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Abstract
We present a general multiscale strategy for perceptually-

inspired contrast enhancement of color images. The idea be-
hind this methodology comes from a recent wavelet-based vari-
ational framework for contrast intensification. We will show that
the equations for the wavelet coefficients coming from the varia-
tional setting can be re-written in a more general multi-resolution
framework, where the only requirement is the existence of an ap-
proximation and a detail layer at each different scale. In particu-
lar, we will show that a Laplacian pyramid implementation of the
variational algorithm peiforms faster and better than the wavelet-
based one. These results open the possibility to efficiently apply
the contrast enhancement equations also to video sequences.

Perceptually-inspired contrast enhancement
in the spatial and wavelet domain

In the papers [6], the authors shown that the only class of en-
ergy functionals complying with all four basic phenomenological
characteristics of the Human Visual System (HVS from now on)
is the following:

(1)

where

Dp,lO (I) =l [a (,u log Irx) - (,u -I(X))) + f3 (IoiOg I~~) - (10 -I(X))) ] dx,

(2)

To understand the motivation for the analytical shape of the
contrast term Cw,<p(1) let us consider the basic image formation
model, i.e. I(x) = p(x)· Ie, where p(x) represents the reflectance
of a point x and Ie represents the illuminant (supposed to be con-
stant all over the scene). Since Cw,<p(1) is written in terms of a
ratio, it is evident that it is independent with respect to illumi-
nant changes, thus it is coherent with the color constancy feature.

• I: Q --+ [0,1] is any chromatic channel R, G,B of the objec-
tive image function;

• 10 is any given chromatic channel of the original image func-
tion;

• Cw,<p(1) is the contrast enhancement term, its minimization
leads to a local non-linear intensification of spatial contrast;

• D,u,lo (I) is the entropic dispersion term, its minimization
prevents the objective image to depart too much from both
the average and the original image intensities;

• J1 is the average value of 10;

• a, j3 > 0 are real coefficients which control the attachment to
J1 and to the original image function values 10, respectively;

• w: Q x Q --+ JR+ is a spatial kernel, which depends only
the Euclidean distance Ilx - yll among two generic pixels
x,y E Q and it is monotonically decreasing with the distance
itself, i.e. w(x,y) :=g(11 x-y II) whereg :JR+ --+JRismono-
tonically decreasing;

• qJ: [0, 1] --+JR is a monotonically increasing differentiable
function.

Introduction
In the papers [3, 6, 2] the authors introduced a variational

framework where several models of perceptually-inspired color
enhancement, e.g. [13, 10, 11, 12], could be embedded and re-
garded as special instances of a more general theory. A detailed
algorithmic description of these variational models can be found
in the paper [4] and a theoretical overview can be read in the book
[8].

In [7, 9], the variational framework has been recast in the
setting of wavelets. The equations corresponding to this new for-
mulations happened to be much easier to implement than those
referring to the original variational framework. However, the con-
straints that have to be respected in order to guarantee the stability
and convergence of the wavelet-based algorithm, and also to avoid
the introduction of the typical wavelet-like artifacts, are quite re-
strictives and, in certain cases, they can noticeably reduce the en-
hancement power of the method.

With the aim of reducing these drawbacks, we have stud-
ied the possibility to re-formulate the wavelet-based variational
framework by keeping intact its intrinsic multi-resolution nature
and the simple Euler-Lagrange equations, while using approxi-
mation and coefficient details coming from a multi scale pyramid
alternative to wavelets. We will show that this reformulation is
actually possible and it leads to a better performing algorithm, as
we prove with a Laplacian pyramid implementation.

The plan of this work is the following. In section we will
introduce the concept of perceptual functionals for contrast en-
hancement of color images and their wavelet counterparts. In sec-
tion we will extend the wavelet-based variational framework to
a more general multiscale one, discussing, in particular, a Lapla-
cian pyramid implementation. Tests and comparisons will be dis-
cussed in section and perspectives for further applications will be
given in the final section.

and

ff (min{I(x),!(y)})
Cw,<p(1) = JJQ2 w(x,y) qJ max{I(x),!(y)} dxdy

where:

(3)
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Moreover, as proven in [6], this analytical form is the only one in
which color constancy and Weber's law can be combined.

The function ep represents a degree of freedom and it is cho-
sen to be monotonically increasing not to reverse contrast between
pixels.

Finally, notice that the minimization of Cw,'fJ(I) in-
deed induces a contrast enhancement. In fact, the ratio
min{/(x),J(y)}/max{/(x),J(y)} is minimized when the lowest
value between two pixels is decreased and the highest is increased,
which, of course, corresponds to an intensification of contrast.
The enhancement is spatially local due to the presence of the
weighting function w. Typically W is a Gaussian kernel with cen-
ter in x, its standard deviation (J can be set by a user to increase
or decrease the locality of contrast enhancement. Small values of
(J push the effect towards sharpening, large values of (J instead
push towards a global enhancement.

Let us now discuss the dispersion term. Its choice has been
guided by dimensional coherence with the contrast term, which
has dimension 0 with respect to I. The easiest meaningful candi-
date is the entropy functional D/l,lo' whose minimization produces
a reduction of entropy, i.e. disorder, around the average value J1
(which can be different in each chromatic channel) and around the
original image 1o. This last attachment is introduced to avoid an
excessive departure from the original intensity values and can be
modulated via the coefficients ratio a/ {3.

In [9], the authors re-wrote the functional (1) in the frame-
work of wavelet theory. The main idea behind their work is to
represent local contrast via a functional of detail wavelet coef-
ficients, balanced by adjustment terms as in spatial framework
just discussed. Let us first consider the effect of adaptation to
the average level. If we were dealing with Fourier transforms,
the average image intensity value J1 would be proportional to the
zero-th Fourier coefficient, but in the wavelet domain this direct
correspondence is not available. However, since the coefficients
{aj ,b kEn} represent the image approximation at the scale 2j, a
natural analogue of J1 in the wavelet framework at the scale 2J is
represented by aj == IAI EkE!:! aj,b i.e. the average approximation
coefficient. aj can be considered per-channel, or averaged over
the three chromatic channels.

Let us also underline that we only need to modify the approx-
imation coefficients of the coarsest scale, since this modification
will be propagated to finer scales via the sum of the modified de-
tail coefficients, as we will formalize at the end of this section.
We implement the adaptation to the average value at the coarser
scale balanced by the attachment to the original values through
this convex linear combination

where {aJ· b kEn} and {d£k' kEn}, fI. = H, V,D are the ap-, J,
proximation and (horizontal, vertical and diagonal) detail wavelet
coefficients of the dyadic level 2j, 2J and 2L are the coarsest and
the finest level, respectively (see, e.g. [5] for more information
about the wavelet framework). To simplify the notation, we have
eliminated the superscript fI. in the detail coefficients, by mak-
ing the implicit assumption that the operations are repeated on
the three kinds of detail coefficients. With the notation kEn,
we will implicitly assume a column-wise ordering of n, the spa-
tial support of the image, so that n can be seen as a finite sub-
set of Z. W j are positive coefficients that permit to differentiate
the contrast enhancement action depending on the scale 2j and
ep : [0,00) --+ [0,00) is a differentiable monotonically increasing
function such that ep(r) --+ +00 as r --+ 00.

We underline that, since changing the sign of a wavelet co-
efficient can result in drastic modifications of an image, we will
modify only the absolute value of the wavelet coefficients, restor-
ing the original sign at the end of the procedure.

In order to prevent an excessive magnification of the origi-
nal detail coefficients, whose absolute value is denoted with dO k'

J,
a conservative term should be introduced. Again, to maintain
dimensional coherence with 'li?wj,'fJ,{aj,d' an entropic dispersion
functional is a suitable choice:

2J:2: 2j:2: 2L+l.
Combining these two effects one can define the energy func-

tional that realizes local contrast enhancement as gw. m {a. } dO =
jJ-rJ J,k, j,k

'li?w· m {a'k} + -'l1Jl ,i.e.
jJ-rJ J, J,k

gw 'fJ {a } Jl == L [Wjep (daj'k) +dJ klog ddJ'k- (dJ k - dj'k)] ,
Jl , J,k, J,k kED. j,k ' j,k '

(7)

with 2J :2: 2j :2: 2L+l. The existence of a minimum of
gw. m {a. } Jl was proven in [9], where it was also shown that

jJ-rJ J,k, J,k

the Euler-Lagrange equations corresponding to the minimum are
the following:

aJ,k == aaJ + (1 - a)a~,k> (4)
where ep' denotes the derivative of ep. In particular, when ep== id,

where {a~ k' kEn} is the original sequence of approximation co-
efficients ~t the scale 2J and a E [0, 1] is a suitable weight co-
efficient, whose influence will be discussed in test section. The
bigger a, the strongest the attachment to the average value aJ,
and viceversa.

Let us now pass to the wavelet-based version of the percep-
tual contrast functional, which is the following:

and when ep == (.)Y,

agw y{a }Jl (a k)YJ" Jk, Jk(d )=0 d =do + ~ (10)a{d} J,k <¢==;> J,k J,k YOJJ d
J,k J,k

Eqs. (9) and (10) are implicit equations that have to be solved
using a numerical method. In [7, 9], Newton-Raphson's method
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has been used to find the zero of the function F'P(dj,k) = dj,k-

d
J
Ok - OJjCP' (~J'k) ~J,k by iteratively solving the equations
, J,k J,k

An implementation based on a Laplacian pyramid
The well known Laplacian pyramid decomposition [1] gives

a multi scale representation of an image in which both approxima-
tion and detail coefficients are stored.

To build a Laplacian pyramid we first consider the original
image and we operate the convolution with a Gaussian kernel,
with an initial standard deviation <Jo= 0.25, which will play an
equivalent role as the spatial support of the mother wavelet. This
results in a blurred (low pass filtered) version of the original im-
age.

Since the solution is not expected to differ too much from the
original magnitude cf'k' Newton-Raphson's algorithm is initial-

J,

ized with dO
k•

J,
The general scheme of the wavelet-based variational algo-

rithm is the following:

1. We start by considering the approximation and detail coeffi-
cients of the coarsest level: {aJ,b k E Q}, and {d;,k' k E Q},
I!=H,V,D;

2. The absolute value of the detail coefficients is modified ac-
cording to the equations of eq. (11), by considering aJ k as
fixed. This will implement local contrast enhanceme~t in
the wavelet domain at the scale 2J;

3. We then pass to the scale 2J-1 and we compute the approx-
imation coefficients by summing the approximation and de-
tail coefficients just computed at the scale 2J;

4. We fix these approximation coefficients and we repeat step
2 at the scale 2J-1;

5. We iterate this scheme until reaching the finest scale.

A general multiscale method for perceptually-
inspired contrast enhancement of color im-
ages

In [9], the authors declare that the reason why wavelets have
been chosen for their model is the fact that detail and approxi-
mation coefficients contain information about local contrast and
local average, respectively, at different scales.

The fact that wavelets can be used to generate an orthonor-
mal multilevel basis of the Hilbert space L2(JR) or other specific
properties of the wavelet theory have not been used in the model
proposed by [9].

What is really important, is the possibility to have two finite
sets, with the same cardinality, of bounded coefficients giving, at
each fixed scale, a measure of local contrast and local average.

In this paper, we show that, for the aims of unsupervised
contrast enhancement inspired by perceptual features, it is better
to renounce to use of wavelets and build detail and approximation
coefficients by using other strategies. The advantages will be both
in the computational time and in the reduced artifacts affecting the
results.

In the next subsection we give the details about the imple-
mentation of this idea with a Laplacian pyramid.

min(width,height)j<Jj:::; T.

At each scale, we increase the blur by a factor v'2. The blur
for the j-th scale is therefore corresponding to the standard de-
viation <Jj = <Jov'2j

. The iteration of blurring and subsampling
generates a so-called Gaussian pyramid. In this way, each pixel
contains a local average that corresponds to a pixel neighborhood
on a lower level of the pyramid. This information is equivalent
to that contained in the approximation coefficients of the wavelet
framework.

The Gaussian pyramid is completed to a Laplacian one by
saving the difference image of the blurred versions between each
scale, these differences are the analog of the detail coefficients in
the wavelet framework. As in the wavelet multiresolution analy-
sis, only the coarsest scale is not a difference image. The Lapla-
cian Pyramid bears this name because the difference of blurred
versions is approximately equivalent to the convolution with the
Laplacian of the Gaussian kernel.

We stop the decomposition when a threshold T based on the
ratio between the minimum image dimension and <Jj is reached,
that is if

Tests
We have conducted intensive series of experiments to test the

behavior of the new algorithm, in this section we report the results
of these tests along with some example images.

First of all, let us consider the effect of the parameter a ap-
pearing in eq. (4). At least two options are available for a, for
instance it can be: the per-channel average, i.e. the average of all
the values of a fixed chromatic channel; the global image average,
i.e. the average of all the values of all the channels. As it is logical
to expect, iLl) is computed by averaging the approximation coef-
ficients of the three chromatic channels, then it is more effective
to remove a possible color cast affecting the image with respect
to the option in which aJ is computed per-channel. Fig. 1 shows
this effect.

Let us now consider the parameter W j of eq. 5: of course, the
bigger is W j the higher is contrast enhancement, because the in-
tensification of detail coefficients becomes stronger. Fig. 2 shows
this effect.

Regarding the parameter y: a small value of ypermits to use
a bigger value of the weight W j without introducing visible arti-
facts, while when y grows, a more careful choice of W j is required
to avoid an excessive contrast intensification. Fig. 3 shows this
effect.

Finally, we would like to show one of the main advantages
of using a Laplacian pyramid instead of a wavelet basis. In Fig.
4 we compare the results of the two versions of the algorithm,
showing that, with the same choice of parameters, the wavelet-
based algorithm may show unwanted artifacts which depend on
the shape of the mother wavelet chosen.

In our experiments, we use T = 16.
Having underlined the analogies between the Laplacian and

the wavelet framework, it is immediate to see that formula (9)
can be implemented by using for dj,k and aj,k the corresponding
coefficients obtained via a Laplacian pyramid.

The results of this new algorithm, together with the compar-
ison with the wavelet-based algorithm, will be discussed in the
following section.

(11)
F'P(dn-l)

dn - dn-I - j,k n::: 1.
j,k - j,k (F'P)'(dn-I)'

J,k
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Figure 1. Left: original image. Middle and Right: output images of the Laplacian pyramid version of the algorithm described by formula (10) with the following

choice of parameters: y = 0.1, Wj = 0.05 for all j, a = 0.5, with the difference that the image in the center refers to a value ofaJ computed per-channel, while the

image on the right refers to aJ averaged along the three chromatic channels.

Figure 2. Left: original image. Middle and Right: output images of the Laplacian pyramid version of the algorithm described by formula (10) with the following

choice of parameters: y = 0.1, a = 0.5, Wj = 0.05 for all j (center), Wj = 0.05 for all j, (right).

Figure 3. Left: original image. Middle and Right: output images of the Laplacian pyramid version of the algorithm described by formula (10) with the following

choice of parameters: a = 0.5, Wj = 0.05 for all j, y = 0.1 (center), a = 0.5, Wj = 0.005 for all j, y = 1 (right). Notice that we must considered weights ten times

smaller when we set y = 1, but even in that case we have some artifacts in the sky.

Conclusions and perspectives

We have shown that the wavelet-based framework for
perceptually-inspired contrast enhancement of color images pro-
posed in [9], can be extended to any multi scale scheme in which
both local approximation and detail coefficients are present. We
have discussed, in particular, the case of the Laplacian pyramid,
shown the effects of the parameters and compared its results with
those of the original wavelet algorithm, showing that this new one
is not affected by the typical wavelet-like artifacts.

26th Color and Imaging Conference Final Program and Proceedings
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