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Abstract

The paper presents results from hyperspectral identification
of the colouring palette used by Edvard Munch in a canvas paint-
ing entitled ”Old Man in Warnemiinde”. The painting is part of
a collection at the Munch Museum in Oslo. A collaboration be-
tween the Conservation Department of the Munch Museum and
the Norwegian Colour and Visual Computing Laboratory from
NTNU has allowed to analyze several points of the painting by
means of hyperspectral imaging and identify thus the pigments
present. The hyperspectral pigment identification involves a use
of two pigment databases (Kremer and ENST) which were cre-
ated using different binding media. Some results from the hyper-
spectral analysis were also validated through elemental analysis
by means of XRF. The pigment identification method employs the
shape component of spectral Kullback-Leibler pseudo-divergence
function, instead of the widely-used but inaccurate spectral an-
gle mapper. In addition to the interest of this pigment analysis
for conservation practice of this particular painting, an impor-
tant contribution of this paper is the validation of hyperspectral
imaging and processing methods for pigment identification.

Introduction

Edvard Munch is known as one of the fathers of expression-
ism. Many of his paintings are often a challenge for conservators
in regards to the unstable condition they are in today. This is a
result of the artist’s exploration and use of paint, and of outdoor
exposure since their creation and during their storage whilst in
the artist’s own care. One of the main research directions that the
Munch Museum in Oslo is developing has to do with the study
of materials and techniques of the artist, and of the degradation
mechanisms of the paint materials. The impressive collection of
the museum offers many interesting case studies. One of these is
the canvas painting Old Man in Warnemiinde (1907).

Literature in conservation science reports many analytical
methods to characterize pigments and dyes from paint layers, i.e.,
optical microscopy, scanning electron microscopy, FTIR and Ra-
man spectroscopic techniques, chromatography, X-ray diffraction
and fluorescence, etc. [12, 6, 13]. However, in the past years,
there is an increasing interest in the application of non-invasive
and non- or micro-destructive tools [6], and hyperspectral imag-
ing is one of them. The use of spectral imaging in the cultural
heritage domain started in the early *90s as a mean to accurately
color document paintings [9]. Since then, it has been increasingly
popular in the domain, mostly for its capability of capturing both
spatial and spectral information of objects. Applications can be
found in pigment identification [1, 14], revealing hidden informa-
tion such as underpaintings [4], and analyzing crack patterns [3].
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The collaboration between the Munch Museum and NTNU
aims at establishing a non-invasive methodology for the identi-
fication of colouring palette in the paint layers based on hyper-
spectral imaging. To this respect, several points on the surface
of Old Man in Warnemiinde were chosen for hyperspectral imag-
ing based analysis. Additionally, X-ray fluorescence (XRF) spec-
trometry was also performed for elemental identification of com-
ponents in the paint for two different coloured areas (dark blue,
blackened edges in pastose paint stroke and red). The XRF anal-
ysis was conducted in order to validate the results provided by the
hyperspectral pigment identification method.

Experimental approach
Hyperspectral image acquisition

The imaging system used for the spectral acquisition of the
painting in the present study is a pushbroom based hyperspectral
scanner HySpex VNIR-1800*. Spectral sensitivity of this imag-
ing system is in the visible and near infrared (VNIR) ranges of
the electromagnetic spectrum, from 0.4 um-1.0 um, with a spec-
tral sampling interval of 3.6 nm, and captures 182 bands. In this
system, images are formed by sequential capture of spectral de-
tails line by line from the painting [7]. After a proper calibration,
the resulting image cube of dimensions (X, y, ) provides spec-
tral reflectance functions corresponding to pigment sample at any
point in the image.

In the spectral imaging setup, the camera and light sources
were mounted on a translation stage while the painting remains
stationary on a mounting frame. Horizontal and vertical move-
ments of the camera and light sources were accurately controlled
and synchronized by an image acquisition software. The trans-
lation stage moves the camera and light sources parallel to the
painting, to capture the light reflected from the painting. The
acquisition distance is set accordingly to coincide with the fo-
cal length of the camera’s optics. Field of view of the camera
depends on the focal distance and is 30 cm in this case. As di-
mensions of the painting is larger than 30 cm, the scanner had to
scan 3 times to capture the whole painting. A broadband light
source with spectral coverage over 400-2500 nm was used to il-
luminate the painting in a stable and repeatable way during the
whole imaging process. Concurrent movement of the camera and
light source with the hyperspectral camera attached to the same
translator system ensures that the illumination stays constant for
every acquisition. To make sure that the light intensity is not too
high for the painting, temperature at the light exposed painting
surface was constantly monitored using a thermal camera.

*NEO — Norsk Elektro Optikk A/S, www.hyspex.no
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X-ray fluorescence spectroscopy

A portable XRF Thermo-Niton XL3t 950 He spectrometer
with a GOLDD+ detector, and Ag anode target, spot diameter
3 mm, voltage 50 kV and current up to 40 pA was rented from
Holger Hartmann AS. The XRF instrument was used for the ac-
quisition of spectra on a darkened blue area of the painting, and
also on a red area.

Methods and materials

An overview of the hyperspectral pigment identification
method used in this study is illustrated in Fig. 1. First, for ev-
ery pigment of interest, its spectrum must be obtained from the
hyperspectral image of the painting in question. Then, its match-
ing scores to every pigment available in the spectral library will
be computed using a spectral difference measure. Finally, the
method will return three matching candidates having the highest
matching scores to the pigment target. Note that each pixel in the
image as well as pigments in the spectral library are represented in
terms of spectral reflectance, at approximately 414-793 nm range.
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Figure 1. Overview of the hyperspectral pigment identification method used
in this study. Pigments are represented in terms of spectral reflectance from
approximately 414 to 793 nm.

The case study painting

Old Man in Warnemiinde was painted in 1907, when Edvard
Munch lived in a seaside village on the Baltic coast in Germany.
The canvas painting measures 110.5 x 81 cm and it has the in-
ventory number MM491 (Woll M 755). Based on data obtained
from a previous campaign, the XRF analysis is focused on blue
and red painted areas marked by samples #6 and #7 in Fig. 2.
For the hyperspectral analysis, all 7 points shown in the figure are
represented as spectral reflectance functions and will be studied.

Spectral library

A spectral library is a collection of spectral reflectance func-
tions where each entry corresponds to and is characteristic of a
certain pigment. Two pigment databases were employed in this
study to build the spectral library, as follows:
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Figure 2. Image of the painting with the points used for both hyperspectral
and XRF analyses: Points 1-7 for hyperspectral pigment identification and
points 6-7 for XRF analysis.

o Kremer pigments: A total of 304 pure pigments that came
in color charts were hyperspectrally acquired by NEO. Each
pure pigment was applied on cards with varying gray scales
and, thus, each pigment comes with several different shades.
Considering the shades as individual colors, the Kremer
spectral library has a total of 1052 entries.

e ENST pigments: Another pigment spectral library used in
this study is one that is obtained from a pigment target that
consists of 64 pure and mixed pigments. Spectral imaging
of this target was performed using a hyperspectral scanner
at C2RMF, Louvre Museum, Paris.

It should be noted that the creation of the two pigments databases
was different. Kremer pigments were prepared mostly with water-
based binder made of Gum Arabic and were applied on paper by
screen-printing, while for ENST the application is unknown. Nev-
ertheless, they are employed based on the knowledge that spectral
reflectance properties of paints and coatings in the VNIR range
are dictated by pigment properties. Spectral characteristics of
other materials present in the paint formulations (e.g., filler and
binder) will affect other spectral ranges [5].

Spectral difference measure

In many studies of pigment mapping based on hyperspectral
imaging, spectral angle mapper [8] is the most employed simi-
larity measure. Due to its drawback as pointed out in [1, 2], in
this study, the shape component of the spectral Kullback-Leibler
pseudo-divergence (KLPD) function [11] is employed instead.
The mathematical expression of KLPD measure between two
spectral functions KL'(Sy,S;) is given in Eq. 1, where S; is any
arbitrary spectral function as a function of wavelength, A. Then,

This work is licensed under the Creafive Commons Attribution 4.0 Internafional License.



as written in Eq. 2, KL is the Kullback-Leibler divergence func-
tion, S is a normalized spectral function, and & is the correspond-
ing normalizing factor. With this measure of differences, a lower
value means a higher similarity or higher matching score.

KL;hape(Sl ,Sz) = kl.KL(Sl ,S_z) +k2.KL(S_2,§1) €8
_ Amax _ S
KL($,,5,) = Si(A).In Sit) dA, where )
J A S2(4)
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Results and discussion
Hyperspectral pigment identification

The results of pigment identification based on hyperspectral
imaging (see workflow in Fig. 1) are provided in Table 1, where
best matching candidates for each pigment sample are highlighted
in blue. For sample #1, which will simply be referred to as a
green pigment, ENST database suggests that it is a scheele’s green
(AsCuHO3) with a matching score of 0.829. The Kremer database
suggests the presence of two cadmium greens (cadmium green is
known with the chemical formula CdS), each with scores of 0.228

Table 1: Matching pigment candidates as suggested by both
ENST and Kremer pigment databases. For each sample, the
best matching candidate is highlighted in blue. LW’ means
that the corresponding pigment is mixed with lead white.

Pigment ENST pigments Kremer pigments
samples | Name Score | Name Score
#1, scheele’s gr. 0.829 | cadmium gr. 0.228
green prussian bl. 1.013 | cobalt gr. 0.356
(gr.) lamp black 1.200 | cadmium gr. 0.531
#2, zinc yl. 0.764 | isoindole yl. 0.302
yellow lemon yl. 0.766 | cobalt yl. 0.346
(ylL) aureolin 0.985 | permanentyl. | 0.362
#3, ultramarine 1.313 ultramarine 0.164
vivid cerulean bl. 1.749 bl 0.211
blue (bl.) | monastral bl. | 3.140 ’ 0.229
red ochre 0.258 | terraercolano | 0.081
#4, burnt sienna | 0.385 | terra pozzuoli | 0.127
orange brown 0528 French ochre 0.154
madder soforouge
viridian, LW | 0.389 | indigo 0.516
#5, indigo, LW 0.643 | cobalt gr. 0.638
turquolse | 4 ridian 1133 | cobalt 0711
bottle gr.
indigo, LW 0.393 | indigo 0.328
#6, ultramarine
darkened monastral bl. | 0.760 bl 0.513
blue ultramarine, ultramarine
LW 1.432 bl 0.522
burnt umber | 0.468 | <PUt 0.089
#7 mortuum
: brown iron glimmer
red madder, LW 0550 violet 0.097
brown .
madder 0.641 | gubbio red 0.177
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and 0.531. Despite their identical pigment names, they are not
identical in their chemical nature. Observing the general matching
candidate scores of both databases for this particular pigment, it
can be said that better results are provided by Kremer database.
See also Fig. 3, where Kremer suggested cadmium greens have
similar reflectance peak to the target green pigment around 510
nm. On the other hand, the reflectance peak ENST’s scheele’s
green is shifted to the right of the target pigment.

ENST

—— Target: #1, Green

Scheele's green: 0.829
0.4 Prussian blue: 1.013
= Lamp black: 1.2

0.5

Reflectance
o
w

e
[¥]

0.1 \\/

0.0

Kremer

0.5
—— Target: #1, Green
Cadmium Green: 0.228
0.4 Cobalt Green: 0.356
= Cadmium Green: 0.531

0.3

Reflectance

e

0.1

0.0

400 450 500 550 600 650 700 750 800
Wavelength

Figure 3. Spectral reflectance functions of pigment sample #1 green and
its matching ENST and Kremer candidates. The best matching candidate is
cadmium green with a score of 0.228 and with a peak at approximately 510
nm. X-axes of both figures are identical and is also the case for Fig. 4-7.

For sample #2 yellow, Table 1 shows that the best matching
is isoindole yellow from Kremer database, providing a matching
score of 0.302 and aureolin (potassium cobalt nitrite, also known
as cobalt yellow) from ENST database with a score of 0.985. Con-
sidering that both databases have cobalt yellow in their list of can-
didates, this pigment can be considered as the right assignment for
the yellow sample. As for sample #3 vivid blue pigment, the two
databases conclude that it is highly probable to be an ultramarine
blue. Kremer database, which has multiple entries of ultramarine
blues, give matching candidates of only this pigment. For ENST
database, its ultramarine pigment is found to be the best match-
ing candidate with 1.313 score. Fig. 4 shows spectral reflectance
functions of the vivid blue pigment and its matching candidates
from both databases. For ENST, the most similar shape is indeed
given by ultramarine, and not by the cerulean blue and monastral
blue. Spectral reflectance functions of all Kremer’s ultramarine
blue pigments are almost identical in shape.

Fig. 5 allows to observe the shapes of spectral reflectance
functions of sample #5 turquoise pigment and its matching ENST

M4
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Figure 4.  Spectral reflectance functions of sample #3 vivid blue pigment
and its matching ENST and Kremer candidates. Both databases agree on
ultramarine blue as the most probable pigment and high similarity in spectral
shape can also be observed.

and Kremer candidates. For ENST’s suggestions, the most sim-
ilar shape by visual observation is given by the pure and mixed
(with lead white) viridian pigments (viridian is a blue-green pig-
ment, a hydrated chromium(IIl) oxide). As for the mixture of
indigo and lead white, despite giving a better matching score than
the pure viridian, it is evident that it lacks the reflectance peak at
around 510 nm. Observing the results given by Kremer database,
indigo (violet organic dye) is suggested as its best candidate, with
a matching score not significantly different to ENST’s indigo, LW.
Similar to the case of Kremer-suggested cobalt green pigments,
the reflectance peak is at different location than the turquoise pig-
ment sample in question. Finally, for this pigment sample, it can
be concluded that the sample is highly likely to be a viridian pig-
ment, possibly mixed with lead white.

Further validation with X-ray fluorescence
spectrometry

The hyperspectral identification of pigments faced a limita-
tion that several candidate pigments are obtained but there is no
certain way to validate the matching results. To address this issue,
a preliminary trial elemental XRF analysis was performed for pig-
ment samples #6 and #7, previously shown in Fig. 2. These two
samples are selected based on data points available from a previ-
ous campaign carried out before the hyperspectral one.

The elemental analysis performed with XRF on pigment
sample #6, which is approximately located at the outline of a hu-
man figure outline in the background on the left side of the paint-
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Figure 5.  Spectral reflectance functions of pigment sample #5 turquoise

and its matching candidates. Better similarities can be observed for ENST’s

pure viridian and its mixture with lead white. Kremer's suggested cobalt

greens have similar shapes but slightly different peak location at around 530

nm, unlike the pigment sample which is approximately at 500 nm.

ing, detected the presence of a lead based pigment (lead white
probably), and of ultramarine for blue area (natural or synthetic
pigment known for being an aluminium silicate zeolite with a so-
dalite structure; the synthetic ultramarine has the general chem-
ical formula: Nag.j9AlgSigO24S7.4) [10]. Table 1 suggests that
ultramarine blue pigments are being the best matching results for
both pigment databases. Fig. 6 also visually confirms the simi-
larity between the sample and its candidates in terms of spectral
shape. Furthermore, the ENST suggestion that the ultramarine
candidate is a mixture with lead white pigment, was confirmed by
the elemental analysis.

For the red area (sample #7), the following elements have
been identified: Ca (calcium based compound), Pb (lead white),
Fe (clay minerals or haematite pigment), Zn (zinc white), Hg (ver-
million), Cl, Si, P (organic red, possibly a phosphorous contain-
ing mordant). The hyperspectral pigment identification in Table
1 suggests the presence of organic pigments (brown madder) but
also of a burnt umber (brown or reddish color, obtained by calci-
nation fo raw umber), an earth pigment (iron based oxide), which
are both pure and mixed with lead white. Fig. 7 shows as the best
matching in terms of shape the Kremer’s caput mortuum pigment
(variety of haematite/ iron oxide pigment), with a matching score
close to 0. Therefore, the hyperspectral attribution of the main
pigment for this area to a red-brown earth (burnt umber, or caput
mortuum) mixed with some organic pigment is validated by XRF
characterization.

This work is licensed under the Creafive Commons Attribution 4.0 Internafional License.



0.6 ENST
= Target: #6, Darkened blue
Indigo, LW: 0.393
0.5 Monastral blue: 0.76
= Ultramarine, LW: 1.432
0.4
w
o
[=
Il
£ 0.3
£
b
o
0.2
0.1
0.0
0.6 Kremer
= Target: #6, Darkened blue
Indigo: 0.328
0.5 Ultramarine Blue: 0.513
= Ultramarine Blue: 0.522
0.4
w
o
[=
I
£ 0.3
9
k71
o
0.2
0.1 -~
v
0.0

400 450 500 550 600 650 700 750 800
Wavelength

Figure 6. Spectral reflectance functions of pigment sample #6 darkened
blue and its corresponding matching ENST and Kremer candidates. Agree-
ing with the elemental analysis with XRF, both databases suggest ultrama-
rine blue and in one case its mixture with lead white. Despite being the best
matching candidates from both databases, indigo pigments lack the peak

reflectance at approximately 460 nm.

To summarize, the two cases of complementary identifica-
tion of pigments using hyperspectral imaging and XRF analysis
on blue and red areas of the painting showed that the proposed
hyperspectral imaging based method is valid. The use of two
databases, Kremer and ENST, is a first step and further improve-
ments can be done, especially in creating more complex mixture
of pigments with different binding media (oil, tempera, other tech-
niques) and between different pigments.

Conclusion

The preliminary case study of hyperspectral imaging pre-
sented in this paper focused on the complementary use of this tool
and of XRF spectrometry for pigment identification of a paint-
ing by Edvard Munch, Old man in Warnemiinde (1907). The
employed methodology showed the usefulness of two pigment
databases, where one consists of hundreds of pure pigments (Kre-
mer) and another of 64 pure and mixed pigments (ENST).

From the results of this study, it can be concluded that pig-
ment databases made of different binding media and with differ-
ent ways of application are useful for the identification of pig-
ments based on the hyperspectral technology. It can also be con-
cluded that spectral characteristics in the VNIR range are dictated
by pigment characteristics which is represented in terms of spec-
tral shape. XRF analysis on areas of the paintings was also useful
to validate results obtained by the hyperspectral-based method.
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Figure 7. Spectral reflectance functions of pigment sample #7 red and its
corresponding matching ENST and Kremer candidates. Visually, the best
match does agree with the matching score, i.e., caput mortuum.

Another novelty of this study is the use of a new spectral
difference function in the matching process instead of the widely
used spectral angle mapper, which has previously been found to
be inaccurate for pigment identification. In this study, the shape
component of spectral Kullback-Leibler pseudo-divergence was
employed and the results were shown to be promising. A limita-
tion was found in the function, which measures overall differences
in spectra. This causes the measure to be less sensitive to pigment
characteristics located in narrow range of bands.

As a further work, in addition to improving the spectral dif-
ference measure, a more extensive study on artists’ pigments us-
ing both hyperspectral and XRF or other compositional analyses
are required in order to have the full range of parameters useful
for pigment identification. There is also a need to extend the spec-
tral range of the hyperspectral-based method in order to account
for the effects of other materials such as binders and fillers on the
color changes of the pigments.
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