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(a) Reference image from RAISE [2]

(c) Our output
(30.9535 dB, 0.9118)

(b) FlexISP [15]+SRCNN [3]
(28.2927 dB, 0.8420)

cause artifacts such as color zippering introduced by demosaicing
algorithms is treated as a valid signal of the input image by the
super-resolution algorithms. As most of the super-resolution al-
gorithms [3] rely on the assumption that the human visual system
is more sensitive to the details in the luminance channel than the
details in chroma channels, they only deal with noise in the lumi-
nance channel and neglect the artifacts in chroma channels caused
by demosaicing algorithms. As a result, sequential application of
super-resolution algorithm after demosaicing algorithm can lead
to visually disturbing artifacts in the final output. An example is
shown in Fig. Ib).

Although demosaicing and super-resolution have been inves-
tigated independently, it is reasonable to address them in a unified
context, which is the aim of this paper. With the advent of deep
learning, there are several methods for super-resolution [3, 12, 17]
that successfully outperform traditional super-resolution meth-

Figure 1: Comparison of our Jomt demosaicing and super-
resolution output to the sequential application of demoisacing and
super-resolution. The two numbers in the brackets are PSNR and
SSIM respectively. Our method is able to faithfully reconstruct
the original.

Abstract
The two classic image restoration tasks, demosaicing and

super-resolution, have traditionally always been studied indepen-
dently. That is sub-optimal as sequential processing, demosaic-
ing and then super-resolution, may lead to amplification of ar-
tifacts. In this paper, we show that such accumulation of er-
rors can be easily averted by jointly peiforming demosaicing and
super-resolution. To this end, we propose a deep residual net-
work for learning an end-to-end mapping between Bayer images
and high-resolution images. Our deep residual demosaicing and
super-resolution network is able to recover high-quality super-
resolved images from low-resolution Bayer mosaics in a single
step without producing the artifacts common to such processing
when the two operations are done separately. Wepeiform exten-
sive experiments to show that our deep residual network achieves
demosaiced and super-resolved images that are superior to the
state-of-the-art both qualitatively and quantitatively.

Introduction
There is an evergrowing interest in capturing high-resolution

images that follows the increasing quality of display devices.
However, the most prevalent image capture devices are mobile
phones, which are equipped with small lenses and compact sen-
sors. Despite the large advancements made in improving the dy-
namic range and resolution of images captured by mobile devices,
the inherent design choices limit the ability to capture very high-
quality images.

The limitations result from two design decisions. Firstly, the
single CMOS sensor in most of the cameras, including mobile
cameras, measures at each spatial location only a limited range of
wavelengths (red, green or blue) of the electromagnetic radiation
instead of the full visible spectrum (red, green, and blue). This
is achieved by placing a color filter array (CFA) in front of the
sensor. The most common type of CFA is the Bayer pattern [1],
which captures an image mosaic with twice as many green pixels
as compared to red and blue pixels. Secondly, as the sensor needs
to be compact to fit into the device, resolution is limited by the size
of the photon wells. Small photon wells have a low well capac-
ity, which limits the dynamic range of the image capture. Large
photon wells limit the number of pixels and thus the resolution.
To reconstruct full color from the CFA mosaiced image, demo-
saicing algorithms are applied, while low-resolution demosaiced
images can only be dealt with using super-resolution algorithms
in a post-processing step.

In the last decades, demosaicing and super-resolution have
been independently studied and applied in sequential steps. How-
ever, the separate application of demosaicing and super-resolution
is sub-optimal and usually leads to error accumulation. This is be-
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Real World Scene (IHR) Blur Effect Downsampling Mosaicing (IBaY"l")

Figure 2: Diagram of the image formation in our model. [HR is the intensity distribution of the real scene, B, D, M represent the blurring,
downsampling, and mosaicing process, and [Bayer is the observed Bayer mosaiced image. Our goal is to invert this process.

ods [4, 5, 6, 8, 18, 20]. Only recently, deep learning has also
been successfully used for image demosaicing [14]. When using
deep learning techniques, it is possible to address demosaicing
and super-resolution simultaneously.

In this paper, we propose to use a deep residual network for
joint demosaicing and super-resolution. More specifically, our
network can learn an end-to-end mapping between RGGB Bayer
mosaics and high-resolution color images. The main contribu-
tions of the paper are the following:

1) The first attempt to perform joint demosaicing and super-
resolution on single Bayer image, to the best of our knowl-
edge. Unlike existing super-resolution methods that usually
super-resolve only the luminance channel while resorting to in-
terpolation of the chroma channels, we directly generate full-
color three channel super-resolution output. 2) Both demosaic-
ing and super-resolution are jointly optimized through the net-
work, therefore conventional artifacts such as moire and zipper-
ing, which pose a post-processing challenge, are nearly elimi-
nated. 3) We demonstrate both quantitatively and qualitatively
that our approach generates higher quality results than the state-
of-the-art. In addition, our method is computationally more effi-
cient because of the joint operation.

Joint Demosaicing and Super-Resolution
A common image formation model for imaging systems is

illustrated in Fig. 2. In this model, the real world scene [HR is
smoothed by a blur kernel representing the point spread function
of the camera. It is downsampled by a factor rand mosaiced by
the CFA to get the observed Bayer mosaic [Bayer. Our goal is
to provide an approximate inverse operation estimating a high-
resolution image [SR R:! [HR given such a low-resolution Bayer
image [Bayer. In general, [Bayer is a real-valued tensor of size
h x w xl, [HR is a tensor of r· h x r· w x 3. This problem is highly
ill-posed as the downsampling and mosaicing are non-invertible.

To solve this problem, traditional methods usually design
nonlinear filters that incorporate prior heuristics about inter-
channel and intra-channel correlation. A deep CNN is a better
substitute for such methods, as convolutional layers can automat-
ically learn to exploit inter-channel and intra-channel correlation
through a large dataset of training images. Moreover, the exclu-
sive use of a set of convolutional layers enables joint optimization
of all the parameters to minimize a single objective as is the case
in joint demosaicing and super-resolution.
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We build our framework in a data-driven fashion: we create
the training set from a large set of high-quality images [HR, and
produce the input measurements [Bayer using the same process as
the image formation model illustrated in Fig. 2. We train our deep
convolutional network on this dataset.

Deep Residual Network Design
We use a standard feed-forward network architecture to im-

plement our joint demosaicing and super-resolution, which is pre-
sented in Fig. 3 and Tab. 1. The goal of the network is to recover
from [Bayer an image [SR = F([Bayer) that is as similar as possible
to the ground truth high-resolution color image [HR. We wish to
learn a mapping F from a large corpus of images, which concep-
tually consists of three stages:

1. Color Extraction: this operation separates the color pixels
into different channels from the mono-channel Bayer mo-
saic. With this operation, no hand-crafted rearrangement of
the Bayer input is needed unlike other demosaicing algo-
rithms [15, 14]. This operation gives a set of color features
from the Bayer image.

2. Feature Extraction & Non-linear Mapping: following
the intuition of the first deep neural network for super-
resolution [3], this operation extracts overlapping patches
from the color features to use high-dimensional vectors to
represent the Bayer image in a low-resolution feature space,
which is then mapped to the high-resolution feature space.

3. Reconstruction: this operation aggregates high-resolution
representations to generate the final high-resolution color
image [SR.

Color Extraction
The Bayer mosaic is a matrix with the three color samples

arranged in a regular pattern in a single channel. To make the
spatial pattern translation-invariant and reduce the computational
cost in latter steps, it is essential to separate the colors in the Bayer
image into different channels at the beginning. The Bayer pattern
is regular and has a spatial size of s x s, where s = 2. Since the
neighboring colors may also affect the result, we build our first
convolutional layer LI with a spatial size of 2 . s and a stride of s:
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Figure 3: Scheme of our proposed network architecture. The network is a feed-forward fully convolutional network that maps a low-
resolution Bayer mosaic to a high-resolution color image. Conceptually, the network has three components: color extraction, feature
extraction and reconstruction.

Table 1: Summary of our network architecture. Stage number
1,2,3 of the first column correspond to the three stages of color
extraction, feature extraction and non-linear mapping, and recon-
struction, respectively, illustrated in Fig. 3. We set the number of
filters C = 256 and use 24 residual blocks in Stage 2.

where I I represents the output from the first layer, WI and bt rep-
resent the filters and biases of the first convolutional layer, and
* denotes the convolution operation. Here, WI corresponds to
C = 256 filters of support 2· s x 2· s.

We build an efficient sub-pixel convolutional Layer [17] L2
to upsample the color features back to the original resolution:

Stage Layer Output Dimension
Input (Bayer image) hxwxl

1 Conv with a stride of 2 ~x-rxc
Sub-pixel Conv hxwx~
Conv, PReLU hxwxC

2 Residual Block hxwxC
... hxwxC

Residual Block hxwxC
3 Sub-pixel Conv 2·hx2.wx~

Conv, PReLU 2·hx2·wxC
Conv 2·hx2·wx3

Output (color image) 2·hx2·wx3

L2 (I I) (x,y,c) = I(~',j ,c')'

x'=l~J,
y'=l~J,

I C.mod(y,s) C.mod(x,s)
c = s + s2 +c,

(2)

L Cony - PReLU - Cony -----.

x • Addition - PReLU ..• Xl

Figure 4: Illustration of the architecture of our residual blocks.
We remove the batch normalization layer in the original resid-
ual blocks [7] and replace the ReLU with Parametric ReLU. This
structure enables faster convergence and better performance.

ment of the specific CFA. We set s = 2 for the Bayer CFAs,
CYOM CFA or ROBE CFA, and s = 6 for the X-trans pattern.

Feature Extraction & Non-linear Mapping
Inspired by Dong et ai. [3], to explore relationships within

each color channel and between channels, as well as to represent
the Bayer image in a high-resolution feature space, we exploit a
group of convolutional layers.

Previous work [7] has demonstrated that residual networks
exhibit excellent performance both in accuracy and training speed
in computer vision problems ranging from low-level to high-level
tasks. We build a set of 24 residual blocks, each having a similar
architecture as Lim et ai. [12], which is demonstrated in Fig. 4.
We remove the batch normalization layers in the original resid-
ual blocks [7] since these layers get rid of range flexibility from
networks by normalizing the features [12], while the scale of
the features may be useful for image restoration problems. We
also replace the activation functions ReLU with Parametric ReLU
(PReLU) to prevent dead neurons and vanishing gradients caused
by ReLU. For convenience, we set all residual network blocks to
have the same number of filters, C = 256.

Reconstruction
In the reconstruction stage, we apply another sub-pixel con-

volutionallayer [17] to upsample the extracted features to the de-
sired resolution. This is followed by a final convolutional layer to
reconstruct the high-resolution color image.

here, the sub-pixel convolutional layer is equivalent to a shuffling
operation which reshapes a tensor of size H x W x C into a tensor
of size s· H x s· W x ~. We find that applying this sub-pixel con-
volutionallayer helpssreduce checkerboard artifacts in the output.

This color extraction operation can be generalized to other
CFAs by modifying s with respect to the spatial size and arrange-

Experiments
Datasets

For training and evaluation of the network, we use the pub-
licly available dataset RAISE [2] which provides 8,162 uncom-
pressed raw images as well as their demosaiced counterparts in
TIFF format.
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Figure 5: Illustration of the steps we take to create the input and
output images of our training and testing dataset. The original
16 megapixel images are downsampled to 4 megapixel to elim-
inate demosaicing errors and noise. The 4 megapixel images
serve as reference super-resolution images, whose downsampled
1 megapixel version provides the the single-channel Bayer CFA
images used as input to our network.

Note that if we use images that are already demosaiced by a
given algorithm, our network will learn to generate any artifacts
introduced by the demosaicing algorithm. Moreover, we only deal
with demosaicing and super-resolution, we have the assumption
that other image restoration tasks such as denoising would be re-
solved in other steps in the image processing pipeline, thus noise
should not be modeled in our image sampling pipeline. We cir-
cumvent the problem as follows. We use the demosaiced images
of RAISE that are larger than 16 megapixels in size. We then per-
form a progressive downsizing of the image in steps by a factor
of 1.25 each time until we obtain one-fourth of the original image
size (i.e.about 4 megapixels). This is done to eliminate artifacts
that have potentially been introduced by the demosaicing algo-
rithm as well as by other factors in the camera processing pipeline,
such as sensor noise. This way we obtain the high-quality ground-
truth [HR that serves as the super-resolved images.

To create input Bayer mosaics [Bayer from these ground-truth
images, we further downsample the previously downsample im-
ages to one-fourth of the size (to about 1 megapixel) also using the
progressive downsizing. We follow the assumed image formation
demonstrated in Fig. 2. As required for the Bayer pattern, we set
the downsampling factor r = 2, and sample pixels from the three
channels in the Bayer CFA pattern to obtain single-channel mo-
saiced images as low-resolution input images for training. Thus
for a H x W x 1Bayer image input, the desired color image output
is of size 2· H x 2· W x 3. These steps are illustrated in Fig. 5.

To train our network, we use a subset of RAISE of 6,000
images. In particular, we randomly selected 4,000 photos from
the Landscape category and randomly selected 2,000 photos from
other categories. We also randomly select 50 images from the rest
of the RAISE dataset to build the testing set. We ensure that there
is no duplicate image in the training and testing set.

Training Details

For training, we use 64 x 64 x 1 sized patches from the cre-
ated Bayer mosaics as input. As output images we use color
image patches of size 128 x 128 x 3 from the high-resolution (4
megapixel) images. We train our network with the ADAM opti-
mizer [9] by setting the learning rate = Ie - 4 and EO = 10-8• We
set the size of mini-batch as 16. For better convergence of the
network, we halve the learning rate after every 10,000 mini-batch
updates. We use Llloss as the loss function.
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Results
Since we are not aware of any other joint demosaicing and

super-resolution algorithms in the existing literature, there is no
similar existing method for us to compare to. Instead, to illus-
trate the performance of our proposed end-to-end network, we
designed experiments to simulate the conventional image pro-
cessing pipeline for comparison. We compare our method with
the sequential application of different state-of-the-art demosaic-
ing algorithms (FlexISP [15], SEM [10] and DemosaicNet [14])
and the state-of-the-art super-resolution algorithm (SRCNN [3]
and MDSR [12]). We use the published code from these method.
As in the conventional image processing pipeline, demosaicing
and super-resolution are two different components which are sup-
posed to be resolved independently, we don't fine-tune the super-
resolution algorithms on the demosaicing algorithm results.

Note that SEM [10] and DemosaicNet [14] perform joint de-
mosaicing and denoising, for fair comparison, we set the noise-
level (J = 0 for these methods. As SRCNN only provides upsam-
piing in the luminance channel, we upsample the chroma channels
using bicubic interpolation. The process is shown in Fig. 7.

Quantitative Results
In Tab. 2 we report the PSNR values of our approach in com-

parison to other methods on the testing dataset. Our approach out-
performs the PSNR scores of the next best combination of state-
of-the-art techniques of demosaicing and super-resolution by a
significant PSNR difference of 1.3dB on average computed over
the 50 images of the test-set.
Table 2: Mean PSNR and SSIM of different methods evaluated
on our testing dataset. For faire comparsion with methods(*) that
perform joint demosaicing and denoising, we set their noise-level
to O.

Method P8NR 881M
Flexl8P [15]+8RCNN [3] 29.6092 dB 0.9182
Flexl8P* [15]+MD8R [12] 29.1237 dB 0.9192

8EM* [10]+8RCNN [3] 29.4978 dB 0.9348
8EM* [10]+MD8R [12] 29.3729 dB 0.9382

DemosaicNet* [14]+8RCNN [3] 30.1313 dB 0.9374
DemosaicNet* [14]+MD8R[12] 30.1177dB 0.9291

Ours 31.4093 dB 0.9476

Qualitative Results
To further validate the quality of our results, we show qual-

itative comparisons in Fig. 6. Note that although MDSR [12] is
a superior super-resolution algorithm to SRCNN [3], sometimes
it performs worse than SRCNN, as it emphasis more strongly the
artifacts produced by the demosaicing algorithms.

The combination of FlexISP [15] and SEM [10] produces
some disturbing artifacts such as zippering around the edge and
false color artifacts. These are particularly visible in the man's
clothes (in the first column of Fig. 6) and the text (in the last col-
umn of Fig. 6).

Both DemosaicNet [14] and our network can produce demo-
saiced images without these artifacts, but our network is able to
recover more realistic details. This is demonstrated in the second
and the fourth column of Fig. 6. Our network is able to produce
higher quality color images without the visually disturbing arti-
facts introduced by the other methods.

Society for Imaging Science and Technology
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Figure 6: Joint demosaicing and super-resolution results on images from the RAISE [2] dataset. The two numbers in the brackets are the
PSNR and SSIM scores, respectively.
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(b)
Figure 7: (a) is our framework for joint demosaicing and super-
resolution, our network can perform the whole process in an end-
to-end manner. (b) shows a typical pipeline to combine the demo-
saic algorithms and super-resolution algorithms, which we use for
comparing with other algorithms. Unlike most super-resolution
algorithms that output only the luminance channel, we directly
generate full color output.

Running Time
We also test the running time of our method and the algo-

rithms we compared to on 10 256 x 256 input images using a
Nvidia TITAN X. As FlexISP and SEM reply on iterative opti-
mization, they take more than 100,000 ms on average. While De-
mosaicNet takes on average 650 ms for demosaicing alone, our
method has an average of 619 ms for the joint operation of demo-
saicing and super-resolution.

Discussion
In this paper, we propose a CNN-based framework for sin-

gle image joint demosaicing and super-resolution, which is capa-
ble of directly recovering high-quality color super-resolution im-
ages from Bayer mosaics. Our proposed method outperforms all
the tested combinations of the state-of-the-art demosaicing algo-
rithms and the state-of-the-art super-resolution algorithms in both
quantitative measurements of PSNR and SSIM as well as visu-
ally. Our approach does not produce disturbing color artifacts.
Although these demosaicing artifacts (such as zippering artifacts
in the first column of Fig. 6) may not appear in the real-world sce-
narios as some noise and aberrations are eliminated by the lens
blur, our approach still provides the sharpest and the most realis-
tic result compared to the other methods even when ignoring the
artifacts. Our approach can be extended to videos, and can poten-
tially be integrated into the camera imaging pipeline.
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