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Abstract
OLED display technology is gaining popularity among ori-

ginal equipment manufacturers (OEM). Production costs are de-
creasing, making this technology more readily available. OLED
displays have a better contrast, no backlight and the ability to es-
timate the contribution of each pixel to the power of the display.
This feature allows to experiment spatial algorithms to improve
the image quality in relation to its power consumption.

In this article we present aframework to evaluate the peifor-
mance of spatial algorithms such asjust noticeable distortion and
saliency maps on OLED displays. We introduce a comprehensive
power model that takes into account each pixel value and the dis-
play screen brightness. We validate the effectiveness of this model
by implementing a power reduction method based on power sav-
ing and perceptual quality metric.

Introduction
OLED displays have several advantages over LCD displays.

They offer a better contrast, deeper blacks - a black pixel is not
emitting any light - but have a peak of energy consumption to
display bright images. Unlike LCD displays they do not have
back-light system - a fix energy cost for those displays - and
therefore the cost of displaying an image is content dependent.
Actually below a certain average picture level (APL) around 65%
- where 100% means white image - the same image displayed on
an OLED display cost less than on a LCD display (at the same
display resolution and comparative hardware).

The life time (LT) of an OLED display is shorter than of an
LCD display. The LT value of a display is expressed in hours of
usage and describes the amount of time for this display to have
its maximum intensity reduced to X% of its original maximum
intensity (LT50 means 50%). The LT evaluation of an OLED dis-
play is complicated because it is related to the type of usage and
the content displayed [7, 6, 8]. It is, however, generally accepted
to say that limiting high intensity should help the display to last
longer or avoid burned pixels. The challenge being to reduce the
pixel values - globally or locally in the image to be displayed -
without loosing information as image quality degradation is not a
solution.

It's important to distinguish between types of OLED dis-
plays. In this work we are focused on predicting the power con-
sumption of mobile displays such as smart-phone, ROB OLED
devices that rely on battery to function, we are not presenting a
model for TV display where often ROBW OLED technology is
chosen.

Among the three color channels (red, green and blue) the
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blue channel is the one that at equivalent digital value requires
more energy to emit light, so dimming the blue pixels arbitrarily
or perceptually can be interesting [8] to reduce over energy usage
of this channel. Following that concepts spatial algorithms can be
developed where the dimming can be applied on all channels, e.g.
aiming at reducing image intensity within perceptual threshold.

There are some redundant spatial and temporal information
existing in the image and video frames that are not perceivable by
the human visual system (HVS) [9]. For instance, we can alter the
luminance of a pixel while keeping the perceptual quality of the
image, and in videos, we can adapt the frame rate by predicting
the similarity between consecutive frames [10]. Since the power
cost of an image in an OLED display depends mainly on the con-
tent and the ROB values of the individual pixels, we can reduce
the power consumption of the displayed images by modifying the
pixels values in such a way that the resulting image would be in-
distinguishable from the original image.

These perceptual redundancies are mainly due to the psy-
chophysical properties of the HVS and the mechanisms of visual
attention [11]. The first concept is related to the fact that the hu-
man eye cannot detect changes in the visual stimuli below the
just noticeable distortion (JND) threshold due to the spatial and
temporal sensitivities of the HVS [12]. JND has become a very
promising way to model the perceptual redundancies in visual
content and JND models have been applied to a variety of percep-
tual image and video processing algorithms such as compression,
visual watermarking, and perceptual visual quality.

The second concept is related to visual attention which is the
set of mechanisms of the human visual system that optimize and
control the search processes inherent in vision [13]. By select-
ing only spatial regions of interest, it effectively solves the bottle-
neck of limited resources in the human visual system [14]. Thus,
understanding the underlying mechanisms of the visual attention
has become a fundamental problem that has been studied by seve-
ral scientists working on different domains, such as neuroscience
[14], psychology[17], and computer vision[15]. Researchers in
computer vision have focused in both developing computational
models to simulate the human visual attention process[16] and de-
tecting salient regions in a scene[15]. Since a visual saliency map
provides a measure of how important a subset of contents from a
scene to the human visual system, it helps on reducing the scope
of visual processing and saving computational resources.

Previous studies [19, 20] demonstrated that visual saliency
has an effect on the spatial and temporal sensitivities of the HVS.
For instance, JND thresholds in non salient regions are higher than
in salient regions [19]. This means that visual saliency acts as a
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In an attempt to be more generic about the DPCM, we want
to have a solution under the following form:

Figure 1. Power consumption of ramps of pure red, green, blue, gray

(in black) and simulation of the gray ramp with model in 1 for scBr = 1 (in

magenta) for the BLU Vivo device. We can observe the over-simulation of

this model, the predictions are higher than the measurements.

cost = FUN(image, seBr) (2)
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modulation factor for the IND thresholds, and taking into account
its effects provides a more accurate IND model.

Also it's important to note that we are focusing on modeling
the cost at display level, what we call display cost and that we
do not take into account the image processing cost before display.
Modifying images to improve their quality and visibility using a
spatial algorithm is obviously content dependent and has a sepa-
rate processing cost that will need to be taken into account when
this algorithm will be applied in real time.

In this article we present an applied research framework [2]
to evaluate the power consumption of OLED display as well as a
general concept for developing spatial correction algorithms that
benefit from this model. Novelty for the model comes from ta-
king into account the ROB pixels values and the display screen
brightness (seBr) as input. The seBr is the display parameter that
defined the maximum display intensity, e.g this parameter will
be modified by simple auto-brightness algorithm. Most of the de-
scribed OLED power consumption models are based on assuming
a display functioning at maximum seBr = 1 and independence be-
tween the color channels [5, 3].

This paper is organized as follows, the first part introduces
the experimental steps to build the display power consumption
model and its evaluation. The second presents the general form
of a spatial algorithm and how to evaluate its performance with
the display power consumption model (DPCM). Finally an expe-
riment is ran over a series of images where we compare the dis-
play cost as well as the visual quality of algorithms aiming at
reducing the display power consumption.

where image is the image content in pixel values and seBr the
screen brightness as a global parameter, both E [0, 1]. More pre-
cisely the power consumption cost is the sum of contribution of
each pixel Pi = (ri,gi,bi) at a given seBr:

where N is the total number of image pixels. This later proposed
DPCM doesn't assume channel independence. The power estima-
tion of a RGB pixel combination and a given seBr is then solved
using interpolation tools in 4 dimensions for which we use Python
programming.

Measuring the power consumption of an image
To measure the power consumption of an image on an OLED

display we used an high voltage power monitor (HVPM) from
Moonson Solutions Inc. [5]. We have conducted our measure-
ments on two devices (BLU VIVO and Ooogle Pixel) having
OLED display technology and running Android OS.

As we can't be sure to measure only the display cost, we need
to put those devices in flight mode, stop all non-necessary appli-
cations running [4, 5] in order to have repeatable measurement
sessions and to limit the background cost to the image viewer ap-
plication.

The battery of the device is directly connected to the HVPM,
itself connected to a computer where we can read the power con-
sumed by the display device when an image is displayed.

Following those steps we can define an offset cost when we
measure a black image. In our model a black image has a lumi-
nance of 0 lux and a power consumption of offset m W.

Display power consumption model
The model approach is to sum up each pixel contribution of

a given image. Let's start by improving the existing model by
taking into account different seBr values, therefore an image cost
can be expressed as follows:

N N N
cost = [funR(ri,seBr)+ [fUllG(gi,seBr)+ [fUllB(bi,seBr)

i=1 i=1 i=1

(1)

where each function fUllR, fUllG and fUllB describes the relation-
ship between pixel values ri, gi, bi and their respective power con-
sumption. This requires to measure a few pixel combinations of
pure red, pure green and pure blue as it is described in [5,3]. The
same operation needs to be repeated for each seBr we want to
make simulations for.

At this stage channel independence is still assumed and Fi-
gure 1 illustrates the limitation of this approach as the cost predic-
tion of a gray-scale ramp is not the summation of pure red, pure
green and pure blue ramps. We can see that the channel inde-
pendence assumption overestimates the display cost of an image,
unless the test images are almost monochromatic red, green or
blue.

Figure 2 illustrates how interpolation technique can be used
to predict the cost of gray-scale images where each pixel will have
the same amount of red, green and blue. It has obviously limita-
tions as we want to make power consumption prediction for any
types of content. Therefore we decided to add more reference
points to feed our interpolation solution and Figure 3 reveals how
we are sampling the ROB cube to add those missing points.

N

cost = [full(ri,gi,bi,seBr)
i=1

(3)
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Gray colors Vs screen brightness

Figure 2. Visualization of the power measurement for a Google Pixel device

in mW of gray pixels (on each point red, green and blue pixels have the same

digital value) from black to white for different scBr.

Figure 3. Visualization in 3D of the RGB points for the interpolation with

non-regular sampling, points laying on the colored lines in red, green, blue

and black.

Building and using the model
To obtain accurate estimation cost we need to take into ac-

count various combination of red, green and blue pixels and as
well several seBr values. That is to say we need to sample the
RGB cube and repeat those measurements for several seBr values.

This measurement procedure is time consuming. We need to
display all the reference images at the desired seBr, each measure
takes at least 30s until the device has reach stability. This opera-
tion is repeated at least three times per sample. Figure 2 presents
the measurements of gray pixel combinations from black to white
and seBr from 0 to 1 for a Google Pixel device. The offset has
been removed from the measurements such that a black image
has consumption cost of 0 mW.

Once we have a set of reference data points in 4D we
can make use of fitting methods. Each image pixel becomes
an entree point [r,g,b,seBrV for which we want to know
the power cost estimation using Eq. 3. We use the function
scipy.interpolate.griddata from the Python module SciPy [1] to
perform this operation.

Interpolation from non regular sampling
This interpolation only uses [17 * 5] reference points in 4D

space, axis of pure red, pure green, pure blue and pure gray as
presented in Figure 3 in RGB space for a given seBr value. At
each point is associated a measured power consumption in mW.
17 points in the RGB cube times five seBr= [0, 0.25, 0.5, 0.75, 1]
values for a total of 85 reference points.

These data are providing reasonable accuracy for our con-
figuration test such as image content representing a typical web-
page or social media content, it's usually the combination of very
saturated colors (i.e. pixel on the RGB cube edges).

Interpolation with regular sampling
This should give much better accuracy than the previous ap-

proach, but it requires to take many more measurements. Ideally

if all parameters R, G,B,seBr can take n different values, all com-
bination of them means to measure n * n * n * n images. If n = 5
then we have 54 = 625 reference points. Figure 3 illustrates how
we will sample the RGB cube with the colored dots with the as-
sumption that the relationship is linear.

DCPM comparison
An experiment was conducted where the power consumption

of 6 images at 6 differentseBr = [0.39, 0.58, 0.68, 0.75, 0.78, 1]
were measured and compared to three DPCMs: one assuming
channel dependence with regular sampling, a second assuming
channel dependence with non regular sampling of the RGB cube
both following Eq. 3 and a third one assuming channel indepen-
dence following Eq. 1.

Measurements and simulations correspond to a Google Pixel
device having [1280x720] for maximum resolution. The images
were resized to the display resolution, in case of the image hasn't
reach the exact display dimension, a black pixel border was added
to reproduce what the display image viewer will do on the device
when displaying full-screen.

Results for this comparison are presented in Figure 4. The
first three groups - left to right - of bars are for natural content
images, groups 4 and 5 for social content type of images and
last group to the right corresponds to a very dark image. In the
simulation case using the model as in Eq. 3 is closer to the mea-
surements. It slightly over predicts the power consumption but
remains acceptable for our use. The distortion we observed is
probably due to the missing reference points in the RGB cube.
Having all edges measurements and not only the axis colored in
Figure 3 should improve the model performances.

Spatial algorithm
In this section, the proposed application framework is pre-

sented. First, we describe the spatial algorithms to model the per-
ceptual redundancies of the HVS. More specifically, JND model-
ing in the DCT domain and the pixel domain will be introduced.
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Luminance adaptation (LA), and Contrast Masking (CM) [22].
The CSF is a measure that characterizes the human spatial vision
and is usually determined by estimating individual thresholds for
patterns with different spatial frequencies expressed in cpd (cy-
cles/degree) [27]. To take into account the effect of the spatial
CSF, the image luminance channel is divided into N x N blocks
and a base threshold tBase is estimated.

The factor tBase is for the intensity value of 128. To account
for the fact that the visibility thresholds in very bright and very
dark regions are lower than in the medium gray region, the base
JND is multiplied by a modification factor !La [28].

Contrast masking refers to the reduction in the visibility of
one visual signal in presence of another one [29]. The masking
effect is strongest when the two signals are of the same location,
orientation, and spatial frequency. The sensitivity of the HVS to
distortions is generally lower in the texture or disorderly region
and higher in smooth or orderly regions. In [22], contrast masking
is obtained by introducing an orientation regularity term into the
block classification.

The final JND threshold is obtained by combining the base
threshold tBase, the luminance adaptation factor !La' and the con-
trast masking factor Fern

J
img 6img 5img 3 img 4

h""",
img 1

uoo

Figure 4. Measurement and simulations by group of four bars per image,

left to right: measurement, simulation with channel dependence regular sam-

pling, simulation with channel dependence non regular sampling and simula-

tion with channel independence. From top to bottom, yellow to green colors

correspond to low to maximum scBr. Image 1 to 3 represent natural images,

image 4 and 5 internet browsing type of content and image 6 a natural dark

image.

Measure Vs simulation
of OLED display power consumption

of Google Pixel device

where a is a summation effect factor determined by experiment.

Figure 5. Basic framework for the evaluation of power consumption and

image quality of spatial algorithm on OLED display.
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Pixel based JND
JND models in the pixel domain generally consider two main

factors: luminance masking and contrast masking. In [23], an
image-domain JND model is devised with the nonlinear additivity
model for masking (NAMM). A control gain reduction parameter
that accounts for the overlapping effect in masking is introduced
that allows for the co-existence of luminance masking and con-
trast masking. A further improvement of this model was done by
[24] and [26]. In [24], aJND model based on the free energy prin-
ciple is introduced, which decomposes an image into orderly and
disorderly content. An auto-regressive model is used to predict
the orderly regions Indo(x), and a disorderly concealment effect
is devised to better estimate the JND thresholds of the disorderly
regions Indd(x). The overall JND threshold is calculated as:

Second, we explain how saliency information can be incorpo-
rated. Finally, the approach for optimizing OLED power con-
sumption will be presented. A diagram of the general framework
is presented in Figure 5.

JNDModeis
The Estimation of the JND thresholds is generally performed

by modeling the spatio-temporal relationship between the human
visual sensitivity and the masking effects. There have been several
JND models developed in the last decade, which can be classified
into two main categories [25]: sub-bands based and pixels based
depending on whether the JND threshold are obtained in the com-
pressed domain or directly estimated for each pixel in the image
domain.

DCT based JND
Typical JND models in the DCT domain consider three im-

portant factors of the HVS: contrast sensitivity function (CSF),

where C is the gain reduction parameter due to the overlapping
between Indo (x) and Indd(x).

Recently, Wu et al. [26], improved the spatial masking Ms(x)
by introducing a pattern complexity factor which is measured as
the sparsity of the gradient orientations histogram. By taking into
account the luminance adaptation effect ha (x), the final JND is
calculated using NAMM as:

piXJnd(X) = ha (x) +Ms(x) - C x min{ FLa(x), Ms (x) } (6)

Visual saliency factor
Visual saliency is the measure of propensity for drawing vi-

sual attention, and salient objects are those that stand out the most
in a scene. Possible factors that contribute to determine saliency
include color, contrast, size, orientation, motion, depth, and con-
text [18]. Visual saliency was originally brought up by psycholo-
gists in the study of attention, while the concept of saliency map
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Figure 7. This figure presents the results of two simulations for both devices

at scBr = 1. The X-axis stands for Average Pixel Level and the Y-axis stands

for the DPCM output in mW We can observe how the y parameter has an

impact on the image display cost as the diamonds and circles are shifted

toward bottom left direction.
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Figure 6. Visual results showing the quality of the power reduction method.

Left column: the original image. Middle column: processed image for y = 1,

power saving: 8.01% for seBr = 1 andSSIM =0.98. Right column: processed

image for y = 2.5, power saving: 19.4% and SSIM = 0.93. The savings are

for the Google pixel.
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was introduced by Koch et al. [30] and later implemented by Itti
et al.[16] who proposed a computational model to estimate the
saliency map by defining image saliency using central-surrounded
differences across multi-scale image features. Since this seminal
work, there have been a continuously increasing interest in this
field, and various approaches have been proposed.

As mentioned earlier, the saliency information could be used
as modulation factor to adjust the JND thresholds inside and out-
side of the salient areas in images. Moreover, [19] showed that
the sensitivity with spatial frequencies is elevated by visual atten-
tion. To take into account those effects, we follow the methodol-
ogy developed in [31] and [32], the spatial frequency Pi,j and the
JND thresholds in the DCT domain detJnd are modified using two
functions fp (sn, Bp) and fdetJnd (sn, BdetJnJ [31, 32]:

Pt,j = Pi,j X fp (sn, Bp) (7)

detsJnd( B) = detJnd x fdetJnd (sn, BdetJnd) (8)

where Sn is the normalized saliency map of the nth block.
The parameters B = (Bp, BdetJnd) of the two modulation func-

tions fp (sn, Bp) and fdetJnd (sn, BdetJnJ can be determined experi-
mentally as in [31] or are obtained through an optimization frame-
work [32].

Once the JND thresholds in the compressed domain have
been estimated using equation 4 or 8, a conversion to the pixel
domain is necessary in order to use the JND map in the power
reduction procedure. The authors of [33] provide an approach to
estimate the JND thresholds in the pixel domain from the JND
thresholds in the DCT domain

piXJnd(X) = IDCT(det~nd) (9)

where det~nd is given by:

I~CbC, = (Y -yxpiXJnd(X),Cb,Cr) (11)

where y? 0 is a parameter that controls the visual quality of the
resulting image. Choosing 0 < y ::; 1 would result in an image
that is perceptually indistinguishable from the original while us-
ing less power since its luminance component is reduced. Choos-
ing y> 1 allows for a better power saving but with an acceptable
loss of quality.

Device y 881M saving mW (%)
scBr = 0.5 scBr = 1

Google Pixel 1 0.9835 6.45 7.19
2.5 0.9359 16.09 17.7

BLU Vivo 1 0.9835 4.89 5.26
2.5 0.9359 11.76 12.6

Experiment and discussion
In the following experiment we want to evaluate the power

consumption of images before and after being processed. Two
test cases are simulated where the parameter y was set to 1 and
2.5, the screen brightness to seBr=O.5 and full seBr = 1.

We run the experiment on 40 images simulating the display
cost on both Google Pixel and BLU Vivo devices. The Table 1
presents the results showing how much is saved in term of dis-
play cost in average and how its quality is conserved or decreased
depending of the approach chosen. The images chosen repre-
sent different type of content, from natural image scenes to inter-
net browser-like type of images simulating typical used in smart-
phone.

Figure 6 shows a visual example comparing the original

The table above presents the average performances of our
experiment. Not surprisingly higher r value means higher
power saving but loss of image quality. The differences be-
tween the two devices can be explained by their different
power consumption properties.

(10)
IDCT(Y) I? detJnd
otherwise.

det~nd =
{~gn(DCT(Y) )detJnd

Power reduction method
In this section, the method of reducing the image power cost

is detailed. As mentioned previously, the power cost of display-
ing an image in an OLED display depends mainly on the display
screen brightness and the RGB values of the individual pixels,
more specifically on the image luminance component Y. More-
over, the JND threshold for a specific pixel provides a measure of
how much we can change its luminance to have a resulting image
perceptually indistinguishable from the original.

Let I be the original color image. First, we estimate the JND
thresholds in the pixel domain piXJnd(X) using equations 5, 6, or 9.
Let hcbc, = (Y, Cb, Cr) be the original color image in the YCbCr
perceptual color space, where Y is the luminance component, Cb
and Cr are the chroma channels. Given piXJnd (x), a resulting color
image is generated by subtracting piXJnd(X) from the luminance
component:
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Figure 8. This figure presents the power saving and 881M results versus

the test images on the X-axis. In the two above bar charts, each image power

saving is representing by a pair of overlapping bar chart: light and dark green

for scBr= 100%, JND = 1,2.5, yellow and red for scBr= 50%, JND = 1,2.5.

Only two bar chars overlapping for the 881M per image as the same image

is displayed for both scBr values tested.

image with the processed images by the power reduction method
using the JND model from equation 4 for two different values of
the control parameter y. Figure 7 confirms that applying spatial al-
gorithms that aim at decreasing the luminance will reduce the av-
erage picture level (APL) and therefore decrease the image power
consumption. Non modified images are displayed on that graph as
small colored stars. After the algorithms being applied their new
cost are displayed as circles or diamonds with their size being
function of product power consumption times structural similar-
ity (SSIM [21]) score. We can observe that all costs are shifted to
the left and down meaning a global reduction of the display cost
for all types of images.

Figure 8 is a good additional information to evaluate the
overall performances of our spatial algorithms. We can more ea-
sily spot the outliers and verify with our database of test images.
For example in the three sub-figures we can observe that image
3, 5 and 8 on the x-axis have good potential power saving but a
certain loss of quality according to the SSIM score. Those images
represent a mixed of natural and purely graphical or textual con-
tent, i.e. internet page browsing type of content. This information
can help us to adapt the strategies to decrease the display power
consumption depending of the content displayed.

Conclusion
We have presented a new model for evaluating the display

power consumption of an image on OLED display. This display
technology allows to estimate the display cost of a given image by
summing the contribution of all pixels. Our multi-dimensional ap-
proach doesn't assume independence between the color channels
which in addition to the seBr values gives reasonable accurate pre-
dictions. This later aspect is very interesting because it allows to
investigates more complex algorithms such as spatial algorithms
and estimate potential improvement on the display power con-
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sumption. Another and not negligible aspect is the gain of time to
obtain this information as we don't need to measure each image.
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