Color color processing
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Color imaging involves a variety of processing operations,
from interpolation, via matrix transformation, to smoothing and
predictive modeling. Since colors can be represented as coordinates
in color space, the general methods of mathematics can be applied
to them. However, if color coordinates are treated simply as generic
spatial coordinates, their processing can have undesirable
consequences, deriving from a disconnect between the coordinates
representing a color and the color formation properties resulting in
it. E.g., interpolating among colors with very different lightnesses
may lead to a grainy result in print, or varying the interpolation
support when processing a transition may lead to unwanted cross-
contamination of colorants. To address such challenges, the present
paper proposes two color processing algorithms that do take the
color properties of processed coordinates into account. They can
therefore, in some sense, be thought of as “color color” processing
algorithms rather than as geometric or mathematical color
processing ones. The consequences of making color-native choices
when processing color data then are improved transitions, “purity”
and grain.
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Smoothly transitioning between colors is challenging in print,
because of the non-linear way in which inks interact among
themselves and with the substrate they are printed on. The more inks
an ink set has, the greater this challenge becomes, since more and
more disparate ink combination variations need to be well behaved.
As a result, artifacts often appear in transitions, which in turn can
make prints unsaleable. Such artifacts also reduce the level of
predictability that a printer has, including its goodness of soft-
proofing, all of which impacts customer satisfaction and total cost
of operation. Transition smoothness is an important component of
overall print image quality, particularly critical in applications like
professional photography, fine art, high-end point of sale and
interior decoration.

There are several factors that determine the goodness of color
transitions, including ink spectra, ink-substrate material
interactions, color separation and ICC profiling. An important
constraint here is that key computations that are needed for building
color separations from RGB/CMYK to ink channels / NPacs are
performed on a purely geometric basis. Interpolation first selects
coordinates of points in 3D/4D on the basis of which interpolation
proceeds on a geometric basis either involving volumetric
relationships in a tessellation or distances.

Such methods are “blind” to the colors that color space
coordinates represent and to the preferences there may be in how to
combine them, and while they may work well under some
circumstances, they may not be robust in general. An example of
where generic geometric methods work well is interpolation in
regular, cubic grids, especially when these are of sufficient density
(e.g., 17° RGB samplings or 9* CMYK ones). Here a variety of
tessellation methods have been proposed and tested previously,
including tri-linear, prism, pyramidal and a variety of tetrahedral
ones [1-5, 12].
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Here, a good, early example of a move away from purely
geometric approaches is interpolation in a regular grid in RGB
where sub-cubes are analytically tessellated so that their long
diagonals, shared by sub-tetrahedra are parallel with the black-white
long diagonal of the RGB encoding cube [6]. Other examples are in
the context of smoothing, where, ¢.g., weighted combinations of a
look-up table (LUT) node’s neighborhood only consider lightness
neighbors and not full, 3D neighborhoods, resulting in greater
accuracy at a given level of smoothness [7]. Alternatively, in the
context of CMYK LUTs, separate smoothing of K while preserving
colorimetry by appropriately choosing CMY values has also been
used successfully [13]. Finally, there are also examples of hue-
planes being considered and preserved while performing camera
characterization [14-15]. In spite of such exceptions, current
solutions remain either wholly or at least predominantly geometric
in their approach.

Finally, and before proceeding to the new approaches proposed
in this paper, it is worth noting that the context where they are
applied is that of building color LUTs that map from a device color
space (RGB, CMYK) to a printing system’s colorant (ink, toner, ...)
or Neugebauer Primary area coverage (NPac) space. This has two
consequences: first, that there is no concept of color accuracy here
(neither of the spaces being colorimetric) and neither is
computational cost a consideration (since the approaches described
here are applied only off-line; at print time, existing interpolation

techniques, often with dedicated hardware acceleration, are
applied).
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The thinking presented here grows out of the insight that
computations performed on the basis of color space coordinates
ought to take into account the fact they these coordinates represent
colors. Instead of “geometric color” processing, we therefore
propose a native “color color” processing.

A particular challenge in this context is the interpolation that
needs to be performed when sparse, partially-regular data is the
basis for a full, regular LUT. E.g., when ramps are defined in a color
space and the entire space needs to be “filled in” on their basis. An
example starting point here could be a series of ramps from white to
CMYRGB and from there to black, plus ramps between hue-ring
neighbors and the black-white ramp. The question then arises of
how the remaining nodes of a regular grid can be computed. Today
a typical approach would be to use a Delaunay tessellation [8-9],
where tetrahedra are formed without their vertices being considered
from the perspective of their colors. The result can be transitions
issues, e.g., when tetrahedron edges and faces cut through more
salient directions of color change (e.g., from a primary or secondary
to white or black), and also an impact on grain (e.g., when large
lightness differences are present between the vertices among which
interpolation then takes place).

To address such challenges, a new lightness-plane, hue-
neighbor interpolation scheme is presented here, instead of the
previous volumetrically-smallest circumsphere approach (i.e.,
Delaunay). Rather than considering tessellation geometry in the
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abstract, choices are made based on the lightnesses of an input
ramp’s nodes and on their hues.

The basic idea here is to start with a set of ramps as set out
above and to first use them to interpolate nodes that are in the same
plane orthogonal to the black to white diagonal of the RGB cube
(Fig. 1a). This is effectively a pseudo-lightness “I-plane”, with all
points interpolated in it being equally far up along lines parallel to
the black-white axis of an RGB device color space and sharing the
same “1” coordinate, computed from device RGB (dRGB) as
follows:

1=R+G+B M)

The result then, for the set of ramps used as an example here,
will be one point from the black to white ramp (i.¢., the neutral axis)
plus six or 12 points from the RGB cube’s surface. There will be six
such points for l-levels between black and each of R, G and B and
then again between C, M and Y and W. In the region of l-values
between those of R, G and B and C, M and Y there will be 12 points
from RGB cube surface ramps — six from RGBCMY ramps and six
from ramps connecting hue-neighbors among them (i.e., RY, YG,
GC, CB, BM and MR).

Next, the points in a constant-1-plane are projected into a plane
parallel to that defined by the three vertices of the RGB cube having
maximum values in one of the three dimensions (i.e., RGB being
[0,0,1], [0,1,0] and [1,0,0] respectively). Here it is advantageous to
project into the plane L defined by the following point and pair of
vectors:
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Projecting RGB coordinates into P then yields [r,g] coordinates
where the neutral point is mapped onto the [r,g]=[0,0] origin, which
is obtained as follows:
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Radial coordinates are computed next from [r,g] as follows:
h=atan2(r,g) @)
F# GH?I J2 )

where h and ¢ is pseudo-hue and pseudo-chroma and atan2() is
the four—quadrant inverse tangent. Two pseudo-hue-neighboring
colors — N; and N (i.e., being cither side of the color to be
interpolated) are identified next and a triangle is then formed by
them and the neutral axis point Ny in the same plane. Barycentric
weights are computed for Ny, N1 and N; on the basis of their and the
input point I’s [r,g] coordinates, all of which are in the same pseudo-
lightness plane and are close in hue:
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Finally, the output colorant or NPac vector O is obtained as the
weighted sum (with weights w1, w» and ws) of the colorant or NPac
vectors Oy, Oy and O, corresponding to Ny, N; and N, respectively:
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The end result is both that interpolation is among ramp nodes
of similar lightness, that it is performed in a way where the “purity”
of ramps is preserved and that the cross-combination of multiple
nodes is minimized. All of this leads to clean, simple transitions
(Fig. 1b) that can reduce grain too.

Note also that this approach extends beyond color, to print or
printing system properties in general. E.g., in 3D printing, instead of
operating in l-planes, it could be subspaces that have more similar
fusing requirements, or that are similar in terms of tensile strength,
etc., that are the criterion for interpolation.

0,L&(,L&s5,,%2 +!
W & K points ramps

W
O

K K

| HEAB 445544508 444" #5/ 1.

To complement interpolation, smoothing too can be done in a
color-aware way. The key here is to realize that some parts of a LUT
are part of the gamut boundary, others control the printing of
neutrals, etc. Here the underlying insight is that colors are best
smoothed with a support that is like them in gamut location terms.
Smoothing neutrals based on other neutrals, colors along gamut
edges based on other gamut-edge colors, those from gamut faces
based on those faces alone, and interior colors based on their full
neighborhoods (Fig. 2) leads to a result that is both smooth and that
preserves color gamut and neutral color choices.
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This translates into smoothing along edges and the neutral axis
being a weighted sum of +x nodes along a given edge or axis. Then,
within faces the process is applied to a [+x,+x] window, but
excluding edges, and in the interior the operation is performed over
a [£x4x+x] neighborhood, again excluding nodes that belong
either to faces, edges or the neutral axis. In the case of interior nodes,
smoothing is obtained as follows (and for other node types it is
achieved analogously):
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where the coordinates of the node being smoothed are
[1j,k[=[0,0,0], N are the nodes of the look-up table before
smoothing, S is the smoothed node contents, and v are the smoothing
weights, which can simply be distance in the LUT’s indexing space
(RGB, CMYK) from the node being smoothed, or some function of
these. Stronger smoothing can be achieved both by large values of
x, by applying a broader weighting function and by giving the node
that is being smoothed a weight of zero. Fig. 3 here shows the effect
of the above smoothing on the KGCB face of the RGB cube.
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An additional challenge here is the preservation of neutral
colors. Smoothing them with their full neighborhoods would give
the smoothest result overall, but would lose their being strictly on
the R=G=B axis of the RGB LUT, which is a mechanism used for
then mapping them to specific ink combinations or NPacs in a color
separation (e.g., ensuring that they are printed only using black or
neutral inks). Conversely, just smoothing them among themselves —
which ensures that they remain on the R=G=B axis — runs the risk
of a lightness difference between the neutral axis and its
neighborhood. Fig. 4a shows an example where smoothing has been
applied to an entire LUT, but where neutrals were smoothed only
among themselves and where a clear lightening of the neutrals can
be seen. This is because of smoothing neutrals only along the neutral
axis disconnects them from the colors obtained by smoothing the
neighborhood of the neutral axis.

Here the solution is to re-interpolate the neutral axis to match
the lightness of what would be obtained if its nodes were
interpolated on their full neighborhood and not only based on
neutrals (Fig. 4c).
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Even though the color color processing examples given above
were in the context of RGB-indexed color separation LUTs, and
therefore applicable to either conventional colorant-channel
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imaging pipelines, or the HANS pipeline [10] using PARAWACS
halftoning [11] (branded as HP Pixel Control), their resulting level
of performance has distinct differences between the two cases.

While the color color interpolation algorithm tends to work
well for both imaging pipeline types, the smoothing performs
distinctly better when applied to HANS. E.g., Fig. 5 shows a
challenging purple-gray-yellow transition printed with a color
separation that has been smoothed. Here the image on the left shows
the result for a HANS pipeline, while the result on the right was
obtained using an ink-channel pipeline using etror diffusion
halftoning. Note that both separations use the same ink amounts at
the LUT nodes, yet the former specifies NP area coverages while
the latter deals only with ink amounts. Looking at the smoothness
of the two prints, it can be seen that the HANS transition is much
smoother, while in the ink-channel case dark bands appear either
side of the neutral axis.

Ink amounts
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To understand the reason behind this disparity, Fig. 6 shows
what happens both in the ink-channel and HANS domains as a result
of smoothing. For a fair comparison, color separations were set up
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where the ink use at each node is the same in the ink-channel and
HANS cases. The top of the figure therefore shows ink amounts
used to transition from red, via gray to cyan, i.e., along one of the
RGB LUT’s diagonals, both before (left) and after (right)
smoothing. While the picture is the same here for the two pipelines,
the differences become apparent when the two are analyzed in the
Neugebauer Primary (NP) domain. In the case of the HANS pipeline
this is directly the control domain (i.c., NP area coverages are
specified at LUT nodes and transitions between LUT nodes are
computed in area coverage terms), while in the ink-channel
pipeline’s case NP usage is an indirect consequence of using error
diffusion on ink-channel data.

For both pipelines though it is possible to count how many NPs
end up being used once color separation and halftoning are applied,
and this is shown in the bottom half of Fig. 6. Looking at the state
before smoothing, it can be seen that the HANS pipeline uses far
fewer NPs per node (les that 10 at most), while the ink-channel,
error-diffused pipeline uses many more (over 30). What also differs
is how the number of NPs changes from one node to the next. Here
HANS has a factor of 2-2.5, while in the case of the ink-channel
pipeline changes are up to 8x in the number of NPs used from one
node to the next. This means that the ink-channel pipeline needs to
transition between patterns of greater difference than the HANS
pipeline.

When smoothing is then applied to both HANS and ink-
channel LUTs (resulting in the ink use at the top right of the figure),
the difference between the two pipelines becomes even greater.
While the HANS pipeline now needs to cope with node-to-node NP
differences of 5x, the ink-channel pipeline’s nodes differ by a factor
of up to 15x. Another way to look at this is to note that that HANS
pipeline’s nodes barely exceed 20 NPs per color, while the same ink
amounts, when halftoned using error diffusion applied to ink
channels, result in close to 60 NPs.
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In summary, the aim of this paper has been to present two color
processing methods that are fundamentally derived from it being
color coordinates that are processed instead of generic spatial ones.
This allows for choices to be made on the basis of lightness and hue
when performing color interpolation, instead of analytical cube
tessellations or the volumes of circumspheres. For smoothing, a
color color processing approach allows for locations within a color
gamut and the question of whether a node represents a neutral color
or not to be key factors. Such color considerations result in look-up
tables that are better behaved, where the purity of certain transitions
is preserved and where smoothness is delivered without a gamut
sacrifice.

The methods presented here are used in the HP Designjet Z6
and Z9" printer series as part of their HP Pixel Control (HANS)
imaging pipeline. In terms of future work there is potential both to
apply “color color” processing to other color workflows and
pipeline processes and to adapt it to controlling properties other than
color.
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