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Abstract
Size uniformity is one of the prominent features of superpix-

els. However, size uniformity rarely conforms to the varying con-
tent of an image. The chosen size of the superpixels therefore
represents a compromise - how to obtain the fewest superpixels
without losing too much important detail. We present an image
segmentation technique that generates compact clusters of pixels
grown sequentially, which automatically adapt to the local texture
and scale of an image. Our algorithm liberates the user from the
need to choose of the right superpixel size or number. The algo-
rithm is simple and requires just one input parameter. In addition,
it is computationally very efficient, approaching real-time peifor-
mance, and is easily extensible to three-dimensional image stacks
and video volumes. We demonstrate that our superpixels supe-
rior to the respective state-of-the-art algorithms on quantitative
benchmarks.

Superpixels are a powerful preprocessing tool for image sim-
plification. They reduce the number of image primitives from mil-
lions of pixels to a few thousands superpixels. Since their intro-
duction [26], they have found their way into a wide-range of Com-
puter Vision applications such as body model estimation [24],
multi-class segmentation [15], depth estimation [36], object local-
ization [14], optical flow [22], and tracking [34]. What differen-
tiates superpixel algorithms from traditional segmentation algo-
rithms [12, 13] are the properties of uniform size, compactness,
limited adjacency, and computational efficiency [9, 18].

Despite such widespread use, the uniform size assumption
of superpixels ignores the fact that real-world images do not have
uniform visual complexity. Instead, such images simultaneously
feature highly variable, textured regions together with more ho-
mogeneous ones. As a consequence, superpixel methods over-
segment texture-less areas while under-segment textured regions.
Thus, the price to pay for image-simplification using superpixels
is that structures smaller than the chosen superpixel size have to
be sacrificed.

In this paper, we present an algorithm that alleviates the
problem of the superpixel-size trade-off by relaxing one widely-
imposed criterion for superpixels, namely, uniform size. Our al-
gorithm obtains image segments that are smaller or larger in areas
of high or low visual complexity, respectively, thereby achieving
scale-adaptiveness (Fig. 1). We refer to the generated segments as
Adaptels.

Compared to the state-of-the-art, adaptels offers several ad-
vantages. There is no need to choose the size of the segments
since their size evolves automatically. Similarly, the location and
the number of segments are automatically chosen to conform to
the image content. Our algorithm grows segments ensuring con-
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Figure 1. The dilemma of choosing the right superpixel size - retain detail

and obtain too many superpixels (left image), or lose structures smaller than

the superpixel size (center image)? With adaptels, the choice of size is au-

tomatic, the number of superpixels is kept small despite the advantages of

conventional superpixel-based over-segmentation.

nectivity from the start and thus requires no post-processing un-
like some others [13, 9]. The resulting adaptels are compact, with
a limited degree of adjacency. The algorithmic complexity is lin-
ear in the number of pixels and is near real-time without using
any specialized hardware. Notably, the algorithm requires only a
single input parameter.

Related work
Superpixel segmentation is an active research topic with

large number of proposed methods. This section presents a brief
review of the state-of-the-art. More detailed reviews on superpixel
techniques can be found in the literature [9, 25, 28].

Graph-based algorithms
One of the earliest graph-based approaches, the Normalized

cuts algorithm [27], creates NCUTS superpixels by recursively
computing normalized cuts for the pixel graph. Felzenszwalb and
Huttenlocher [13] propose a minimum spanning tree based EGB
segmentation approach, which is computationally much simpler.
To create segments, which are essentially sub-trees, a stopping
criterion is used to prevent the tree-growing from spanning the en-
tire image with a single tree. Unlike NCUTS, EGB does not cre-
ate uniformly-sized superpixels. Moore et al. [23] generate SLAT
superpixels by finding the shortest paths that split the image into
vertical and horizontal strips. Similarly, Zhang et al. [35] create
SPBO superpixels by applying horizontal and vertical graph-cuts
to overlapping strips of an image. Instead of finding cuts on an im-
age, Veskler et al. [31], generate GCUT superpixels by stitching
together overlapping image patches using graph cuts optimiza-
tion. More recently, Liu et al. [18] present another graph-based
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Agglomerative • • • • • • •
Divisive • • • • •

Graph-based • • • • •
Patch-based •

Center-seeking • • • • • • •
Border seeking • • •

Iterative • • • • •
Grid seeding • • • • • • • • • •
Uniform size • • • • • • • • • •

Real-time • • • • • • •
Figure 2. A comparison with respect to the algorithmic properties of the different superpixel methods considered in this review. A large dot indicates the

presence of the corresponding characteristic.

approach to create ERS superpixels that connects subgraphs by
maximising the entropy rate of a random walk.

Non-graph-based algorithms
There are several other algorithms that are not graph-based.

The watershed algorithm [32] accumulates similar pixels starting
from local minima to find WSHED segments. The mean shift
algorithm [12] iteratively locates local maxima of a density func-
tion in color and image plane space. Pixels that lead to the same
local maximum belong to the same MSHIFT segment. Quick-
shift [30] creates QSHIFT superpixels by seeking local maxima
like MSHIFT but is more efficient in terms of computation. The
Turbopixels algorithm [16] generates TPIX superpixels by pro-
gressively dilating pixel seeds located at regular grid centers us-
ing a level-set approach. Like TPIX, the Simple Linear Iterative
Clustering (SUC) algorithm [9] also relies on starting seed pixels
chosen at regular grid intervals. It performs a localized k-means
optimization in the five-dimensional CIELAB color and image
space to cluster pixels into SUC superpixels. Two recent vari-
ants of SUC are presented by Li and Chen [17], and by Liu et
al. [19]. The former variant projects the five-dimensional space
of spatial coordinates and color on a ten-dimensional space while
the latter projects it to a two-dimensional space before performing
k-means clustering. Both methods claim improvement in segmen-
tation quality. Achanta and Siisstrunk [10] present a non-iterative
variant of SUC called SNIC or Simple Non-Iterative Clustering.
By using a priority queue that stores the nearest connected candi-
date to each centroid, the centroids are evolved in an online fash-
ion in one pass, without resorting to multiple interations like SUC
does.

Wang et al. [33] present a geodesic distance based algorithm
that generates GEOD superpixels of varying size based on image
content but is slow in practice. A more recent non-graph algo-
rithm [29] generates SEEDS superpixels by iteratively improving
an initial rectangular approximation of superpixels using coarse
to fine pixel exchanges with neighboring superpixels.

A comparative summary of the state-of-the-art is presented
in Fig. 2. EGB, MSHIFT, and WSHED are traditional segmenta-
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tion algorithms that do not aim for uniformly-sized, compact seg-
ments. Of the others, NCUTS, SLAT, TPIX, SUC, and SPBO are
more compact. SUC, ERS, and SEEDS perform well on bench-
mark comparisons. EGB, SUC, and SEEDS are the fastest in
computation. TPIX, SUC, ERS, and SEEDS allow the user to
control the number of output segments. This last property of su-
perpixels is important because it lets the user choose the size of
the superpixels based on needs of the application. By doing so,
the user accepts to lose structural information finer than the su-
perpixel size. The Adaptel algorithm is the only one we are aware
of that frees the user from making this choice, and yet offers com-
pactness, high precision, limited adjacency, and computational ef-
ficiency.

The Adaptel Algorithm
It is common to initialize superpixel algorithms with the as-

sumption that superpixels are uniformly located along a grid [9,
16,23,29]. This is possible because the size of the superpixel is
known a priori (or can be computed knowing the required number
of superpixels and the image size). Depending on the approach,
some algorithms then take the center of each grid-block as the
starting seed (e.g., SUC [9], TPIX [16]), while others use the
blocks (or strips of blocks) themselves as the initial superpixels
(e.g. SLAT [23], SEEDS [29]) to refine them for obtaining the
final superpixels.

While a spatial constraint imposed by the grid-based seed-
ing encourages uniform superpixel size, it ignores the underlying
image complexity or scale. Since we relax the size-uniformity
criterion for our algorithm, we do not rely on a grid based seed-
ing. Instead of a spatial uniformity constraint, we place an energy
constraint on the growth of an adaptel. If Pk is the average color
of the kth adaptel Ak in a given color space (we use CIELAB), the
energy is simply the sum D of color distances d of all pixel colors
Xi of an adaptel to Pb its average color. The only parameter T,
provided by the user, upper-limits this energy value. Adaptels are
grown sequentially to occupy an area and position constrained by
this threshold. This simple constraint helps adaptels remain small
in textured regions and grow bigger in smooth regions, thereby
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where Z is a normalization factor and, for simplicity, we set (J = 1.
Under this probability the amount of information contained in an
adaptel Ak is

An information theoretic perspective
The presented algorithm has an interesting information the-

oretic interpretation. We assume that the color content of each
adaptel follows a multivariate double exponential distribution,

The Adaptel algorithm visits each pixel 4 or 8 times de-
pending on connectivity. A priority queue is used to efficiently
implement line 6 of Algorithm 2. Since the queue, which has
O(NlogN) complexity, is used only on a per-adaptel basis, its
influence on the overall complexity is very little. In practice the
Adaptel algorithm exhibits linear complexity in terms of the num-
ber of pixels in the image and runs in real time (see Fig. 4).

conforming to the underlying image complexity.
This simple constraint helps adaptels grow bigger in smooth

regions and smaller in textured regions thereby conforming to the
underlying image complexity.

Starting from a seed, an adaptel grows by adding the neigh-
boring pixels in the increasing order of their color distance d from
the average color Pk of the adaptel. The adaptel terminates when
the accumulated sum D of the color distances exceeds the user-
provided threshold T.

Initially, Pk is set to the color of the seed pixel. With each
pixel added to an adaptel, Pk is evolved by online averaging!. The
seed for the first adaptel is arbitrarily taken to be the center pixel
of the image. For every subsequent adaptel, its seed is taken from
the boundary pixels of the previously terminated adaptels.

An adaptel can claim a pixel from an existing adaptel if its
average color Pk is closer to it. This makes adaptels compete for
pixel ownership ensuring better boundary adherence. This is ex-
plained visually in Fig. 3. The algorithm is presented more for-
mally in Algorithm 1.

Pm,,(x;p,a) ~ ~~p (- (X-PY(X-JL))
(J2 '

(1)

I(Ak) -log I1 Pmde(Xi;JL = Pk,(J = 1)
iEAk

where Pk is the average color of the superpixel Ak' So, the amount
of information of an adaptel is equal to the sum of color distances
of all the pixels of the adaptel to its average color (up to a con-
stant). This magnitude coincides with the amount accumulated
in D in Algorithm 2. Since we grow each adaptel until D reaches
a threshold T, we are effectively thresholding the amount of in-
formation that an adaptel can contain. With this formulation, the
algorithm could be readily modified to work with different prob-
ability distributions other than Pmde.

Algorithm 1The Adaptel algorithm.
Input: Threshold T, seed pixel s
Output: Set of adaptels Q

1: Q+-(/)
2: Set of seeds S +- {s}
3: while S is not empty do
4: Get seed s E S
5: Ak, +- GROwAoAPTEL(T,s)
6: Q +- QU{Ak}
7: S +- S U {Pixels bordering Ak}

8: Remove seeds from S that are assigned to an adaptel S +-
S-UAkEQAk

9: end while
10: return Q

L V (Xi - Pk)T (Xi - Pk) + 10gZ
iEAk

L Ilxi - Pkll + constant,
iEAk

(2)

Algorithm 2 GRowAoAPTEL: Growing an adaptel Ak'

Input: Threshold T, the adaptel seed pixel s
Output: The adaptel Ak

1: Initialize adaptel Ak +- s
2: Set average color Pk to color of s
3: Set sum of distances D to 0
4: Initialize set of candidates C +- s
5: while C is not empty do
6: Get candidate c E C with smallest distance d to Pk
7: if D+d < T and label of c is not k then
8: Ak +- Ak U {c}
9: Increment D by d

10: Update P with color of c
11: C +- neighbors of c
12: end if
13: Remove c from C
14: end while
15: return Ak

1Since values of Pk stabilize quickly in practice, such online averaging
does not significantly affect the computation of D.
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Comparison
We assess the power of our approach against the conven-

tional size-uniformity assumption. We quantitatively compare
adaptels to several state-of-the-art superpixel methods: EGB [13],
TPIX [16], GCUT [31] SLIC [9], SEEDS [29], ERS [18],
LSC [17], and SNIC [10]. We used implementations available
online for all methods [1, 2, 3, 4, 5, 6, 7, 8].

We use the Berkeley 300 dataset [21] with its color and gray
scale groundtruth images (3269 in total) as the benchmark. Fig. 4
depicts quantitative comparisons for the entire range of 50 to
2000 superpixels, corresponding to an image simplification rang-
ing from four to two orders of magnitude, respectively.

Under-segmentation error
Under-segmentation error measures the overlap error, also

termed "leak" or "bleeding" between groundtruth and superpixel
segments. The computation of under-segmentation error as pre-
sented in TPIX and later in SLIC penalizes every overlapping er-
ror twice, on either side of the erring superpixel as pointed out
by Neubert and Protzel [25]. We compute the Corrected Under-
Segmentation Error (CUSE) [25], which is given as the sum of
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(a) (b) (c) (d)
Figure 3. The process of creating adaptels. (a) The first adaptel is grown from the center seed (white square) outwards by gathering neighboring pixels until the

threshold T is reached. (b and c) Subsequent adaptels are grown using pixels at the borders of the previous adaptels as seeds (white squares). As seen from

the changing shapes of the first three adaptels, the new adaptels capture pixels from the previous ones, resulting in constantly evolving segment boundaries.

This mitigates the greediness of the algorithm and encourages boundary adherence. (d) Final segmented image.

overlap error for each superpixel segment Sk:

where /\ represents a logical and operation, IIrepresents a function
that returns 1 if the entity passed to the function is greater than 0,
and ..IV (i, EO) is the neighborhood of i at range EO. The denominator
term T P + F N is then simply the number of all boundary pixels.
We use EO = 2 as done in the past [9, 18,25,29].

where N is the number of pixels in the image, K is the number of
superpixels, and G*(Sk) is the ground truth segment with which
segment Sk has the maximum overlap.

A related comparison measure introduced by ERS [18], and
also computed by SEEDS [29], is Achievable Segmentation Ac-
curacy (ASA), which behaves complementarily to CUSE. We
therefore only show the plot for CUSE in Fig. 4. Adaptels show
the least error of all for most superpixel sizes.

(5)
N

FP= L [1-IIjEJV(i,E)(bY/\b})]
1=1

Precision-recall and F-measure
To assess the performance of any detection technique, the

two values of recall and precision are considered together [11, 20].
Considering the two values together avoids biasing the evalu-
ations towards methods that generate noisy or jagged segment
boundaries, e.g. EGB, SUC, ERS, and LSC. We plot the more
conclusive curves of Precision vs. Recall and F-measure versus
number of superpixels, shown in Fig. 4. These plots prove the
superiority of adaptels over other methods.

Boundary precision
By treating a segmentation algorithm as a boundary detec-

tion algorithm, superpixel algorithms compute boundary recall for
comparison. But recall alone can be misleading since it is possible
to have a very high recall with extremely poor precision. For the
task of segmentation, it is well established in literature [11, 20]
that recall has to be regarded in conjunction with precision.

In this paper, we compute precision [10], which is often
missing in previous works (TP [16], SUC [9], SEEDS [29],
ERS [18]). To compute precision, we need to know the number
of false positives F P, which is the number of superpixel boundary
pixels in the EO neighbourhood that are not true positives:

Computational efficiency
We compare the computational efficiency of the fastest of

all methods in Fig. 4 for images of various sizes. All of the al-
gorithms run on the same hardware (2.6 GHz Intel Core i7 pro-
cessor, with 16 GB of RAM, running OSX). We do not use any
parallelization, GPU processing, or dedicated hardware for any of

Knowing FP allows us to compute precIsIOn as Precision =

TP/(TP+FP) where TP is the same as the numerator term of
Eq.4.

(3)

(4)
E~1IIjEJV(i,E)(bY /\b})

E~1II(bY)
TP

Recall = TP+FN

Boundary recall
Recall is the ratio of the true positives (T P) to the sum of true

positives and false negatives (FN). Boundary pixels of superpix-
els and those of ground truth are used to compute this metric. We
represent boundary maps, which have the same size and dimen-
sions as the corresponding image, for superpixel segmentation as
br, and for ground truth as by, such that the value at pixel position
i is 1 in the presence of a boundary and 0 otherwise. Boundary
recall is computed for each pair of input image and groundtruth in
the same way as done by TPIX [16], SUC [9], SEEDS [29], and
ERS [18]:
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the algorithms. Assuming 481 x 321 images, the speed of SEEDS
varies from 12 to 24 fps for different number of superpixels. The
speed of other algorithms, including adaptels, is independent of
the number of superpixels. If using sRGB space (like SEEDS
does) instead of the CIELAB space, the Adaptel algorithm ex-
ceeds the speed of SEEDS, attaining over 25fps.

Discussion of results
The under-segmentation error is often quite similar for all

superpixel methods (Fig. 4). Although adaptels have the lowest
error in most cases, it may be difficult in general to judge the
quality of a segmentation algorithm using this measure. Bound-
ary recall, though more meaningful, is insufficient to judge the
quality of a good segmentation algorithm. The boundary recall
curves are naturally biased towards the algorithms that generate
noisy or jagged segment boundaries, e.g. EGB, SLIC, ERS, and
LSC. Algorithms like NCUTS, which generate smoother bound-
aries suffer in comparison. We therefore compute boundary preci-
sion, as in any detection problem, and consider it alongside recall

using the precision-recall curve and F-measure curve shown in
Fig. 4. Adaptels exhibit the lowest under-segmentation error of
all methods compared with (see Fig. 4). In the precision-recall
curve of Fig. 4, adaptels shows the best performance, convinc-
ingly proving that adaptels adhere best to all object boundaries in
the ground truth (high recall) but at the same time to only the true
object boundaries (high precision). This fact is also mirrored by
the F-measure plot (Fig. 4), where the Adaptel algorithm clearly
outperforms all the other methods compared with not only with
respect to standard quality metrics by also in terms of computa-
tional efficiency.

Conclusion
We introduce a new segmentation algorithm that frees the

user from the dilemma of choosing the right superpixel size for
a given application. By using an information constraint rather
than the conventional spatial constraint, our algorithm achieves
scale-adpativeness while retaining compactness, limited adja-
cency, tight boundary adherence, and computational efficiency.
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Our algorithm is simple to use, requiring only a single input pa-
rameter. There is no need to set the superpixel size or choose
seeds a priori, since both of these are achieved automatically by
the algorithm. It is trivial to modify the Adaptel algorithm to
higher dimensional data like image stacks and video volumes (ex-
ample in supplementary material).
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