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where p denotes a camera raw and £. refers to its rendered
RGB counterpart. The 3 x 3 correction matrix, gamut
mapping and tone mapping are respectively denoted by the
matrix M and the functions I{) and f O. The function f 0
can implement a single or three per-channel tone curves.
Since gamut mapping only implements a small change in
comparison with color and tone mapping steps, the order
of gamut mapping and tone mapping may be switched
(Eqs. (Ib) and (Ic)), a property that we exploit in this
paper. Equally, we can also merge three processing steps into
one and directly solve for a 3-D LUT (Look-Up-Table) that
maps raw to rendered counterparts. This LUT interpolation
function is denoted by LUTO [13] in Eq. (Ic). Readers may
refer to the top row of Fig. 1 to link each mathematical
function to our example processed image.

In radiometric calibration, given a set of p and £., we
solve for the parametrized pipeline parts (e.g.,-M, II') ,f 0
and LUT0). A disadvantage of the current best performing
methods is that a great deal of data may be required to

compact RB radiometric calibration model that models the
camera pipeline with significantly fewer parameters and
concomitantly needs much less training data.

In Figure 1, we illustrate a typical image reproduction
pipeline which is representative of many cameras [7]. An
exemplar raw image, Fig. I(a), is mapped by a 3 x 3 color
correction matrix to give a color corrected image (Fig. 1(b)).
The color correction matrix implements several processing
steps (e.g., illumination correction [8, 9], display RGB
mapping [10], and color preference adjustments [8]). It iswell
known that a display device cannot show all captured image
colors and some RGBs will fall outside the RGB cube after
mapping (e.g., the pixels marked in light purple in Fig. 1(b)).
Gamut mapping is therefore required, e.g., [6, 7, 11], to move
the colors back inside the cube as shown in Fig. I(c). Finally,
the gamut mapped image is tone mapped to arrive at the
final rendered output [7-9] shown in Fig. 1(d). Tone mapping
accounts for the display non-linearity [10], dynamic range
compression, and some aspects of preference [12].

In general, the camera color processing pipeline can be
written as Eq. (1).

Abstract. Raw images are more useful than JPEG images for
machine vision algorithms and professional photographers because
raw images preserve a linear relation between pixel values and
the light measured from the scene. A camera is radiometrically
calibrated if there is a computational model which can predict
how the raw image is mapped to the corresponding rendered
image (e.g., JPEGs) and vice versa. Our method makes use of the
observation that the rank order of pixel values is mostly preserved
post-color correction. We show that this observation is the key
for getting a compact and robust radiometric calibration model.
Since our method requires fewer variables, it can be solved for
using less calibration data. An additional advantage is that we can
derive the camera pipeline from a single pair of raw-JPEG images.
Experiments demonstrate that our method delivers state-of-the-art
results (especially for the most interesting conversion from JPEG to
raw). © 2018 Society for Imaging Science and Technology.
[001: 10.2352/J.lmagingScLTechnoI.2018.62.5.050404]

1. INTRODUCTION
Many computer vision algorithms (e.g., photometric
stereo [1], photometric invariants [2], shadow removal
[3,4], and color constancy [5]) rely on the assumption that
the captured RGBs in images are linearly related to the
actual scene radiance. However, mostly, the actual output of
a digital camera imaging pipeline is necessarily non-linear in
order to produce perceptually pleasing photos as opposed to
their physically meaningful counterparts. In this paper, we
present a compact rank-based (RB) radiometric calibration
method which solves for the bidirectional mappings between
the camera's raw responses and the rendered RGBs produced
by digital cameras.

There is prior art in this field, which models the
pipeline with a large number of parameters (up to several
thousands [6]). This means that a large corpus of data is
required to uncover the pipeline and there is at least tacitly
the premise that the underlying pipeline is quite complex.
The key insight in our approach is that post-color correction
(a 3 x 3 matrix correction), the linear corrected raw RGBs
are to the greatest extent of the same rank order as the
final rendered RGBs. Based on this insight, we develop a
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(a) RAW (b) Colour corrected (c) Gamut mapped (d) Tone mapped

Figure 1. (0) A row input image is color corrected to give image (b). Non-displayable colors are highlighted in purple pseudo color. Gamut mopping, in
step (c), brings colors within gamut. Finally, in (d), a tone mopping step results in the final rendered image. The image is token from [14].

fit their assumed models. In Eqs. (1a) and (Ib), the gamut
mapping step could be modeled by 1000s of radial basis
functions (RBFs) [6, 7, 13] and in Eq. (Ie), the deployed
LUT interpolation function could also have several thousand
control points.

Our proposed method exploits the simple observa-
tion [15] that, assuming the gamut mapping step slightly
changes image colors and the tone curves are always mono-
tonically increasing, we expect mostly the rank ordering
of the rendered f to be the same as £!.. multiplied by the
correction matrix M. Suppose that two rendered (JPEG)
responses-in the pI color channel-are denoted by Pf and
Pf and that Pf > Pf. The rank order of two corresponding
raw red channel measurements post-color correction is
written as M[pa > M[pb (where M[ denotes the first row of
M and pa and pb are ;pair of raw RGBs). This implies that
M[ (£!..a = £!..b) >-0 which defines a half-space constraint.

The row vector M [ can be considered as a point in
3-space and this inequality (ranking constraint) forces the
point to be located in only one half of 3-space. Because we
have multiple pixels, each pair of pixels (2 raw and 2 JPEG
RGBs) generates a half-space constraint and intersecting all
these constraints delimits the region in which M[ must lie.
Our experiments demonstrate that a small number of patches
suffices to estimate M accurately.

Once we have M we then find the best rank-preserving
tone curves1O. At this stage, only using M and lOwe have
a good approximation of the pipeline. Indeed, we argue that
our construction of M and 10 also incorporates, to a first
order, gamut mapping. Now we adopt (Eq. (1b) and find
a 12S-parameter per-channel LUT interpolation to reduce
any remaining errors due to gamut mapping (higher order
terms).

Below,we review radiometric calibration paying special
attention to methods which adopt Eq. (1). Rank-based
radiometric calibration is then described and is shown to
provide leading performance on a public dataset. Finally, an
application of one-shot radiometric calibration without the
access to raw is shown.

2. RELATED WORK
Using the pipeline form ofEq. (1b), Chakrabarti et al. [6] first
solve for M and lOin iteration and then solve directly for
I{) . In their approach,f 0 is constrained to be a 7th order
increasing polynomial. They model I{) by the RBF method
of [7] where several thousands of RBFs are potentially used.
A restriction of the above calibration is presented in [9]
where the gamut mapping I{) is ignored. This less general
model works tolerably well on many real pairs of raw and
rendered images and this is a point we will return to later
in this paper. In either version ([6] or [9]), the coupled
nature of the minimization indicates that a global minimum
is not guaranteed. Therefore, a random start point search is
implemented to find a better set of parameters.

Kim et al. [7] solve for the pipeline in the form of
Eq. (Ia) and makes additional assumptions to decouple the
optimization. They assume that images of the same scene are
captured with respect to two or more exposures and their
I{) is a multi-thousand set of RBFs. Regarding solving for
10, Debevec et al. [16] showed how relating corresponding
pixels under known exposure differences suffices to solve for
10 (assuming there is no gamut mapping step). Importantly,
in [7], it was argued that for the set of desaturated pixels
(Le., raws far from the RGB cube boundary), the gamut
mapping step has little or no effect and can be ignored.
Relative to this assumption, 10 can be solved using the
Debevec method. Given 1 0 the color correction matrix M
can be found (again using desaturated pixels).

We point out that for most off-shelf capture devices
(e.g., for most mobile phones), manual exposure control
is usually unavailable and the requirement of multiple
exposures is impractical. We also note that, in [7], the
adopted gamut mapping RBF network requires a large
number of parameters and thus a large corpus of data [6, 7].

In [13], it was shown that it is possible to ignore
the underlying structure of the color processing pipeline
and directly solve for the best 3-D surjective function-
implemented as a LUT interpolation function that maps
the raws to rendered RGBs Eq. (Ie). Finally, in [17], a
method is presented for solving for 10 by examining the
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3.2 Rank-Based Estimation for Color Correction
Denote the kth row of M as Mk. We assume that given two
color corrected raws, Mkpa and Mkpb the rank order is the
same as for the corresponding rendered RGBs:

Pi: > Pf ::::}Mkf!..a > Mkl::::} Mk(f!..a - f!..b) > O. (4)

Defining the difference vector !f! = f!..a- f!..b:

If[a be] is a solution toEq. (6), then [ale ble ele] forEq. (7)
is also true since Mk,l = ale and Mk,Z = ble. Solutions for
[Mk, 1, Mk,Z] lie on one side of the line, i.e., the 3-D half-space
constraints map directly to a 2-D half-plane constraint.
Alternatively, if we consider the whole set of intersections,
the cone in 3-D defined by Eq. (6) maps to a 2-D convex
region [21]. Denoting half-planes as f!iJ(!f!) we, equivalently,
solve for

(7)

(5)

(8)

(6)

[Mk,l, Mk,Z] E nf!iJ(d!).
j

The intersection problem of Eq. (8) is easily visualized.
In Figure 2(a) we show the intersection of 4 half-plane
constraints and indicate the solution set where Mk must lie.

We solve for Mk one sensor channel at a time. Due to
noise or small deviations in real camera data, it is likely that
no common intersection can be found that satisfies every
half-plane's constraint. To solve this problem, we generate
100,000 unit length vectors that are uniformly distributed
on the surface of the unit sphere [22], which is visualized in
Fig. 2(b). With respect to this sampling, the furthest distance
between any point and its nearest neighbor is less than 1.15°.
Therefore, the orientation of the rows of M is found to this

where it is understood the superscript j denotes the
difference vector from the jth of G) pairs of image pixel
values (n is the total number of image pixels). Suppose that
we have a vector Mk where Eq. (5) holds, then the inequality
cannot be true for -Mk. That is, Eq. (5) defines a half-plane
constraint [15, 20]. The vector !f! is perpendicular to the
half-plane: any Mk less than 90° to!f! is a possible solution.
Given multiple difference vectors we have multiple half- plane
constraints which taken together delimit a region in 3-space
where Mk must lie. Denoting the half-plane as .Yt'(!f!), Mk
must satisfy:

Mk En .Yt'(!f!).
j

The intersection in Eq. (6) defines an unbounded cone,
anchored at the origin, in 3-D space. Clearly, if Mk is in the
intersection region defined by Eq. (6), aMk (where a is a
positive scalar) is another solution. Using ranking we solve
for each row of M up to an unknown scalar multiplier.

Let us visualize the computation of Mk using ranking.
Without loss of generality let us assume that Mk,3 = 1. We
rewrite Eq. (5) as

(2)

min ~dlTMp +Q- Mpllz S.t. Q::; TMp +Q::;!. (3)
T,Q _I _I _I

edge distribution in an image. This method has the advantage
that the method works for a single image (without multiple
exposures) but the method is sensitive to processing steps
such as image sharpening which is used extensively in mobile
phone image processing.

3. THE RANK-BASED METHOD
In this paper, we are interested in calibrating in the most
general circumstances when the amount of training data is
modest and there is only a single calibration image. Assuming
that the rank order of intensities are almost preserved after
the camera processing steps, we present a method that solves
for an accurate rank-preserving camera pipeline model. This
paper extends our previously published RB method [18] with
more details and experiments.

To make the RB method work we need to assume that the
gamut mapping step I{) only changes color slightly. In fact
our assumption is more nuanced. We assume that-to a first
order-gamut mapping can mostly be implemented as an
affine transform and that this affine transform can be folded
into the color correction matrix M and the monotonically
increasing tone mapping functions f ().

3.1 Gamut Mapping as An Affine Transform
After color correction, some colors are mapped outside the
color cube and become non-displayable. To address this,
gamut mapping in Eq. (1b) is applied. A Taylor expansion
to model I{) around a point f! inside the gamut is used:

where J is the 3 x 3 Jacobian (matrix of derivatives ofr). Not
only does Eq. (2) show that, to a first approximation, gamut
mapping is an affine transform it is also one of the gamut
mapping algorithms proposed in [11]. We solve for the affine
mapping that maps all pixel colors into the unit RGB space
cube.

In Eq. (3), T and Q are respectively a 3 x 3 matrix and 3 x 1
offset vector defining the affine gamut mapping algorithm, i
is the index of an input RGB vector. The 3-vectors of Osand Is
are denoted byQ and!. Eq. (3) is solved directly by Quadratic
Programming [19]. The gamut mapping shown in Fig. l(c) is
the result of solving Eq. (3).

Here, we make two important remarks about affine
gamut mapping: (1) Gamut mapping and color correction
combined can be represented by the single affine transform:
3 x 3 matrix TM and offset Q; (2) It follows that the RB
method presented in the next section will actually solve for
TM. The offset term can be incorporated directly in f ().

Our hypothesis is that the part of gamut mapping that is
not described by an affine transform will be small and the
remaining error can be modeled with a function that has
fewer parameters (100s in contrast to the prior art WOOs).
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Figure 2. (0) The region where four half-plane constraints intersect delimits the region where [Mk.1, Mk.2] must lie where the block point is a feasible

solution. (b) On on unit sphere. each vector represented by the origin and a blue surface point is a probe for a possible solution (e.g .. the block arrow).
All 3-D points and constraints are projected to a 2-D plane Mk.3 = 1.

accuracy. For each point on the sphere (Le.,a possible row of
Mk), we count how many half-space constraints are satisfied.
The point on the unit sphere that has the largest number of
satisfying half-plane constraints-or the median of multiple
points if there is a tie-defines Mk.

To maintain a reasonable computational cost, we have to
be careful not to generate too many half-planes. We simply
select 200 random RGB-JPEG pairs for estimating M. Since
it is not guaranteed that these 200 random pairs are the
optimum selections, we practically generate 25 random sets
of 200 RGB-JPEG pairs and select the "best luck" set which
gives the lowest training error. Note that the other pipeline
components introduced later are also applied to evaluate the
training error.

Overall, we find the M that places all the corresponding
raw and rendered image RGBsin the most similar rank order.
That is, ifwe plot the mapped raw red responses, for example,
against the rendered red JPEG corresponding values then the
graph should be a monotonically increasing function. How
well a monotonically increasing function fits our data can be
used to judge the efficacy of each M.

3.3 Rank-Preserving Optimization of Tone Curves
We now solve for the optimal per-channel tone curves which
map color corrected raws to corresponding rendered RGBs.
Let us denote the ith color corrected raw and rendered
RGB pixel pairs for the kth channel as (MkPk,i, Pk,i)' The
kth-channel rank-preserving tone curve!kO is optimized as
a 7th order monotonic and smooth polynomial function as
follows:

min ~dl{k(MkPk i) -Pk dl2 +A [llf£,(t)112dt s.t.j{O ~ O.
fkO UI , , it

(9)
where the first term is for data fitness, the second term is for
curve smoothness and A is a small weight (e.g., 10-5). The
constraint enforces monotonicity. This polynomial fitting is

solved by Quadratic Programming [19]. Note that these 7th
order polynomials already include the affine gamut mapping
offset parameters described previously. In this paper, we
further denote the combination of all 3-channel mappings
fl-30 asfO.

3.4 Gamut Correction Step
As argued previously, we propose that f(ME) has the
expressive power to implement color correction, tone
correction and gamut mapping (to the first order in a
Taylor expansion). However, we wish to add a further gamut
mapping step for the higher order terms. But, since our
hypothesis is that much of the gamut mapping will have
been accounted for we are going to adopt a simple small
parameter solution. Further, since this additional correction
is going to be carried out at the end of the process, we
adopt Eq. (lb). Specifically, we find a 5 x 5 x 5 LUT
interpolation function by using lattice regression [23] that
minimizes minWTO ~dILUT(g(f(M~))) - £.;112where gO
is a non-linear function that stretches highlights. We found
empirically there was an advantage in deploying more LUT
resolution in the highlight region where gamut mapping is
created. We implemented this not by changing the sampling
structure of the LUT control points (which is uniform) but
by stretching our data, by applying the functiongO shown in
Figure 3. The function gO is fixed for all our experiments.

3.5 Rank-Based Recovery of Raw
Suppose we wish to map rendered RGBs to raws.
Using the previously described method, M has already
been solved in the RAW-to-JPEG forward estimation
phrase. Now, in a least-squares optimal way, we use the
same polynomial fitting method Eq. (9) to find f-I

by optimizing minf-10 ~dlf-I(£.i) - M~)I. Finally,
we solve for the backward LUTO by optimizing
minWTO ~dILUT(g(M-If-I(£.i))) - ~)I where the LUT
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Figure 3. Plot of a non-linear function g(x) where g(O) = 0 and g(l) = 1.

interpolation function is fitted by a 5 x 5 x 5 lattice
regression [23].
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3.6 Parameter Counting
Assuming we solve for three independent tone curves then
our method requires 9 (for M) + 8 x 3 (for 10) + 125 x 3
(the LUT for II) ) = 408 parameters which is significantly
less (even an order of magnitude less) than [6, 7, 13].

JPEG-to-RAW IndPoly

~~ 11111l1li I11I0.00

Error Range: [0, 1]
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Figure 4. Test RMSE bar chart of the Harvard dataset [6] for IndPoly [9],
Prob [6], and our RB [18]. The figure shows RMSE between ground
truth and prediction for bidirectional raw and JPEG mappings. "Exp."
and "lllu." are respectively short for "Exposure" and "llluminant." Each
bin color indicates a capture condition. The horizontal and vertical axes
indicate camera sensor and calibration error, respectively. The displayed
forward and backward errors are clipped at 15.0 and 0.20, respectively.

each subset and a selected camera, the root mean squared
error (RMSE) between the prediction and ground truth is
validated by using all available RAW-JPEG pairs.

Figure 4 (top half) shows the raw-to-JPEG mapping
error plot (where pixel intensities are coded as integers in the
interval [0, 255]). In both forward and backward tests, our
RB method [18] is significantly better than the independent
polynomial method (IndPoly) [9]. IndPoly is a simple model
which only contains three per-channel tone mapping (or
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4. EVALUATION
Our evaluation is based on two challenging datasets from
Harvard [6] and NUS [7]. The Harvard dataset [6] contains
the RAW/JPEG intensity pairs of 140 color checker patches
viewed under multiple viewing conditions. The color chart is
captured by eight cameras and under 16 illuminants across
many different exposures. Compared with the Harvard
dataset, the NUS dataset contains large data captured with
a 24-patch color checker and 31 camera sensors though its
capture conditions (Le., light and exposure) are relatively
limited.

We carried out the same experiment described in [6, 7].
We are interested in validating whether our method, with
much reduced number of parameters, can produce similar
or even better results compared with the state-of-the-art [6].
We evaluate both RAW-to-JPEG and JPEG-to-RAW The
Harvard dataset [6] captures a sort of "worst-case" viewing
conditions. Normally, when we capture a picture there is a
single prevailing illuminant color. In the Harvard dataset,
all camera processing parameters are turned off and the
same reflectances are viewed under multiple colored lights.
As Forsyth observed [24], the reddest red camera response
cannot be observed under a blue light, and he exploited this
observation to solve for the color of the light. In real imaging
conditions, the greenest green and the bluest blue do not
typically appear at the same time. A pipeline that suffices for
the combinations of all lights and all surfaces is unlikely to be
needed. This means the prior art pipelines are probably more
complex than they need to be. As described in [6], for each
camera, we estimate the parameters of a calibration model
using different subsets of the available RAW-JPEG pairs. For
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Figure 5. Test RMSE bar chart of the NUS dataset [7] for Prob [6] and our RB [18]. The figure shows RMSE between ground truth and prediction
for bidirectional row and JPEG mappings. The horizontal and vertical axes indicate camero sensor model code and calibration error, respectively. The
displayed forward and backward errors are clipped at 25.0 and 0.015, respectively. The displayed errors are the mean errors of all capture conditions.

linearization) curves and a 3 x 3 gamut mapping matrix.
We also found that our RB's forward errors are close to the
results of the state-of-the-art ProbRC [6], especially for the
condition ofless than three illuminants which are more likely
to occur in the real world. Evidently, for the many illuminant
case the prior art has a small advantage. Remembering that
JPEGs are coded as integers in [0,255], the RMSE is typically
1 or less. Practically, when the "fits" are viewed visually
(by looking at images) it is hard to see the difference. For
computer vision, we are more interested in the performance
of JPEG-to-RAW mapping which is shown in Fig. 4 (bottom
half). In ProbRC [6], a probabilistic framework for mapping
rendered RGBto raw was presented. Here we take their mean
estimates as the most likely raw predictions. We found that
our methods generally reduce the errors of [6] by ~34%.

We also verify the results with a wider range of camera
sensors using the NUS dataset [7] by a 4-fold cross validation.
Since IndPoly [9] performs significantly worse, we omit
it in our NUS dataset test. The data in [7] contain an
uneven number of capture modes for each camera sensors.
Therefore, in Figure 5, we show the overall performance
categorized by camera sensor. We found that the results in
general show a similar trend for the forward raw-to-JPEG
mapping. For the backward JPEG-to-raw mapping our RB
has a significant advantage over [6] as our backward mapping
errors are only ~ 10% of [6].

The reader might be interested in why our simple
method seems to work so well going from rendered to raw
(better than [6]) but not quite as well as the prior art in the
forward direction (albeit visually almost indistinguishable).
Our hypothesis here is that the LUT interpolation in the
forward direction is applied post the tone curve. This
curve (at least for dark values) has a very high slope and,
consequently, the coarsely quantized 5 x 5 x 5 per-channel
LUT interpolation cannot capture gamut mapping well.
Yet, in the reverse direction (JPEG-to-RAW) the LUT
interpolation is applied in linear raw where a coarse uniform
quantization is more justified. The full calibration results
maybe found in our supplementary materials.

5. CALIBRATION STABILITY OF RANDOM SAMPLE
SELECTION

We are also interested in how the randomly selected samples
for estimating the 3 x 3 color correction matrix affect the
calibration results. We select the most common" 1illuminant
+ 10exposures" data from the Harvard dataset and repeat the
calibration experiment for 50 times. This calibration stability
test results are shown in Table 1.As shown, the variation for
forward estimation is about 15% of the mean value while that
of the backward estimation is about 3%.
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Table I. RMSEof our RBmethod between ground truth and prediction for bidirectional
RAWand JPE6 conversions. The results ore based on 50 repeated tests.

Figure 6. Distributions of forward and backward mopping RMSE of our
method over the input hue and saturation gamut. It is tested with the" 1
illuminant +10 exposures" set from the Harvard dataset [6].
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7. CALIBRATION WITH SMALL NUMBERS OF
PARAMETERS

We wished to visually validate our claim that we can calibrate
with few parameters. We took 4 RAW+JPEG pairs (for
different cameras) from [9]. We then uniformly selected 140
corresponding pixels from the RAW and JPEG. We solved
for all the 408 parameters in our RB method. We then
applied our model to the rest of the image. The result of
this experiment for four images OPEG-to-RAW) is shown in
Figure 8.

Figure 7. Distributions of forward and backward mopping RMSE of our
method with respect to input lightness (value channel of the HSV color
space). It is tested with the" 10 Exps. and 1 ilium." set from the Harvard
dataset [6].

the complete distribution data is interpolated for a 400 x 400
uniform grid. This grid (as an image) is then filtered by a
41 x 41 Gaussian kernel with a 20 standard deviation.

In addition, in Figure 7, we also plot the RMSE
distributions for the same capture condition-"1 illuminant
+ 10 exposures"-with respect to lightness (Le., value
channel of the HSV color space). Similarly, the complete
distribution data are interpolated for a 400-tick uniform 1-D
space. This interpolated 1-D space data is then filtered by a
41 x 1 Gaussian kernel with a 20 standard deviation.

Overall, higher forward and backward errors are ob-
served when saturation is high and hue is close to 0 or 1 (Le.,
reddish colors). Value (of the HSV color space) does not seem
to have a great impact for the forward errors although lower
forward errors are found near both clipping boundaries of 0
and 1.
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Error Range: [0, 1]
1•Saturation

JPEG-to-RAW

RAW-to-JPEG Error Range: [0,255]

Saturation 1•

(a) RAW-to-JPEG 400 69 S90 07000 LX3
Mean 10.52 8.85 4.92 14.19 9.74
Std 1.65 2.54 0.41 3.14 1.00

(b) JPEG-to-RAW 400 69 S90 07000 LX3
Mean 0.073 0.106 0.058 0.124 0.071
Std 0.002 0.003 0.001 0.004 0.001

6. CALIBRATION ERROR DISTRIBUTION
To better understand how well the proposed algorithm
performs with respect to input hue and saturation, we
visualize the distributions of forward and backward mapping
errors (RMSE)over the hue and saturation gamut (HSV color
space [25]) which is shown in Figure 6. The distributions
are generated for the common capture condition set-"1
illuminant + 10 exposures"-as the examples. Specifically,

8. CONCLUSION
In this paper we have shown how the rank order of image
responses is a powerful tool for solving for the individual
steps in a camera processing pipeline (color correction,
gamut, and tone mapping). A simple ranking argument,
relating color corrected raws to corresponding rendered
RGBs suffices to solve for the color correction matrix.
Then, the rank-preserving tone map is found and, finally, a
simple gamut correction step is derived. Compared with the
prior art, our RB method requires the fewest assumptions
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Figure 8. Visualization of one-shot radiometric calibration through a simulated 140-patch color checker, shown at the top-right corner of each Rendered
JPEG image. The error maps in the 4th and 5th columns respectively visualize the per pixel RMSE for our RB method with & without the gamut mapping
LUTinterpolation. The RMSE of each whole image is shown at the top-right corner of each error map. All raw images are shown with a 0.5 gamma.

and delivers state-of-the-art radiometric calibration results.
Experiments also show that excellent calibration is possible
given a single image exposure and limited color diversity
(e.g., a color chart).
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