the blue LED with a great deal of high frequency
detail, predominantly from short-wavelength light absorption by
epidermal melanin. The image under the green LED is similar to
blue, but slightly “softer” (see Fig. 3).

/ “‘ﬂ e

White Red

Green Blue

Figure 3: Inset of facial detail photographed by monochrome camera un-
der different incident illumination spectra, with spectra in Fig. 5. Images
have been scaled to the same relative brightness for display.

To flow from an image of a subject illuminated by one spec-
trum to that of a different spectrum, we can naively assume that
these images are the same, modulated only by an overall average
scale factor x, that accounts for the differing fully-spectral modu-
lation of the subject’s average spectral reflectance by the differing
incident LED spectra s and the monochrome camera’s spectral
sensitivity. Formally, the assumption is that we can compute x;
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Figure 4: Absolute difference e in pixel values when approximating the
image for white LED, using the red channel ¢, = 0.00971, the green chan-
nel e, = 0.00816, the blue channel e, = 0.01136, the red and blue chan-
nel e;; = 0.00684, and the red, green, and blue channel e, = 0.00561
respectively.

such that Ly 0 ~ XsLfpms for s = 1..n, approximately satisfy-
ing the brightness constancy constraint, so that x;Ls s may be
flowed to Ly 0. This naive assumption ignores spatially-varying
skin spectral reflectance and the effects of sub-surface scattering.

Wilson et al. [40] defined an iterative optical flow solu-
tion to align a pair of complementary images that when added
together produced a third target image. The method flowed cross-
and parallel-polarized images to mixed polarization images, and
flowed spherical gradients and their inverse counterparts towards
a full-on even sphere of illumination. We extend the complemen-
tary flow of Wilson et al. to the multispectral domain, increas-
ing the accuracy of the brightness constancy assumption by com-
bining images across spectral channels. Our key observation is
that some linear combination of aligned multispectral images will
more closely match the target image, Ly 0, as compared with
each aligned image alone. Fig. 4 demonstrates this effect, where
the absolute value of the pixel error is lowest for the linear com-
bination of red, green, and blue images when trying to match the
intensity of the white image.

Inspired by the metameric reflectance matching expression
(Eq. 10) and complementary optical flow [40], we define a least
squares procedure to incrementally align images of the same sub-
ject captured as illuminated by different spectral channels. For a
set of two or more unaligned images, we compute the amounts x;
of each image Ly s for s = 1..n, that, when all added together,
best produce the target image Ly o, as in Eqn. 11.

I
argmin(([L7mo — Y 55Lymsl) an
x>

s§=

We scale the unaligned images by these amounts x;. Then, as
in Wilson et al. [40], we initialize the flow fields for each scaled
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image to 0, indicating no motion, and iteratively update flow es-
timates for each spectral channel. During the first step of one
iteration, the flow field for an unaligned image is estimated by as-
suming that the other unaligned images’ flow fields are constant.
In the the next step of the iteration, we estimate the flow field for
a different unaligned image, while the flow fields for other im-
ages including the scaled aligned image of the previous step are
assumed constant.

To find x; values, we could use linearly independent samples
from a color chart lit by each incident spectrum, or pixel values
sampled from the actual images after low pass filtering to account
for motion, as they are initially unaligned. In practice, we sam-
ple pixel values from filtered images and use a non-negative least
squares solver. However, the solver may suggest x; = 0 for some
spectrum s, which means that the corresponding image will never
be aligned during the complementary flow. A weight of x, =01in
the solve means that adding this spectrum does not further help to
minimize color error, which implies that its spectral contribution
is either redundant or not useful due to a lack of spectral over-
lap with the target illuminant. To handle redundancy, for each
source image with x; = 0 in the initial solve, we can subsequently
find the set of already aligned images that, when combined, best
match it in a least squares sense. Then, we can compute simple
optical flow to align the source image to the already aligned linear
combination target. We note that this is different from the itera-
tive complementary step, as the color mixing solve endeavors to
best match an unaligned source image Ly, s rather than the target
image Ly 0, and furthermore this step does not use the comple-
mentation constraint. This final step ensures that every image is
ultimately aligned to the target.

To further improve the robustness of our multispectral op-
tical flow, we note that negative pixels may be produced when
linearly combining images across spectral channels, even when
using a non-negative least squares solve. As an example, during
one iteration, say we solve for the amount of a red image R and a
green image G that best produce the target white image W. Then,
the flow step would alternate between aligning the source image R
to the target image W — G and the source image G to the target im-
age W — R, possibly producing some negative pixel values. Rather
than clamping the images to zero, we find the minimum and maxi-
mum pixel values of both the source and target images, and remap
both to the same pixel value range. This changes the relative in-
tensity of both images, so we further normalize each remapped
image by dividing each by a highly smoothed, Gaussian-blurred
version of itself.

Results and Discussion

Monochrome Camera Facial Scan

First, we show sample images from a monochrome cam-
era facial scan using four spectral channels: red, green, blue and
broad-spectrum white (spectra in Fig. 5). The lighting rig used for
this facial scan only has polarizing filters for the white LEDs, so
we employ our polarization promotion technique and multispec-
tral optical flow. In Fig. 7, we show input monochrome images
and the full-color cross- and parallel-polarized images that can
be produced in our pipeline. In Fig. 8 we show a side-by-side
comparison of a flash-lit photograph of the subject acquired with
a Canon 1DX DSLR camera with a rendering of the subject pro-
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duced using our monochrome imaging pipeline. For the facial
scan, we used 14 monochrome Ximea xiQ MQ042MG-CM ma-
chine vision cameras, each fitted with a 50mm Fujinon lens and
linear polarizer. For the rendering, we used a custom alSurface
skin shader and the Arnold global illumination ray-tracer. We
tried to match the camera and lighting positions, although in this
case the flash-lit photograph of the subject was acquired many
days apart from her facial scan. Nonetheless, the subject’s like-
ness has clearly been captured, and high resolution facial details
are produced along with the color texture map required for render-
ing. For the renderings in Fig. 8, in keeping with the state-of-the-
art, we added image-based skin microgeometry [20] to improve
the appearance of specular reflections. In Fig. 6, we show aregion
of the subject’s cheek for the single-channel diffuse normal, spec-
ular normal, and diffuse albedo texture maps generated from the
scan images of Fig. 7, without added microgeometry. Although
our technique produces only a single-channel diffuse normal, the
smoother appearance of the diffuse normal map is observed com-
pared with the specular normal map as expected.

Figure 5: The spectra of the four LEDs comprising the light stage
used in this work.

| &

diffuse normals specular normals  diffuse albedo

Figure 6: Left: Diffuse normal map for a crop of the cheek region.
Center: Specular normal map for the same region. Right: Corresponding
diffuse albedo texture map. Each were generated using our monochrome
facial scanning pipeline with multispectral polarization promotion.

Comparison with Color Imaging

To demonstrate the improvement in the resolution of ge-
ometric “specular normals” when using a monochrome cam-
era as compared with a color camera, we photographed a sub-
ject using two cameras with the same sensor, but one color and
one monochrome. The two machine vision cameras, a Ximea
xiC MCI124CG-SY (color) and a Ximea xiC MCI124MG-SY
(monochrome) both use the Sony IMX253 sensor. They were
placed immediately adjacent to one another, though not on the
exact same optical axis. With both cameras, we photographed
a subject illuminated by polarized spherical gradient illumination
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conditions in the lighting rig, aligned the images with optical flow,
and then computed the “specular normals” of Ma et al. [32]. We
show the results in Fig. 9. In the top row, we compare the spec-
ular normals obtained using a monochrome camera with those
obtained using a color camera, using the adaptive homogeneity-
directed demosaicing algorithm [24] for obtaining color images.
In the bottom row, we compare the specular normals obtained us-
ing a monochrome camera with those obtained using a color cam-
era and a simple linear interpolation demosaicing algorithm. In
both cases, the specular normals computed with the monochrome
camera images are sharper and show a greater level of detail.

Multispectral Polarization Promotion

Next, to validate our new technique for hallucinating cross-
and parallel-polarized multispectral images when only one spec-
tral channel is polarized, we photographed a subject in a different
lighting rig where all four spectral channels (red, green, blue, and
broad-spectrum white) are polarized. We were therefore able to
generate “ground truth” polarization difference images for each
spectral channel. For this experiment, we used a color Ximea xiC
MC124CG-SY camera, fitted with a linear polarizer and 50 mm
Schneider lens (though only a monochrome camera is required).
We photographed the subject under each spectral channel for the
cross and parallel polarization states, producing the color polar-
ization difference images in the top row of Fig. 10. Next, we
simulated a monochrome camera response for the polarization
difference images, converting the color images to grayscale us-
ing ¥ = 0.2126R 4 0.7152G + 0.0722B. We calibrated the rela-
tive LED intensities across spectral channels as observed by the
camera, photographing a color chart and measuring the pixel val-
ues of the white square, and we then scaled the monochrome po-
larization differences for each spectral channel according to this
calibration. These scaled images are shown in the middle row
of Fig. 10. They all appear to be visually the same, validating
the assumption that the amount of light reflected specularly from
the skin does not depend on the incident illumination spectrum.
Indeed, for incident illumination of pixel intensity 1.0, the aver-
age absolute difference between the polarization difference im-
ages for the white LED as compared with the red, green, and blue
LEDs are 0.0160,0.0016, and 0.0012 respectively, sampled along
a large section of the subject’s cheek region. These absolute dif-
ference images are shown in the bottom row of Fig. 10.

Multispectral Optical Flow

Next, to evaluate our optical flow technique, we aligned the
red, green, and blue LED images of our scan subject, in Fig. 1(a),
(b), and (e), to the white LED, Fig. 1(f). For these images, we
found that even naively flowing a weighted version of each spec-
tral channel directly to the white image worked well in practice
and visually aligned the images. We expect that naive optical
flow was successful for a number of reasons. First, the reflectance
spectra of skin are relatively smooth, and the spectrum of our tar-
get white LED covered a large portion of the visible wavelength
range and overlapped with each of the other LED spectra (see
Fig. 5). Additionally, the blue and green images revealed high
frequency details required for optical flow approaches, allowing
them to be easily aligned to white after global intensity matching
followed by local intensity normalization. The red image lacked
high frequency detail, showing a large texture-less region for the
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Figure 7: From left to right: lighting conditions /, monochrome parallel-polarized images, monochrome cross-polarized images, monochrome polarization
difference images, colorized hallucinated parallel-polarized images, and colorized hallucinated cross-polarized images, for a female subject.

skin, a challenging input for most optical flow techniques. How-
ever, if a pixel is misaligned in a texture-less region, the result can
still be visually acceptable, since it will take on a nearby pixel’s
nearly identical intensity. Finally, each image was captured with
a 12 millisecond exposure time, and therefore a complete facial
scan took less than one quarter of a second. With a short capture
time and the subject trying not to move, motion across frames was
very slight, on the order of less than 3 pixels.

Though we found our complementary multispectral optical
flow technique was not required for the input images in Fig. 1,
we captured an additional scan subject to demonstrate the utility
of our approach for the challenging case of photographing objects
with diverse reflectance spectra. We painted a Styrofoam man-
nequin head with different brightly colored paints (see Fig. 11a)
and photographed it under slight rigid motion inside the light-
ing rig with a Ximea monochrome xiQ MQ042MG-CM camera,
using the same four spectral illumination conditions (red, green,
blue and white LEDs), while adding amber and cyan LEDs (spec-
tra in Ref. [30]). In Fig. 12, we compare results for four dif-
ferent multispectral optical flow approaches, where all four use
the same core optical flow algorithm, parameters, intensity nor-
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malization techniques, and non-negative least squares solver. Fig.
12 visualizes the magnitude and direction of the computed flow
fields as saturation and hue respectively. As the mannequin only
moves rigidly, the pixel values of these flow visualizations should
be smoothly varying within a spectral channel, indicating a sim-
ilar direction of motion for all image pixels. To demonstrate the
appearance of a smoothly varying flow field, we trivially aligned
a white LED image to a different white LED image (Fig. 1lc),
and visualized the flow result in Fig. 11b. The four multispectral
optical flow approaches with results in Fig. 12 are the following:

e Naive Flow: Separately flow a scaled version of each spec-
tral channel to white.

o Single-Image Incremental Flow: First, find the image that,
when scaled, best matches white in a least squares sense, and
flow this scaled image to white. Then flow each subsequent
image individually to a linear combination of all previously
aligned images, including white. (This uses metameric re-
flectance matching but not complementary flow.)

e Two-Image Complementary Flow: First, find the pair of
images that, when combined, best match white in a least
squares sense, and apply two-image complementary flow
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photograph of flash-lit subject

rendering with diffuse texture

rendering without diffuse texture

Figure 8: Left: Color photograph of a female subject under a flash-lit condition. Center: Rendering of the same female subject from the monochrome
scan, photographs in Fig. 7. Note that the scan of the subject and her photograph were completed several days apart, with different cameras. Right:
Rendering to show captured geometry without color detail. For both renderings, we applied image-based skin microgeometry [20] to the displacement

maps.

to iteratively align both scaled images to white. Then flow
each subsequent image individually to a linear combination
of all previously aligned images, including white. (This uses
metameric reflectance matching and two-image complemen-
tary flow.)

o Multi-Image Complementary Flow: Find the linear com-
bination of all of images that, when combined, best match
white in a least squares sense, and apply multi-image com-
plementary flow to iteratively align «ll images to white. If
the initial solve does not use all spectral channels, flow
any unused images individually to a linear combination of
all previously aligned images, including white. (This uses
metameric reflectance matching and multi-image comple-
mentary flow.)

Visually, our results demonstrate that the two-image com-
plementary approach yields more smoothly-varying flow fields
for the rigidly moving mannequin than either the naive or single-
image incremental approach, indicating that our complementary
multispectral optical flow approach can improve alignment for
challenging subjects with diverse reflectance spectra and consid-
erable movement. Though our results are not perfect, as some
non-smoothly varying color changes are observable, there is clear
improvement over the naive approach. While the residual color
error when approximating white is smaller for the multi-image
complementary approach, which might help to better meet the
brightness constancy constraint of optical flow, this comes at the
cost of introducing a larger number of “guessed” initial flow fields
in the complementary flow framework. As a result, qualitatively,
we observe the best results for the two-image complementary ap-
proach, where fewer initial flow field guesses are required.

196

For all experiments, we used the OpenCV 3.3 [6] implemen-
tation of TV-L1 optical flow [44], with the following parame-
ters: T=0.25,4 = 0.15,08 = 0.3, nscales=5, warps=5, € = 0.01,
innerlterations=30, outerlterations=10, scaleStep=0.5, y = 0, and
no median filtering. For images of size 2048 x 2048, we used a
Gaussian blurring kernel of width = 21 for both the metameric
reflectance solve and the intensity normalization.

Color Mixing for Diffuse Albedo

Another benefit of our multispectral scanning approach is
that we can approximate the color rendition properties of different
illuminants as observed by a particular camera when generating
cross-polarized images and diffuse albedo texture maps (see bot-
tom row of Fig. 13), using Eqn. 10. It is well known that simply
applying a 3 x 3 color channel mixing matrix to an RGB image
cannot correct for spectral differences between illuminants. We
therefore evaluate our technique’s ability to match the color ren-
dition properties of three different illuminants (daylight, fluores-
cent, and tungsten) as observed by a Canon 1DX camera. With the
same camera, we photographed a color chart lit by white LEDs.
We then computed the best 3 X 3 color matrices to try to “cor-
rect” this image to match the color rendition properties of different
real-world illuminant images. We repeated this test for a different
Ximea color camera as well. With a monochrome Ximea cam-
era, we then captured the appearance of the color chart lit by six
LEDs of distinct spectra, WRGB plus cyan (C) and amber (A),
generating the N matrix of Eq. 10. We solved for the multispec-
tral image primaries for each illuminant when using WRGBCA,
WRGB, and RGB LEDs only. We compare the color rendition
of each approach in Fig. 13. The background squares represent
the target colors, while the foreground dots represent the colors
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¢. monochrome camera

d. color camera (linear)

Figure 9: a: Specular normals of a subject’s cheek, computed using po-
larized gradient illumination with a monochrome camera, and b: with a
color camera, using the adaptive homogeneity-directed demosaicing al-
gorithm [24] to obtain color images. ¢: Specular normals of a subject’s
lip region, again computed using polarized gradient illumination with a
monochrome camera, and d: with a color camera, using simple linear
Bayer pattern interpolation to obtain color images. Even when using a
color camera in combination with a sophisticated demosaicing algorithm,
photography with monochrome cameras yields higher resolution geome-
try, as observed via the sharpness of skin details in a and ¢.

achieved by applying the color matrices (top two rows) or by mix-
ing spectral channels (bottom chart row). When the dots “disap-
pear,” it means we have achieved good color rendition. The multi-
spectral approach with six spectral channels visually and quantita-
tively out-performs the color-matrix approach for daylight and in-
candescent light, especially for the important skin-colored square
of the color chart. Color rendition can be improved with multi-
spectral monochrome imaging with six spectral channels, which
suggests that the skin’s wavelength-dependent sub-surface scat-
tering effects maybe better estimated using our approach, if an
artist knows ahead of time the color rendition properties of a vir-
tual scene’s dominant illuminant. We show that generating tex-
ture maps with WRGB alone with monochrome cameras does not
out-perform the color matrix approach, however it performs sig-
nificantly better than RGB only.

Future Work

In this work, we have used polarization difference imaging
for diffuse-specular separation. It would be of interest to evaluate
other methods for this step as well, particularly an approach em-
ploying higher order spherical harmonic lighting conditions [37]
instead of polarizers. Ideally, polarizing filters could be avoided
for all spectral channels to maximize light output and further re-
duce exposure times. Furthermore, fully-spectral rendering has
received considerable attention in the computer graphics field in
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red LED green LED blue LED white LED

Figure 10: Top row: Ground truth polarization difference images,
computed by photographing a subject under cross- and parallel-polarized
lighting conditions for each spectrum. Middle row: Monochrome ground
truth polarization difference images for each spectral channel, computed
via RGB to grayscale conversion of the images of the top row. These are
then scaled based on the calibrated LED intensities as observed by the
camera. These images are qualitatively similar across spectral channels,
indicating that the amount of light reflected specularly from the skin does
not depend on the incident spectrum, justifying our technique of multi-
spectral polarization promotion. Bottom row: Absolute difference across
the images of the middle row. From left to right: [White - Red|, |White -
Green|, [White - Blue|, and the trivially O0-valued |White-White|. Quanti-
tative average absolute errors are 0.016,0.0016,0.0012 for a large region
of the subject’s cheek, for red, green, and blue respectively as compared
with the white LED. Errors are relative to incident light of intensity 1.0.
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b. visualized flow ¢. white LED

a. mannequin

Figure 11: a: A color image of the painted mannequin head used for the
optical flow experiments. b: The flow field visualized by naively flowing
one white LED image to another. Smoothly varying pixel colors indicate
rigid motion. Hue represents the direction of the per-pixel motion vector,
and saturation represents its magnitude. ¢: The image of the mannequin
lit by the white LED, the target image for the flow calculations of Fig. 12.

recent years, and several commercial global illumination render-
ing software programs now include spectral information. It would
be of theoretical interest to evaluate how our multispectral texture
maps could be used in spectral global illumination rendering, par-
ticularly as the sub-surface scattering appearance for a given illu-
minant can be “baked” into our diffuse albedo, albeit for the full
sphere of incident illumination.

Conclusion

In this work, we have demonstrated that high-resolution fa-
cial scanning with a light stage system can be efficiently achieved
using monochrome cameras and colored LEDs, with advantages
over the usual setup with color cameras and white LEDs. Only a
few more images are required, equivalent to the number of added
spectral channels, and the increased camera sensitivity can be
used to shorten the exposure times to speed up the scan and/or
reduce the light on the subject. In the case where only one spec-
tral channel (e.g. white) is polarized, we introduced an approach
to hallucinate cross- and parallel-polarized images for the remain-
ing channels, as required for diffuse albedo texture map genera-
tion. We also introduced a novel multispectral optical flow tech-
nique based on complementary flow, enabling our multispectral
3D scanning technique to be applied to live subjects.
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red LED amber LED green LED cyan LED blue LED

Input Images

Naive Flow

Two-lmage Compl. Flow Single-Image Inc. Flow

Multi-lmage Compl. Flow

Figure 12: Top row: Input monochrome images of the painted mannequin head of Fig. 11a, as illuminated by each spectral channel. Rows 2-5:
Visualizations of flow fields computed for each spectral channel, when aligning each image to the white LED image of Fig. 11c, using the four different
flow techniques outlined the results section. Hue represents the direction of the per-pixel motion vector, while saturation represents the magnitude. Images
have been scaled by 2.0 for display, increasing the apparent magnitude. The Two-Image Complementary Flow technique yields the smoothest flow fields
representing the mannequin’s rigid motion, best aligning the multispectral images for this challenging scan subject with diverse reflectance spectra.
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Daylight Tungsten Fluorescent

color matrix, color matrix,

WRAGCB  diff. camera same camera

Figure 13: Matching color rendition with a 3 X 3 color matrix applied to
color images, as compared to color channel mixing (Eq. 10) with mul-
tispectral monochrome imaging. Background squares are pixel values
sampled from a color chart illuminated by three real world illuminants,
photographed by a Canon 1DX camera. Foreground dots represent the
closest achievable color rendition for each method. Row 1: 3 x 3 color
matrix from an color image under white LED lighting, photographed by
the same camera as the target, and Row 2: by a different camera from the
target. Rows 3, 4, and 5: Monochrome imaging with six (WRAGCB),
four (WRGB), and three (RGB) spectral channels. Last row: Scan sub-
ject of Fig. 7, cross-polarized images produced from a multispectral ba-
sis with Eq. 10. Color matrices alone cannot perfectly color-correct,
especially when the input and target images are captured with different
cameras. Quantitatively, multispectral imaging with monochrome cam-
eras and six spectral channels improves color rendition for tungsten and
daylight as compared with applying a color matrix alone. All charts have
been converted to sSRGB for display and are best viewed on a monitor.
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