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Recovering a Color Image from its Texture
Graham Finlayson, Seth Nixon, University of East Anglia; Norwich, United Kingdom

Figure 1. Transformation of a neighborhood into its LBP representation.

This number is then read clockwise starting from an arbitrary
point. To obtain rotational invariance this number is shifted, with
circular wraparound, to its maximum value. For reference the
LBP in Figure 1 would be 110010 10, or 202 in decimal. This can
be expressed as

Background
Local Binary Patterns

An LBP is a binary string which describes a neighborhood
of pixels. It is formed by comparing a central pixel with its neigh-
bors, if the neighbor is greater than the center it is assigned 1, if
lesser it is assigned O.

There are many extensions to LBP. One such is the Sudoku
representation. Rather than encoding relationships to a central
pixel pixels are ranked in a 3x3 neighborhood (using numbers 1
through 9). By construction the Sudoku grid has the same mono-
tonic invariance as LBP but is a richerfeature set [11].

Both LBP and Sudoku deliberately remove greater or lesser
amounts of magnitude information. This can be considered as re-
moving unimportant intensity representation in favor of a more
structural description. The question we ask is: given the per-
channel textural information for an image; how well can we re-
cover the color image? We present results for two methods: one
previous art known as the Minimum Contrast (MC) algorithm
[12] and our own proposed method called Quadratic Reconstruc-
tion (QR). We show that essentially the LBP or Sudoku texture en-
coding (at a pixel) specifies the intensity relationship that pixels in
a proximal region need to satisfy. Over the whole image the effect
of these local relations propagate. We demonstrate how - using an
optimization technique called Quadratic Programming - we can
recover the minimum norm image that satisfies the constraints.
Compared to the prior art MC method, our new QR method pro-
vides a much better recovery.

The rest of this paper is organized as follows: First we will
detail the canonical LBP and Sudoku representations and their
transformation into feature vectors. Secondly we shall detail the
MC and QR algorithms. Finally experiments are presented.
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Abstract
Texture features can be considered as methods for encoding

an image: taking pixel intensities or filter responses and form-
ing them into a description which can be used to solve problems
including recognition and matching. In this paper we are consid-
ering the inverse problem: given a textural representation of an
image, how well can we recover the original.

We show how the LBP method encodes comparative relation-
ships between pixels and relative to these relations we can recover
an image with our new method. We extend the recovery method
to work with the Sudoku texture representation (an extension of
LBP). We show that this method produces a reconstruction more
correlated with the original image than the prior art.

Introduction
Texture has been studied in computer vision for over 50

years. Important methods that have been developed include co-
occurrence representations [1, 2, 3], and representations relevant
to human vision including Gabor Filters [4, 5, 6]. Mostly, the
goal of a texture representation is to enable recognition however
the structural aspect of texture is also important. We might ask,
for example, how easy it is to synthesize a texture from an exem-
plar. An important work here is that of Efros et al. where given
a seed image or image patch they "grow" a texture which is visu-
ally similar [7]. Particularly relevant to this paper we might ask
how much of the original image can we recover from the texture
representation.

This last question is interesting. Image processing is full of
examples of dual representations. For example it is well known
that an image and its Fourier transform are bijectively related.
And, of course, some image processing tasks are better performed
in one representation than the other (e.g. fast convolution should
be carried out in Fourier space) [8]. We propose that a measure
of texture "as a representation" is the extent to which it "encodes"
the original image.

Image reconstruction from texture has many applications.
An example is Cryptography: plausibly an image's texture fea-
tures could be transmitted and then decoded elsewhere off-line
to recover the image. Another example would be analysis of a
texture representation. The reconstruction would form a visual-
ization of the knowledge encoded therein.

Local Binary Patterns (LBP) are one of the most success-
ful and commonly used texture representations. In their simplest
form an LBP feature is a binary string which encodes whether
the brightness at an eccentric pixel is more or less than (lor 0)
than the center. These 1s and Os are read out to form a binary
number which can be read as an integer. Typically these numbers
are grouped (e.g. histogrammed) to form a feature vector for in-
dexing. The key strengths of LBP are its invariance to monotonic
changes in image brightness (by scaling, gamma functions or tone
mapping) and its robustness to rotation [9, 10].
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Figure 2. Transformation of pixel intensities to rank values.

This is read clockwise as an integer starting at the right-most
pixel with the central pixels rank appended to the end.

This can be expressed as

The Sudoku texture representation
Sudoku patterns are formed in a similar way to LBP however

instead of using just the central pixel for comparisons all pixels
in a neighborhood are compared simultaneously to form a rank-
ordering.

where the RANK operator assigns the rank to pixel P in
neighborhood P. This number is then shifted with circular wrap
around to its maximum value to achieve rotational invariance.
The pattern in Figure 2 would be 786139254 and then shifted to
925478613. This process is applied to every pixel in an image
to form a "Sudoku" image. Pixel equality is also incorporated
into the representation. This allows the description to more effec-
tively account for near uniform neighborhoods. One strategy for

Image recovery
While the methods detailed above go as far as to form fea-

ture vectors, we would like to take a step back and consider just
the pattern in 3x3 neighborhoods. That is we just use the raw
LBP pattern at a pixel. Sometimes these raw patterns are called
"Glyphs" and we use this nomenclature here. This glyph retains
all of the structural information of the neighborhood while still
preserving each pixels spatial location. This is important as once
the patterns are rotated the positioning of each pixel becomes
near-arbitrary making recovery a significantly more complex task.
The following two methods, Minimum Contrast and Quadratic
Reconstruction, use these glyphs as the basis for their reconstruc-
tions. The recovery pipeline is shown in Figure 3.

implementing equality is to use ranks for the unique values in a
neighborhood. So, if 2 pairs of numbers in a 3x3 neighborhood
hold the same value then the maximum rank would be 7. And,
two of the ranks up to 7 would be repeated (indicating equality).

Empirically in [11] it was found that the probability of dif-
ferent Sudoku numbers was very non-uniform. So, before aggre-
gating the Sudoku numbers over an image each Sudoku number is
'tone mapped' such that the probability is uniform (across the set
of all Sudoku numbers). In effect histogram equalization is used
as a processing step.

Now, Sudoku numbers are histogrammed as before and the
histogram of tone-mapped features is used to drive recognition. In
[11] it was shown that the Sudoku representation delivered better
texture indexing compared with LBP.

Minimum Contrast
The minimum contrast algorithm was proposed in [12] as a

way of inverting the local binary pattern glyph. The primary goal
was two-fold, firstly to provide a recognizable reconstruction of
an input image and secondly to show what information was lost
in the LBP conversion.

To reconstruct an image using this method first consider the
4x3 neighborhood in Figure 4

If this is deconstructed into its corresponding LBP patterns
we end up with 2 glyphs centered around rows, columns 2,2 and
2,3 as in Figure 5.

If we examine first neighborhood a we can see that the top
left pixel is less than the center, as defined by the O. This means
that the central pixel of a must be at least 1 pixel intensity greater
than the top left. We can also see that the bottom right pixel is
greater than the center, as defined by the 1. This means that the
bottom right of a is at least 1 pixel intensity greater than the cen-
ter; and transitively at least 2 pixel intensities greater than the
top left. If we then move to examine neighborhood b we can see
that the central pixel of b is greater than the bottom central pixel,
which corresponds to the bottom right pixel of a, and that the
bottom right pixel of b is greater than the center. From this we
can deduce that the bottom right of b is at least 5 pixel intensities
greater than the top left of a, or in other words the minimum con-
trast between the two pixels is 5. Using this series of greater than
relationships we can express this as a path, see Figure 6.

It is worth noting that this is not the longest path available
which reaches the bottom right. However this is the longest ex-
plicit path defined by glyphs a and b. The actual longest path
could become explicit if the glyph around row, column (1,1) were
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II

S(P) = [RANK(pi) * lOi
i=1

p
LBP(Np) = [(Pi> PC)2(i-l)

i=1

where N is the neighborhood, P is the number of pixels and
Pc is the central pixel. Once this process has been applied to
every pixel in an image a histogram of all the resultant integers
forms a feature vector. Two textures are deemed to be similar
if their histograms match closely to one another. Matching can
be performed using a distance metric, e.g. chi-squared [13] or
Histogram Intersection [14]. This representation has two main
advantages: firstly, it is invariant to any monotonic changes in the
gray-scale and secondly it is rotationally invariant. The reader
can apply any increasing function to the example given in Figure
1 and observe that the same LBP will result. The LBP feature is
also very computationally efficient; the only calculations needed
are inequality tests and for an eight pixel neighborhood there are
only 36 rotationally invariant 8-bit LBPs.

An important addition to the LBP was the concept of unifor-
mity. Statistically up to 95% of patterns in an image contain two
or less 0 to 1 transitions. These LBPs are denoted uniform and are
used to form the histogram with the remaining patterns grouped
into one bin. This significantly compresses the feature length such
that each histogram now has P + 2 bins, where P is the number of
points in the neighborhood.
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Figure 3. The image recovery pipeline.
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Figure 4. A neighborhood of pixels.

image in which the LBPs match exactly to the original.
We extend this process to use the Sudoku feature. In a Su-

doku glyph we have the rank ordering of a neighborhood ex-
pressed as the numbers 1 to 9. This means that if one pixel is
ranked 9 and another pixel is ranked 2 the minimum intensity dif-
ference between those two pixels is 7. To incorporate this into
the minimum contrast algorithm when we explore a greater than
relationship we increment the path length by the absolute rank
difference between the two pixels. This produces an image where
the Sudoku codes match closely to the original image. For an ex-
ample of both LBP and Sudoku minimum contrast reconstruction
see Figure 7.

0 0 1

1 C2,2 1

1 0 1

0 0 1

0 C2,3 0

0 0 1

Original LBPMinimum Contrast Sudoku Minimum Contrast

Figure 5. LBP Transformations of Figure 4.
Figure 7. Examples of LBP and Sudoku minimum contrast reconstruction

on MATLABs "Cameraman. tit".

part of this example.
To expand this process we must start at every local minimum

in an image and recursively generate every possible greater than
path through said image. In each pixel location we store the length
of the longest path to that pixel. The path length is defined as the
pixel brightness in the reconstructed image. The final result is an

Figure 6. One greater than path through 4.

242

33 85 197
Quadratic Reconstruction

Our proposed method forms the problem in terms of
quadratic programming. If we consider an image to be a vector
x with the pixels as variables Xl ... Xn• For LBP we can formulate
a set of linear constraints C] ... em such that each pixel Xi is con-
strained to be at most 1 greater or lesser than its neighbors (while
enforcing positivity).

The difference of 1 is drawing attention to the fact that we
have an ordinal relationship e.g. that the central pixel is larger
than one neighbor. For a neighborhood Yl ... Yn with central pixel
Yc the weakest way we can interpret this circumstance (assuming
an image is encoded using integers) is that YP - Yc ::; 1 where YP
is the larger pixel.

For a single 3x3 region and its LBP coding (its glyph) we
have 8 of these kinds of relations. And, of course we know all
pixels Xl .. 'Xn ::::0 . See Figure 8 as an example of how we turn a
glyph in to a set of inequality relations.
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Figure 9. Examples of quadratic reconstruction on "Cameraman. tit".

Figure 8. Transformation of an LBP glyph into its associated constraints.

In the above equation we are explicitly writing in matrix
form all the inequalities that arise from every LBP glyph. Now
we minimize:

Now we must consider how to recover an image given
these inequalities. Our key insight is to employ a method called
Quadratic Programming (QP). Per pixel we have 8 inequality re-
lations where each pixel has a value between 0 and 255 inclusive.
Let Xi denote the ith pixel in an image X (understanding that the
pixel is in a a 2D grid, but for our purposes it is useful to think of
there being n pixels in an image and Xi is the ith one). Now for
neighboring pixels we have the linear inequalities as per Figure 8.
But, thinking of the image as a vector of pixels these inequalities
now refer to the ith and jth pixels where (i and j will be far apart).

We construct a large matrix A such that in each row we en-
code a single inequality relationship. So, in terms of our example
the kth row at position i of A could have 1 and at position j a 0 if
Xi > Xj. We have a corresponding vector B (which is a vector of
Is). Now we can write

of LBP and Sudoku. By finding a least squares fit between the
original image and the new image we bring the QR pixel intensi-
ties more in line with that of the original image. For examples see
Figure 10.

SudokuQuadratic
SudokuQuadratic Reconstruction with Isotonic

Original Reconstruction Regression

Of course, in the texture representation we do not know the
original image so cannot really carry out Isotonic Regression.
But, plausibly a tone curve could be stored along with texture
glyphs which could be deployed if a reconstruction was neces-
sary.

Finally, all the discussion to this point has been for gray-
scale images. For the purposes of this paper we assume we have
texture glyphs (Sudoku or LBP) calculated for all 3 channels of
an ROB image. The color reconstruction problem then solves the
QP optimization (or minimum contrast) once per color channel.

Figure 10. Example of Isotonic Regression on a Sudoku Quadratic Recon-

struction of MATLABs "Cameraman.tif".

(3)Ax?B

Tone curve mapping
As a further processing stage in our QR pipeline we perform

tone mapping on the calculated images using Isotonic Regression.
This finds a least squares fit Y to a vector X based on a known quan-
tity x'. This is subject to the constraints Yi ::; Yi+l [15]. This en-
forced monotonicity retains the illumination invariant properties

We solve for the above using QP. QP is guaranteed to find
the global optimum solution.

For an LBP glyph there are 8 comparisons between a central
pixel and its neighbors. As such there are 8 constraints defined
per pixel. Each pixel appears in 9 different neighborhoods so the
transitive relationships between neighborhoods in an image will
naturally be preserved.

Intuitively we can apply the same methodology to the Su-
doku pattern. But, now there will be more constraints. Indeed
in a 3x3 neighborhood the total number of binary comparisons
possible is (~) = 36. Forming these as above gives us an exact
representation of the Sudoku encoding and solving with QP re-
mains the same.

In Figure 9 we show examples of Quadratic Reconstruction
(QR) using LBP and Sudoku information on MATLAB's "cam-
eraman" image.

minllxlls.t.Ax? 1 (4) Experiments
For all of our experiments we employ the pipeline detailed in

Figure 3. To compare our reconstructions with the original image
we use the Structural Similarity index (SSIM). This is a perceptual
measure based on image degradation [16, 17]. We calculate the
SSIM in each color channel and then take the mean of the three
results. For QR experiments Isotonic Regression is performed on
each individual channel. MC results are rescaled to be between 0
and 255.

We reconstruct 6 images in 6 different ways:

• LBP Minimum Contrast (LMC)
• Sudoku Minimum Contrast (SMC)
• LBP Quadratic Reconstruction (LQR)
• Sudoku Quadratic Reconstruction (SQR)
• LBP Quadratic Reconstruction with Isotonic Regression

(LQRI)
• Sudoku Quadratic Reconstruction with Isotonic Regression

(SQRI)

We use 3 images from the MATLAB default package:
kobi.png, onion.png and football.jpg. We also use 3 images from
the OuteLTC_00013 texture dataset: 000087.bmp, 000366.bmp
and 000397.bmp. Table 1 shows our results. Figure 11 shows the
images corresponding to Table 1.
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Figure 11. All resultant images from our experiments.

LMC SMC LOR LORI SOR SORI

kobi 0.20 0.20 0.29 0.53 OA6 0.64
onion 0.37 0.35 0.50 0.56 0.67 0.71
football 0.30 0.28 0.53 0.59 0.75 0.82
000397 0.32 0.30 0.64 0.89 0.80 0.98
000366 0.28 0.27 0.75 0.89 0.90 0.96
000087 OAO OAO OA9 0.70 0.63 0.97

Table 1: 881M results for the 6 methods over the 6 images.

QR performs better than MC in all cases. Sudoku features
also provide stronger reconstruction in QR but not MC. This is
likely due to the shortcoming of Sudoku in MC, that is the re-
constructed images codes only match closely, not exactly. This is
due to how edges are computed: the maximum rank on an edge
pixel can only be six and on a corner can only be four. This leads
to a loss of information across the entire boundary of the image
which then propagates into all other neighborhoods. It might be
that the MC reconstructions could be improved in implementation
however this is not within the scope of this paper.

Using Isotonic Regression to tone map our images also sig-
nificantly increases performance across all six images. From a
color perspective it is clear that the reconstructions using tone
mapping are much closer to the originals however visually we
believe there is still room for improvement. Isotonic Regression
forms large areas of uniform intensity in the regular images which
effects a loss of detail. Other methods of tone mapping could be
employed to alleviate this, for example Histogram Mapping [18].

QR performs significantly better on the texture images than
on the regular images. This is due to the fact that the texture im-
ages selected contain fine detail, or high frequency, patterns. As
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we only sample neighboring pixels it is expected that the high
frequency information propagates more efficiently than low fre-
quency. A possible solution for regular images would be to com-
bine multiple different scales in the solution.

Conclusions
We have presented a novel use of Quadratic Programming

applied to image recovery. We have shown that our QR method
provides a statistically more similar image using a perceptual met-
ric.

QR does have drawbacks - it is currently very computation-
ally expensive. There are methods of circumventing this such as
sparser sampling of the input image and this will be explored in
the future. QP itself is the expensive part of the process and this
is the primary source of slowdown.

Perceptual comparison is also interesting. Isotonic Regres-
sion provides a mathematically more similar image in all cases.
However for the regular images we believe that the reconstruction
without Isotonic Regression is more perceptually similar. A more
complete set of results would include perceptual testing however
this is not within the scope of this paper.

In conclusion we have shown that given an image's textural
information it is possible to obtain a recognizable image. We have
also shown that with our method computed in the RGB channels
the recovered image can have a good approximation of the color
of the original.
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