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Abstract
Laparoscopic surgery has a limited field of view. Laser ab-

lation in a laproscopic surgery causes smoke, which inevitably
influences the surgeon's visibility. Therefore, it is of vital im-
portance to remove the smoke, such that a clear visualization
is possible. In order to employ a desmoking technique, one
needs to know beforehand if the image contains smoke or not,
to this date, there exists no accurate method that could classify
the smoke/non-smoke images completely. In this work, we pro-
pose a new enhancement method which enhances the informative
details in the RGB images for discrimination of smoke/non-smoke
images. Our proposed method utilizes weighted least squares op-
timization framework (WLS). Forfeature extraction, we use statis-
tical features based on bivariate histogram distribution of gradi-
ent magnitude (GM) and Laplacian of Gaussian (LoG). We then
train a SVM classifier with binary smoke/non-smoke classifica-
tion task. We demonstrate the effectiveness of our method on
Cholec80 dataset. Experiments using our proposed enhancement
method show promising results with improvements of4% in accu-
racy and 4% in FI-Score over the baseline peiformance of RGB
images. In addition, our approach improves over the saturation
histogram based classification methodologies Saturation Analy-
sis (SAN) and Saturation Peak Analysis (SPA) by 1/5% and 1/6%
in accuracy/F I-Score metrics.

We can employ our enhancement method in replacement of
RGB images for classifier training e.g., CNN architectures, which
in turn can lead to more accurate classification. Code will be
released for public use.

KEYWORDS
Image Enhancement, Weighted Least Squares Frame-
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INTRODUCTION
Over the last decade, we have seen an increase in the number

of laparoscopic surgeries [1]. During the surgery, such as in cavi-
tary treatment, laser ablation causes smoke [2] which significantly
degrades the perceptual quality of the images which inevitably
influences the surgeon's visibility, further it also influences the
performance of computer vision based navigation systems [3].
Moreover, surgical smoke is composed of chemical, physical or

* Congcong Wang and Vivek Sharma contributed equally to this work
and listed in alphabetical order.
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biological particles, which may be harmful for surgeons and pa-
tients [4-6]. Therefore, it is of vital importance to remove the
smoke by computer vision algorithms [7] and by smoke evacua-
tion techniques [8,9]. In order to employ a desmoking technique,
as a prior knowledge it is essential to know if the image contains
smoke or not. In this work, we propose a method to enhance the
images for better classification of smoke and non-smoke images.
Our goal is to enhance the images, such that the extracted fea-
tures from the enhanced images are informative for discrimination
that can lead to improved smoke/non-smoke image classification.
Note that our goal is not to enhance the images for visual pleas-
antness of observers' perception, but rather enhance the images
features for improved classification.

Our work is inspired from [10,11]. Sharma et at. in [10] en-
hance the visible (ROB) images using near-infrared (NIR) coun-
terparts and show improvement in the image feature quality for
biometric verification tasks, further in [11], Sharma et at. emu-
lates several image enhancement methods in convolutional neural
networks for an accurate image classification. We have a similar
goal, though our work differs substantially in technical approach
and the application scope. Specifically, we utilize weighted least
squares optimization framework (WLS) [12] to decompose an im-
age to fine and coarse enhanced images, and then combine them in
a more meaningful way such that the combined image have better
image features for our classification task.

Our proposed approach is evaluated on Cholec80 dataset for
smoke/non-smoke image classification. We experimentally show
that our proposed method consistently improve the classification
performance over the baseline ROB images, popular state-of-the-
art enhancement methods, and the saturation histogram based
classification methodologies Saturation Analysis (SAN) and Sat-
uration Peak Analysis (SPA).

The remainder of this paper is structured as follows. First,
we review the related work on image enhancement and smoke de-
tection methods. Next, we describe our proposed method, and dis-
cuss the experimental results. Finally, the conclusions are drawn.

RELATED WORK

Image Enhancement. Image enhancement or filtering tech-
niques enhance the contrast, boost the image details, and pro-
duce more vivid colors, and at the same time removes the ef-
fects of blur, noise, and compression artifacts. Examples of
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Figure 1: Pipeline of the proposed method.

PROPOSED METHOD
In this section, we illustrate our proposed approach, starting

with the proposed enhancement method, then the feature extrac-
tion method, and finally classifier training. Figure 1 shows the
schematic layout of our framework.

Proposed Enhancement Method. We denote our WLS-based
filtering method as FC. To enhance the visible ROB image, we
first transform color space from ROB to YCbCr space that is a
luminance-chrominance color space. Our method operates on the
luminance component [37] such that to modify the overall con-
trast and sharpness of the image without sensibly affecting the
color. Where the chrominance is simply re-combined in the final
enhanced image.

In our work, we employ an edge-preserving filter, weighted
least squares optimization framework (WLS) [12]. The WLS is
a non-linear method that captures image details at a variety of
scales via multi-scale decompositions. The WLS helps to find an
approximate enhanced image gFiltered that is close to the input
image g, and also at the same time, is smooth along significant
gradients, thus resulting to sharper preserved edges. Formally, it
is defined as:

(1)

where Lg = D;AxDx+ DJAyDy with Dx and Dy are discrete dif-
ferentiation operators. Ax andAy contain the smoothness weights,
the smoothness requirement is enforced in a spatially varying
manner which depend on g. A is the balance factor that main-
tains a balance between the data term and the smoothness term.
Increasing A value produces progressively smoother images.

Oiven an input image, the WLS filter decomposes an image
into base and detail layers. The detail layer is simply obtained
by subtracting the base layer from the the original image. The
base layer comprises of low frequency contents with general ap-
pearance of the image over smooth areas, while the detail layer
comprises of high frequency contents with sharp edges.

In our method, we apply WLS-based two-level decomposi-
tion of the luminance component of an ROB image for extraction
of fine and coarse enhanced sharp images. We retain, for each
pixel an average value between the fine and coarse detail lay-
ers (Step 1). We chose Al = 0.125 (WLSI), Az = 0.5 (WLSz)
for WLS in our experiments. The fusion criteria is based on the
following observations: the WLS filter is very good at preserving
fine and coarse details at arbitrary scales. Taking an average of

Smoke Detection. Considerable progress has been seen in the
development of "in the wild" video smoke detection techniques
over the last decade [21]. The traditional detection methods ex-
ploit smoke features, which are intensity, color, motion, and tex-
ture attributes. These features are used to train classifiers for
smoke region detection [22] or frame detection [23,24]. It has
been found that smoke can reduce the sharpness of edges in order
to mitigate over it, several descriptors have been utilized for fea-
ture extraction, such as wavelet coefficients [25], local binary pat-
tern (LBP) [26,27], textural features are estimated from the smoke
region only [28]. Further, in [29], the authors propose to separate
smoke and background from a single image by the dual-dictionary
approach, and the estimated sparse coefficients are used as fea-
tures for smoke frames detection.

In the medical imaging community, researchers have shown
that the formation of smoke and the lighting condition for laparo-
scopic surgery images are very different, which limits the "in
the wild" smoke detection methodologies applicability in medi-
cal domain [9,30]. Recently, Chou et al. [31] explore tempo-
ral differences information that is motion blur and block analysis
between current and previous frames as features for smoke detec-
tion. Loukas et al. [32], propose a method to detect electrocautery
smoke for surgical events retrieval. They extract different features
from optical flow estimated by Kanade-Lucas-Tomasi (KLT) al-
gorithm [33], and then a support vector machine (SVM) is trained
to classify each shot. Leibetseder et al. in [9,30] propose sat-
uration histogram based classification methodologies Saturation
Peak Analysis (SPA) and Saturation Analysis (SAN) and deep
learning (DL) techniques. In [30], Leibetseder et al. train three
variants of convolutional neural network (CNN) models: Ooogle-
LeNet [34] trained with ROB images (OLN ROB) and saturation
channels only (OLN SAT), and a modified AlexNet [35] trained
on ROB images (ALEX ROB). The performance of their CNN
models on Cholec80 [36] dataset are very similar to that of SAN
or SPA. While DL shows its promising performance on smoke
classification [9,30], to the best of our knowledge there is no work
that does image enhancement for smoke classification. Therefore,
we limit to comparisons with the non deep learning based meth-
ods only in our experimental section. Moreover, one can consis-
tently improve the classification performance by employing our
enhancement method and then train the CNN architectures, fol-
lowing the ideas proposed in Sharma et al. [11].

such filtering methods include weighted least squares (WLS) [12],
bilateral filtering [13], image sharpening, guided filtering [14],
BFWLS_AVO [10] and more. Filtering using (1) ROB and (2)
ROB-NIR images are used for several applications in computer
vision and computational photography applications, such as to
improve the contrast of the haze-degraded color images [15];
tone mapping and detail enhancement [12]; denoising in ROB
videos [16] and images [17]; multi-modal medical image fusion
from MRI-CT [18]; illumination transfer from reference to tar-
get images [19]; feature matching [20]; object recognition and
image classification tasks [11]; biometrics verification tasks [10];
and the list goes on. To the best of our knowledge, our work is
the first to show that the image enhancement can be beneficial for
smoke/non-smoke image classification. We compare against vari-
ous of these filtering methods discussed above in our experimental
section.
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Figure 2: Proposed enhancement method.

two, allows to retain the informative content from both, thus al-
lowing to preserve the image structures and also moderately boost
the image details. This fusion criteria is denoted as FC_AVG.
In addition, we also tried to retain the maximum values between
the two as a fusion criterion. We denote this fusion criteria as
FC_MAX. Finally, we combine the new fused detail layer with
the base layer of RGB image obtained using WLSj (Step 2), we
consider WLSj, as smaller Ie values are better for the base layer
because of less smoothing. And which is then re-combined with
the chrominance of RGB image and to reconstruct the final en-
hanced image (Step 3). Figure 2 illustrates our proposed method.

reduce its dependency on local image content. Finally, a bivari-
ate histogram based feature vector is computed from the marginal
probability functions and independency distributions of the nor-
malized GM and LoG maps, resulting to a fixed-size feature rep-
resentation vector of 40 dimensions for an image. We used the de-
fault parameters for feature extraction, more details can be found
in [3S].

Classifier. In our work, we use linear SVM [39] j for a binary
classification task in which the objective is to predict the class
y E {O,I} that is smoke/non-smoke image classification. We use
linear kernel function with C= IOk to train/test SVM classifier with
the extracted features.

EXPERIMENTS
In this section, we demonstrate the use of our proposed en-

hancement method on a challenging smoke/non-smoke classifica-
tion dataset [30,36]. We first introduce the dataset, followed by a
thorough analysis of the proposed method. The analysis includes,
comparison of our proposed method with baseline RGB images,
other popular enhancement methods, and ending with a compari-
son to saturation histogram based classification methodologies.

Figure 3: Example images from CholecSO dataset: (a) a smoke
free image, (b) image with smoke, covering the surgeon's field of
view for visualisation

Feature Extraction. In our work, we exploit Xue et al.'s
method [3S] for feature extraction. Xue et al. utilize gradient
magnitude (GM) and Laplacian of Gaussian (LoG) maps to de-
scribe the structural information for image perceptual quality as-
sessment. Their method is driven by the image statistics, and ex-
ploits the histogram information, which is perfect for low-level
vision tasks, such as ours. Motivated by this observation, we em-
ploy GM and LoG features to represent the local spatial contrast
information in images.

Formally, gradient magnitude (GM) is defined as:

(a) (b)

where d E {x,y}, and (J is a scalar parameter. And the Laplacian
of Gaussian (LoG) is defined as:

where I is the gray scale image, r;;!) denotes the convolution op-
eration. ii£ and ~ denote the Gaussian partial derivative along
x (horizontal) and y (vertical) directions, respectively. They are
computed as:

GM= ( aG)2 ( aG)2Ir;;!) ax + Ir;;!) ay ,

LoG = Ir;;!)hLoG

(2)

(4)

Dataset. We conduct experiments on CholecSO dataset [36]
which contains SOvideos of cholecystectomy surgeries manually
labeled with smoke/non-smoke image sequence by [30] 2. The
dataset in overall contains approximately lOOKannotated images,
in particular between 200-1300 images of smoke/non-smoke in
each video. In our experiments, we use a subset of the dataset
with three videos for training and nine videos for testing. The
videos are randomly chosen. We extract JPEG images, and resize
them to a resolution of 427 x 240px from the original resolution
of S54 x 4S0px, to fasten the image enhancement. In particular,
we use 4,3S1 images obtained from video{l, 31, 34} for training,
and 10,653 images obtained from video{2, 22, 10, 40, 59, 64,
65,71, SO} for testing. In Figure 3, we show some examples of
smoke/non-smoke images obtained from CholecSO dataset. Also,
note that each video represents a unique person in this dataset.

(5)
( )

_ a2G(x,y, (J) a2G(x,y, (J)
hLoG x,y, (J - a2x + a2y

I x2+l_~
=-n;(J4(1-2"a2)e 20.

Subsequently, ajoint adaptive normalization step is applied to ad-
just the image statistics of the GM and LoG maps, in order to
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Evaluation Metrics. We use accuracy and FI-Score measures
computed from a confusion matrix between the predicted labels
and the actual ground-truth labels, as the metrics to evaluate the
quality of classification.

lhttps://vww.csie.ntu.edu.tY/~cjlin/libsvm/
2http://vww.itec.aau.at/ftp/datasets/Smoke_cholec80
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(e) WLS (f) BFWLS_AVO (g) FC.MAX (ours)

Figure 4: Visual comparison of FC-AVO and FC.MAX against other enhancement methods.
becomes more perceptually visible after image enhancement. Best viewed in color.

(h) FC_AVO (ours)

We can clearly see that the smoke part

Comparison with other enhancement methods. We compare
the proposed enhancement method with the baseline ROB im-
ages, and popular state-of-the-art enhancement approaches: (1)
guided filtering (OF) [14], (2) bilateral filtering (BF) [13,40], (3)
image sharpening filter (IMSHARP), (4) WLS [12], (5) fused BF
and WLS filter (BFWLS_AVO) [10]. In BFWLS_AVO, Sharma et
al. [10] apply BF and WLS filters on the NIR channel, and retain
an average of two for each pixel, similar to [10], instead we em-
ploy their technique in the ROB image. For a fair comparison, we
compare all the methods under the same evaluation protocol dis-
cussed above. For the evaluation, we use the same parameters for
feature extraction and classifier training for all methods. We did
not optimize the parameters for the BF, OF, WLS, IMSHARP, and
BFWLS_AVO and used the default parameters for each method.
The source code for fast BF 3, WLS 4 and BFWLS-AVO 5 are
publicly available, and others are available in the Matlab frame-
work. For comprehensive discussion of different methods, we
refer the reader to [10,12,14,40].

In Table 1, we quantitatively evaluate the accuracy and Fl-
Score of our proposed method and other methods. We can clearly
observe that FC_AVO performs the best among all methods. En-
hancing an image using FC-AVO takes approximately 0.32 sec-
onds. Note that, FC_AVO improves over the baseline performance
of ROB images by 4% in accuracy and 4% in Fl-Score, giving
higher-quality features to learn from, which in turn lead to more
accurate classification. We believe our work opens many possibil-
ities for further exploration for its usage in other tasks too. Further
the performance gap of FC-AVO is 4/5% better than FC.MAX
in accuracy/Fl-Score measures. Our method FC-AVO consis-
tently performs better than all other methods: IMSHARP, BF,
WLS, and OF enhancement methods. In addition, our methods
also performs better than BFWLS_AVO, although we agree that
BFWLS_AVO is meant for ROB-NIR fusion and not ROB image
enhancement, that may be the reason why it underperforms to our
method. Figure 5 (a) shows the ROC curve for all the methods.

In Figure 4, we compare enhancement methods for an exam-
ple image obtained from video!. We can observe that FC_AVO
has improved features for the smoke-part (highlighted by red rect-

3http://people.csail.mit.edu/sparis/bf/
4http://yyy.cs.huji.ac.il/~danix/epd/
5https:!!vivoutlaw.github.io!CIC_RGB_NIR_Codes.zip
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angles), in addition to reduced specular intensity when compared
to FC_MAX. We believe this plays an important role in discrimi-
nation.

Method Accuracy Fl-Score

ROB 0.60 0.60

IMSHARP 0.58 0.58
BF[40] 0.60 0.59
OF [14] 0.60 0.59
WLS [12] 0.60 0.59

BFWLS-AVO [10] 0.57 0.56

FC_MAX (Ours) 0.60 0.59
FC_AVO (Ours) 0.64 0.64

Table 1: Comparison with the baseline ROB images and other
enhancement methods.

Comparison with the saturation histogram based classifica-
tion methodologies. We compare FC-AVO with the saturation
histogram based classification methodologies Saturation Analysis
(SAN) and Saturation Peak Analysis (SPA) [9,30]. SAN and SPA
codes are provided by [9,30] 6. SAN and SPA take advantage
of the saturation channel of the HSV color space. In [9,30], the
authors show that the histogram bin curve of saturation channel is
strongly correlated with the presence of smoke, as smoke images
contain more low-saturation pixels and that is helpful for classi-
fying smoke/non-smoke images. In their method, a threshold te is
set empirically. For SAN method, smoke image is recognized if
majority of the bin values are below te. For SPA method, smoke
image is classified by the number of peaks found below and above
te. We use the default parameters suggested by Leibetseder et
al. [9,30] for both SAN and SPA where te is set to 0.35.

It is evident from Table 2 that FC-AVO shows improved
performance over the saturation histogram based classification
methodologies: SAN and SPA. Precisely, FC_AVO is 1/5% and
1/6% better than the SAN and SPA methods in accuracy/Fl-Score

6https:!!github.com!amplejoe!SaturationPeakAnalysis
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Figure 5: The ROC curves for the Cholec80 dataset using GM-LoG features [38] for smoke/non-smoke classification task. * denotes the
EER when the false accept rate is equal to the false reject rate. Best viewed in color.

CONCLUSION

metrics. Further in Figure 5 (b), we show the ROC curve for
FC_AVG, SAN and SPA classification methodologies.

Table 2: Comparison with the saturation histogram based classi-
fication methodologies Saturation Analysis (SAN) and Saturation
Peak Analysis (SPA)
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