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Method
A viewing booth and a spectrally tunable LED device

(manufactured by THOUSLITE, Changzhou, China) were used in
this study. The dimensions ofthe viewing booth were 50 cm (width)
x 50 cm (depth) x 60 cm (height) and the interiors were painted with
Munsell N7 neutral gray paint. The spectrally tunable LED device,

average and the highest RGB values of an image respectively, are
then used to calculate the gain factors for Rand B values (i.e., corrR
and corrB) as Eq. (2) and to derive the balanced Rand B values (i.e.,
R' and B') using Eq. (3) (Note: the G values are typically kept
unchanged). Instead of using extreme values, the Shades-of-Gray
(SoG) algorithm [11] was proposed to use a p value between 1 and
+00, with a p between 2 and 29 being suggested to have a better
performance.

where C denotes R, G, or B; I(x) is the R, G, or B value of each
pixel; N is the number of pixels in an image; and p is the Minkowski
norm.

Various modifications on the GW and the maxRGB algorithms
have been proposed to improve their performance and robustness.
The Modified Gray World (MGW) algorithm [12] calculates the
gain factors by allowing a small variation between the average RGB
values of an image. The Standard Deviation Weighted Gray World
(SDWGW) algorithm [10] divides an image into blocks and puts
higher weights to the blocks with a larger variation of the RGB
values when calculating the standard deviation weighted average
(SDWA). The Itr+GWA algorithm [13] transforms the RGB values
of each pixel to YUV values and detects the "gray pixels". The gain
factors are then iteratively adjusted until the average U and V values
of the gray pixels are close to zero (i.e., < 0.001). The Auto Level
algorithm [14] extends the concept of the Retinex theory by scaling
the RGB values of each pixel linearly in relative to the maximum
and minimum RGB values of an image. The maximum and
minimum 0.5% of the RGB values are then discarded. Efforts were
also made to combine the GW and the maxRGB algorithms. The
GWR algorithm [15] transforms the Rand B values using quadratic
functions, so that both the average and highest RGB values are equal
in a balanced image.

It can be observed that the color of each pixel affects the color
appearance of a balanced image via white balance algorithms. For
the algorithms relying on the brightest or the neutral pixel(s), the
impact of the white surfaces is particularly important. This study
aimed to quantifY the change of image color appearance using
various white balance algorithms caused by the failure of white-light
LEDs to excite FW As.

Abstract
Conventional light sources (e.g., fluorescent) contain

UV/violet radiations that can excite thefluorescentwhitening agents
(FWAs) in man-made and natural white objects to enhance
whiteness appearance and create different degrees of white. Typical
white-light LED sources, however, contain little UV/violet radiation
to increase its luminous efficacy. In this study, we investigated how
thefailure of white-light LEDs to excite FWAs affect the image color
appearance with different white balance algorithms. A same setup,
including a Macbeth ColorChecker and three whiteness standards
with different amount of FWAs, were illuminated by two 6500 K
illuminants with different levels of UV/violet radiation. The
captured RA W images were white balanced using 10 algorithms. It
was found the failure of FWA excitation produced noticeable color
differences, with an average dEfrom 2.9 to 8.1 in the CIELAB color
space. The algorithms based on the Gray World assumption were
generally less sensitive to the FWA excitation, in comparison to
those based on the Retinex theory.

Introduction
Whiteness, an important colorimetric characteristic for surface

colors, is commonly associated with product quality, which has
attracted the attention of researchers and manufacturers. Fluorescent
whitening agents (FWAs), a material that absorbs ultraviolet
(UV)/violet radiation from illumination and re-emits blue radiation,
can enhance the whiteness appearance of surface colors and are
widely used in man-made objects. Conventional light sources
always contain some UV/violet radiation to excite the FWAs in
surface colors [I]. In contrast, manufacturers seldom include
UV/violet radiation in white-light LED sources, as it depletes
luminous efficacy. It has been found that the failure of typical white-
light LEDs to excite FW As can produce a noticeable decrease of
whiteness appearance to human perception [2-4]. Little attention has
been paid to how imaging systems respond to such a failure, though
white appearance is critical in image process and image quality [5].

White balance, a function incorporated in imaging systems to
simulate the mechanism of chromatic adaptation in human color
vision, adjusts colors in an image to eliminate the color cast of the
illumination and reproduce the color appearance perceived by
humans to some extent. Various white balance algorithms have been
developed, most of which were based on either the Gray World
assumption [6] or the Retinex theory [7] (a.k.a., Perfect Reflector
[8] or White Patch assumption [9]). The former assumes that a
captured image is achromatic on average, with the average RGB
values being equal. Such an assumption is more likely to be held
when a scene does not have a dominant color [10]; the latter assumes
that the color of the pixel(s) with the highest RGB values of an
image is the color ofthe illuminant.

The GW algorithm and the maxRGB algorithms, the two
simplest algorithms based on the Gray World assumption and the
Retinex theory respectively, can be described using Eq. (I), with a
Minokowski norm (i.e., p) of 1 and +00 respectively [11]. The
calculated Minokowski means te (C = R, G, and B), which are the

P 1
tc = (L lc(x) )p

N

corrR = Esi, corrB
tR

R' = corrR x R,G' = G,B' = corrB x B

(1)

(2)

(3)
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Figure 3 The workflow for calculating the chromaticity coordinates from the
raw images

Figure 2. The relative SPDs of the two iIIuminants.

Results
Figure 4 shows the average color difference (i.e., /',.E) ofthe 24

Macbeth Color patches and the three whiteness standards between
the two balanced images in CIELAB color space using each
algorithm. It can be observed that the amount of UV/violet
radiations contained in the illuminants always produced noticeable
color differences, regardless of which algorithm was used.
Specifically, the images using the algorithms based on the Gray
World assumption (i.e., GW, MGW, SDWGW, and Itr+GWA) had
smaller color differences than those using the algorithms based on
the Retinex theory (i.e., maxRGB and Auto Level). Furthermore, the
color differences for those using the SoG algorithms were between
those using the Gray World assumption and the Retinex theory, with
larger Minkowski norm (i.e., p) values producing larger color
differences and making the algorithm more similar to the algorithms
based on the Retinex theory. GWR, an algorithm combining both
the Gray World assumption and the Retinex theory, produced a
similar color difference as those based on the Gray World
assumption.

Figure 5 shows the average color difference of the three
whiteness standards, together with the difference of each standard,
between the two balanced images using each algorithm. It can be
observed that the three whiteness standards always had noticeable
color differences under the two illuminants regardless of the
algorithms and the difference of the three standards varied with the
algorithms. It was interesting to find that W138.9, the whiteness
standard containing the greatest amount of FW As, did not always
have the largest color difference under the two illuminants. The
greater the amount ofFWAs, the larger the color difference with the
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Figure 1. A photograph of the experiment setup, which was taken under the
iIIuminant with normal UV/violet radiation.

The SPDs of the two 6500K illuminants were carefully
designed to produce two levels ofUV /violet radiations (i.e., low and
normal). The violet emission levels, the percentage of the radiant
power below 430 nm to the overall radiant power [1], of the two
illuminants were 2.7% and 16.1%. The former was designed to
mimic typical blue-pumped white LEDs, with the average violet
emission level of3.6% being calculated from a large dataset [17];
the latter was designed to mimic CIE standard D65 that has a violet
emission level of 17.4%. Table I summarizes the colorimetric
characteristics of the two illuminants. The illuminants were
calibrated to provide an illuminance of 1000 ± 10 Ix at the center of
the viewing table using a calibrated Minolta T-10 illuminance
meter; the SPDs, as shown in Fig. 2, were measured using a
calibrated JET! 1411UV specbo spectroradiometer with a white
standard.

A Canon EOS 80D camera was used to capture two images,
with one under the low UV/violet illuminant and the other under the
normal UV/violet illuminant. The RAW images were stored in the
CR2 format with a resolution of 6000 x 4000. The workflow, as
shown in Fig. 3, was followed to process the two RAW images using
different white balance algorithms. The average (L*,a*,b*) of the
100 x 100 pixels at the center of each color patch and whiteness
standard was used in the following analyses.

Table I Colorimetric characteristics of the two iIIuminants

which had 14 channels with peak wavelengths covering a range
from 350 to 680 nm, was placed above the booth to provide a
uniform illumination, as verified in a previous study [16]. A
Macbeth ColorChecker and three calibrated diffuse whiteness
standards containing different amount of FW As were placed on a
45° viewing table in the booth, as shown in Fig 1. The three
whiteness standards, labelled as WS4.4, Wl2l.6, and W138.9, had a CIE
whiteness value of 84.4, 121.6, and 138.9, with a higher value
indicating a greater amount ofFW As. These three standards covered
the range of whiteness appearance that are commonly around us.
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Figure 5 The color difference of the three whiteness standards between the
two balanced images using each algorithm in CIELAB color space. The dotted
line represents the just noticeable color difference (i.e., Jl.E '" 2).
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whiteness standards in the image captured under low UV/violet
radiation were close to each other, regardless of the white balance
algorithms, while large chromaticity shifts can be observed in the
other image. In can also be found that the chromaticity of WS4,4 was
shifted towards the positive direction of b* from the image under
low UV/violet radiation to the other image when using the
algorithms based on the Gray World assumption, but had little shifts
when using the algorithms based on the Retinex theory.

Table II The color difference l1E, together with the differences in
L*, a*, and b* between W121.6 and W84.4, and between W138.9 and
W84.4 in the two balanced images when using each algorithm.

W 121.6 - W 84.4 W 138.9 - W 84.4

Algorithms 6E 6L 60 l!.b 6E 6L 60 l!.b
GW 6.2 6.2 -0.6 0.3 10.6 10.5 -0.6 0.6

MGW 6.4 6.2 -1.6 0.7 10.8 10.5 -2.1 1.2
SDWGW 5.5 5.5 -0.5 0.2 9.4 9.4 -0.3 0.5
Itr+GWA 1.5 1.0 -1.2 0.1 2.1 1.4 -1.5 -0.3

Low SoG (p=4) 6.2 6.2 -0.7 0.3 10.6 10.5 -0.5 0.5
UV/violet SoG (p=8) 6.2 6.2 -0.6 0.3 10.6 10.5 -0.4 0.5

SoG (p=20) 6.2 6.2 -0.6 0.3 10.6 10.6 -0.4 0.5
maxRGB 6.2 6.2 -0.7 0.3 10.6 10.5 -0.6 0.6

Auto Level 6.7 6.6 -0.6 0.2 11.3 11.3 -0.4 0.4
GWR 6.2 6.2 -0.6 0.3 10.6 10.6 -0.4 0.6

W 121.6 - W 84.4 W 138.9 - W 84.4

Algorithms 6E 6L 60 l!.b 6E 6L 60 l!.b
GW 9.1 6.5 1.2 -6.3 15.2 10.9 3.3 -10.1

MGW 8.7 6.6 0.3 -5.7 14.3 10.9 1.4 -9.1
SDWGW 8.0 5.9 1.1 -5.2 13.3 9.9 2.8 -8.5
Itr+GWA 5.2 0.4 2.0 -4.8 5.2 0.5 2.0 -4.8

Normal SoG (p=4) 9.0 6.6 1.2 -6.0 14.8 11.0 3.0 -9.5
UV/violet SoG (p=8) 8.9 6.6 1.1 -5.8 14.7 11.0 2.9 -9.2

SoG (p=20) 8.8 6.6 1.0 -5.6 14.5 11.1 2.7 -9.0
maxRGB 8.7 6.6 0.7 -5.5 14.3 11.1 2.2 -8.7

Auto Level 9.4 7.2 1.0 -6.1 15.6 11.9 2.7 -9.6
GWR 7.8 6.8 0.1 -3.9 12.7 11.4 0.8 -5.6

(a) Low UV/violet
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In addition to the color difference of a same whiteness standard
between the two images, the color difference between the three
whiteness standards in one image also matters, as they contained
different amount of FW As and should have different whiteness
appearance. As summarized in Table II, all the algorithms, except
the Itr+GW A, produced similar color differences between the three
whiteness standards in each image. The three whiteness standards in
the image captured under low UV/violet radiation had smaller color
differences than those in the other image, which was due to the
failure oflow UV /violet level to excite FWAs.

Furthermore, the color differences between the three whiteness
standards in the image captured under low UV /violet radiation was
only caused by the lightness difference, while the color differences
in the other image were caused by both lightness difference and
chromaticity shift. As shown in Fig. 6, the chromaticities ofthe three
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Figure 4 The average color difference of the 24 Macbeth patches and the
three whiteness standards, together with the error bars, between the two
balanced images using each algorithm in CIELAB color space (Note: the
algorithms based on the Gray World assumption are in red; those based on
the Retinex theory are in white; the SoG and GWR algorithms are in gray and
green respectively). The dotted line represents the just·noticeable color
difference (i.e., Jl.E '" 2) [18].
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algorithms based on the Gray World assumption. In contrast, greater
amount of FW As caused smaller color difference with the
algorithms based on the Retinex theory. For the SoG algorithms, a
higher p value reduced the color difference of W138.9, but increased
that of WS4,4.

14

# # ~ ~ ~ ~ ~ R .~
~~ ",,-94~ ,-¢.,p~ 0#04 0#040#'" /' >;-$0'" &"

Algorithms

142 Society for Imaging Science and Technology



Figure 6 The chromaticity shifts from W844to W121.6and WI38.• in the a'-b'
plane of CIELAB color space (a) In the image captured under low UVIviolet
radiation and (b) in the image captured under normal UVlviolet radiation.

Table III The average and maximum RGB values in the two
images and the calculated gain factors by GW and maxRGB
algorithms.
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The FW A excitation also affected the color difference between
the three whiteness standards in each image, as shown in Table II
and Fig 6. The three whiteness standards in the image captured
under low UV /violet radiation only had Iittle differences in lightness

Figure 7 The positions of the pixels with the highest R, G, and B values (note:
the pixels are located at the center of the highlighted area) (a) In the image
captured under low UVlviolet radiation; (b) in the image captured under
normal UVlviolet radiation.

Figure 8 The calculated Minkowski means and gain factors when using the
GW, SoG, and maxRGB algorithms in the two images.
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Discussion
Since the setup in this study included colors with various hues

and a neutral gray background, both the Gray World assumption and
the Retinex theory should be applicable. The color differences
caused by the illuminants, however, varied with the algorithm.
Though both the GW and maxRGB algorithms, the two simplest
algorithms based on the Gray World assumption and Retinex theory
respectively, linearly adjusted the RGB values of each pixel using
the gain factors (Le., carrR and carrB), the gain factors were
calculated in different ways and had large differences, as can be
observed in Table III. When using the GW algorithm, the FW A
excitation in the image captured under normal UV/violet radiation
failed to change the average RGB values of the entire image as only
4.5% pixels ofthe image were covered by three whiteness standards.
In contrast, the maxRGB algorithm calculated the gain factors based
on the highest RGB values ofthe image, as shown in Fig. 7, and the
FWA excitation in the image captured under normal UV/violet
radiation increased the maximum B value, which resulted in a
relatively large decrease in carrB.

The color differences using the SoG algorithms were generally
between those using the GW and the maxRGB algorithms, as shown
in Fig. 8. The carrR had little differences between the two images
regardless of the algorithms, while the carrB had much larger
differences between the two images. The higher UV/vio let radiation
in the image captured under normal UV/violet radiation increased
the B values of the three whiteness standards, which were given
higher weights to calculate carrB with an increase in Minkowski
normp, as illustrated in Eq. (I).

The color differences ofthe three whiteness standards between
the two images, as shown in Fig 5, are not trivial. Though the FWA
excitation introduced a similar average color difference of the three
standards with the GW and maxRGB algorithms, the differences of
each individual standard were not similar. The GW algorithm
balanced the images based on the average RGB values, so that color
difference introduced by the FW A excitation was not further
adjusted. On the contrary, the maxRGB algorithm balanced the
images using the highest RGB values in the images, which happened
to W138.9, so that W138.9 became neutral after white balancing.
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with different algorithms, which revealed the problem of a typical
white-light LED to render whiteness for an imaging system. The
noticeable lightness and chromaticity differences among the three
whiteness standards with different amount of FW As in the image
taken under the illuminant with a normal level of UV/violet
radiation, can differentiate the color differences and degrees of
whites perceived by human beings.

Conclusion
Various white balance algorithms were applied to two images

that captured a same setup under two 6500 K illuminants with one
illuminant simulating the amount ofUV/violet radiation contained
in CIE standard D65 and the other simulating the typical
commercially available white-light LEDs.

It was found that the lower level of UV/violet radiation
contained in the illuminant produced noticeable color differences to
various colors, especially when the algorithms based on the Retinex
theory was applied. Specifically, the three whiteness standards
containing different amount of FW As had much smaller
chromaticity differences and color differences under the illuminant
with lower UV/violet radiation. The chromaticities of these whites
were shifted towards the positive direction of b*, with the standards
containing more FW As having greater shifts under the algorithms
based on the Gray World assumption and smaller shifts under those
based on the Retinex theory.

The color differences shown in this study clearly revealed that
the failure of typical white-light LEDs to excite FWAs caused
noticeable color differences to imaging systems regardless of the
white balance algorithms, which may affect the overall image
quality.
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