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Abstract. Image enhancement using visible (RGB) and
near-infrared (NIR) image data has been shown to enhance useful
details of the image. While the enhanced images are commonly
evaluated by observers’ perception, in the present work, we rather
evaluate it by quantitative feature evaluation. The proposed algorithm
presents a new method to enhance the visible images using NIR
information via edge-preserving filters, and also investigates which
method performs best from an image features standpoint. In this
work, we combine two edge-preserving filters: bilateral filter (BF)
and weighted least squares optimization framework (WLS). To fuse
the RGB and NIR images, we obtain the base and detail images for
both filters. The NIR-detail images for both filters are simply fused
by taking an average/maximum of both, which is then combined
with the RGB-base image from the WLS filter to reconstruct the
final enhanced RGB-NIR image. We then show that our proposed
enhancement method produces more stable features than the
existing state-of-the-art methods on RGB-NIR Scene Dataset. For
feature matching, we use the SIFT features. As a use case, the
proposed fusion method is tested on two challenging biometric
verifications tasks using CMU hyperspectral face and CASIA
multispectral palmprint databases. Our exhaustive experiments
show that the proposed fusion method performs equally well in
comparison to the existing biometric fusion methods. c© 2017
Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2017.61.4.040409]

INTRODUCTION
Image enhancement or filtering using visible (RGB) and
near-infrared (NIR) images has been used for several appli-
cations, such as aerial or landscape photography,1 dehazing,2
tone mapping,3 biometrics,4–6 image segmentation,7 mate-
rial classification8 and more. Visible images enhancement
using the near-infrared part of the electromagnetic spectrum
enhances the contrast, details, and produces more vivid
colors. Traditional approaches to enhancement have been
tuned on the perception of quality from the perspective
of human vision. However, with the advent of growing
applications in image processing and computer vision, it is
important to characterize the effect of filtering techniques on
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the machine vision system. As a consequence, it is important
to understand the effects that these filters have on the
image quality that can affect the image structures and cause
performance reduction in computer vision applications.

Over the last two decades, several image enhancement
approaches have been proposed. For combining NIR in-
formation with RGB images, the NIR channel is combined
as either color, luminance or frequency counterpart. This
combination is achieved using linear (Laplacian pyramid)
or non-linear (anisotropic diffusion, robust smoothing,
weighted least squares, and bilateral filtering) filters. Each of
the filtering technique comes at some expense, such as high
computational time, more artifacts, high noise level, inability
to preserve edges and shape details, and more. All these
shortcomings add up to undesired loss of image features;
however, visually these images may appear very pleasant.

Motivated by the above observation, we propose to
combine these filters in a meaningful way, such that a
minimum loss of visual pleasantness or information content
is attained. In this work, we combine two edge-preserving
filters: bilateral filter (BF)9,10 andweighted least squares opti-
mization framework (WLS)3 and show that the combination
ismuchmore interesting from image features standpoint.We
propose to combine the base and detail layers (i.e., low- and
high-frequency decompositions) for a pair of visible andNIR
images with the BF and WLS filters. As we combine BF and
WLS filters, the combination is denoted as BFWLS.We show
the performance of method in Figure 1.

We evaluate the quality of BFWLS image features, and
compare this with other fusion methods on RGB–NIR Scene
Dataset.11 In addition, we demonstrate the performance
of the proposed fusion approach for face and palm-print
verification tasks using CMU hyperspectral face12 and
CASIA multispectral palm-print5 databases. Results show
that the BFWLS based filtered images are reliable for
biometric verification tasks.

The rest of the paper is organized as follows. First, we
discuss the related work, and then we describe our proposed
method. Following this, experimental results and analysis are
given, and finally, the conclusions are drawn.
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Figure 1. Example of scene enhancement by fusing visible (RGB)
and near-infrared (NIR) images. Note that the enhanced image for the
proposed method BFWLS-Avg (Ours) has enhanced image structures and
details when compared to the visible image. Best viewed in color.

BACKGROUND
Edge-preserving filtering is a technique to smooth an
image, while preserving edges i.e. reducing the edge blur-
ring effects across the edge like halos, phantom etc.
The class of edge-preserving smoothing filters includes:
Anisotropic Diffusion,13 Laplacian pyramid decomposi-
tion,14 the Weighted Least Squares framework,3 Bilateral
Filter,9 the Edge-Avoiding Wavelets,15 Geodesic editing,16

Guided filtering,17 and the Domain Transform framework.18

These filters are very useful in reducing the noise in an
image making it very demanding in computer vision and
computational photography applications, such as automatic
skin enhancement,19 image deconvolution,20 multiple illu-
minant and shadow detection,21 realistic skin smoothing,22

flash/no-flash denoising,23 image upsampling,24 transfer
illumination from reference image to target image,25 multi-
modal medical image fusion from MRI-CT, MRI-PRT and
MRI-SPECT,26 image restoration,27 and so on. The literature
on edge-preserving filtering is vast and we only summarize
the BF and WLS techniques in this paper.

The bilateral filter (BF)9 is a non-linear edge-preserving
filter. The intensity value at each pixel in an image is a
weighted mean of its neighboring pixels. Formally, we have:

gFilteredp =
1
Wp

∑
q∈S

Gσs(||p− q||)Gσr (||gp− gq||)gq

Wp =
∑
q

Gσs(||p− q||)Gσr (||gp− gq||) (1)

where g and gFiltered are the original input image and filtered
image, respectively; p and q indicate spatial locations of
pixels. Gσs and Gσr are kernel functions based on Gaussian
distribution, where σs is the spatial kernel that controls the
spatial weights and σr is the range kernel that controls the
sensitivity of edges thus avoiding halo artifacts.

The weighted least squares optimization framework
(WLS)3 is a non-linear, edge-preserving smoothing approach
to capture details at a variety of scales via multi-scale
edge-preserving decompositions. The approach finds an
approximate image gFiltered that is as close as possible to the
input image g , and, at the same time, is as smooth as possible
along significant gradients in g . Formally, we have:

gFiltered = Fλ(g )= (I + Lg )−1g (2)

where Lg = DT
x AxDx + DT

y AyDy with Dx and Dy are
discrete differentiation operators. Ax and Ay contain the
smoothnessweights, the smoothness requirement is enforced
in a spatially varying manner which depend on g . λ is the
balance factor between the data term and the smoothness
term. λ controls the level of smoothing, increasing the value
of λ results in progressively smoother images.

The BF could preserve well the structure of the
information content in the image butmay losemuch shading
distribution. On the other hand, WLS filter could preserve
shading distribution of reference information well but may
lose the edge structure of the information content in the
image. In this way, the BF and WLS filters compliment each
other.

Image Fusion: In this section, we review the previous work
on image fusion using visible and near-infrared images,
where they make use of BF and WLS filters to combine
the luminance NIR image to complement the visible image
for enhancing the visible images.1 We divide the related
literature into two categories that use: (i) bilateral filter, and
(ii) weighted least squares filter.

– Bilateral filter: Fredembach et al. (Fre-BF)22 make use
of the BF proposed by Tomasi et al.9 to decompose
the RGB–NIR images into base (low-frequency com-
ponent) and detail (high-frequency component) layers,
and then swapped the detail layer of NIR with the ones
of theRGB image for realistic skin smoothing. Similar to
Ref. 22, instead of BF we employed WLS to in the same
setup in order to check the performance of the WLS
method, denoted as Viv-WLS. Bennett et al.28 enhanced
underexposed visible video footage by fusing it with
simultaneously captured NIR video footage for noise
removal by applying the dual bilateral filter.
Some other notable work where they use the same idea
of image fusion but exploit the RGB channels only, such
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Figure 2. Overview of the full pipeline of our approach, BFWLS-Avg: For an input pair of images (IRGB, INIR), the intermediate base (b) and detail (d)
layers are obtained for both images using BF and WLS filters. In Steps 1–2 the new fused luminance images Y d are obtained by simply taking mean of
NIR: Y dBF and Y dWLS images, and which is then combined with base layer Y bWLS of RGB image resulting to enhanced luminance RGB–NIR image Y . And
it is then combined with the chrominance of RGB image (Step 3), to construct the enhanced RGB–NIR new image.

as ‘‘Fast Bilateral Filtering’’ by Durand et al.10 They
reduce the contrast of the high-dynamic range images
to display it on low-dynamic range media using BF.
A major shortcoming of the seminal bilateral filter9
decomposition is its speed, thus all the abovementioned
papers use the fast bilateral filter10 with no significant
decrease in image quality.

–Weighted least squares filter: Schaul et al. (Sch-WLS)2
improve the contrast of the haze-degraded color images
by transforming the visible and NIR images via their
multi-resolution decomposition algorithm using WLS
filter. The authors fused the detail image of RGB
and NIR pairs at each level of their multi-resolution
decomposition. In comparison, in our method, we use
the detail images of BF andWLS for fusion. Zhuo et al.29
use an NIR image to enhance its corresponding noisy
visible image using dual WLS smoothing filter.

Finally, it is worth noting the seminal work by Farbman
et al.3 whoproposed the ‘‘Weighted Least Squares Filter’’
by combining detail layer of RGB channels at various
scales usingWLS multi-scale image decompositions for
tone mapping and detail enhancement. We swapped
the luminance channel of RGB image by the luminance
channel of NIR image in the same setup in order to
check the performance of3 for RGB–NIR image fusion.
We denote this method by Far-WLS.

To the best of our knowledge, our work is the first to
combine the BF andWLS filters.We compare against various
image fusion approaches in our experimental section.

PROPOSED ENHANCEMENT APPROACH
Figure 2 illustrates the entire procedure of our proposed
approach. We denote the combined BF and WLS filtering
algorithm as BFWLS. To fuse the visible and NIR images,
we first transform the RGB color space into a luminance–
chrominance color space, where the one channel NIR image
contains intensity data or luminance only.1 The chrominance
is not used in the fusion algorithm, but simply re-combined
in the final fused image.

Given an input image, the BF andWLS filters decompose
an image into base and detail images. The detail images
are obtained by simply subtracting the base image from the
original image. The base image comprises low-frequency
content with general appearance of the image over smooth
areas, while the detail layer comprises of high-frequency
contents with edges and sharp transition (e.g., noise).

In the first step, we apply BF-based and WLS-based
decompositions of the NIR image for the extraction of
base and detail images. We retain the average values of the
detail-WLS and detail-BF images at each pixel. This fusion
criterion is denoted as BFWLS-Avg.

The fusion criterion is based on the following observa-
tions: the BF filter preserves edges and can extract details
at a fine spatial scale, but lacks the ability to extract details
at arbitrary scales. Where as, WLS filter is very good at
preserving fine and coarse details at arbitrary scales. Taking
an average between two allows to retain the details from both
and moderately boosts the details. We also found that the
hidden details appeared in this way.

As a fusion criterion, we tried to retain the maximum
values between the two to preserve the structure of the
important information content from both, but may lose
much shading distribution. We denote this fusion criterion
as BFWLS-Max.
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The base layer of RGB image contains low luminance
information as perceived by humans visual system, thus the
NIR base layer is discarded. In the second step (Step 2), we
combine the fused detail layer of NIR image with the base
layer of RGB image obtained using WLS, to obtain the new
luminance image. This new luminance image enhances the
original image’s contrast and details, and it is then combined
with chrominance of RGB image to reconstruct the final
image in the third step (Step 3).

EXPERIMENTAL RESULTS & ANALYSIS
We perform two sets of experiments: First, we evaluate the
image feature quality of BFWLS in comparison to other
fusionmethods via featurematching. Second, we test BFWLS
on two challenging biometric face and palmprint verification
tasks and compare it with other baseline biometric fusion
methods. For the experimental evaluation, we used a desktop
with Intel i7-2600K CPU at 3.40GHZ, 8GB RAM. All
experiments were performed using the publicly available
Vlfeat library.30

Evaluating the Quality of BFWLS
We evaluate our proposed method on 477 pairs of images
from RGB–NIR Scene Dataset.11 We evaluate the features
quality by analyzing the amount of original features that
remain after applying the transformation to an image. A
more detailed evaluation to quantitatively assess the quality
of features in terms of robustness and discriminability can
be found in Refs. 31, 32. We repeat the procedure of feature
assessment suggested in Ref. 31 and apply synthetic rotation
transformation with (45◦, 90◦ and 180◦) to each image.
Finally the featurematching is done between the original and
transformed image pairs with threshold = 1.5 and produces a
number of matches. We compare the matches obtained from
the fusion algorithm against thematches extracted fromRGB
images, and report the relative change (in%) as an evaluation
criterion. For removing the outliers, we apply RANSAC33

with homography. By discarding the outliers, we focus on
the features that are more likely to provide true matches
in feature matching, and obtain a reduced set of candidate
correspondences with fewer accurate data points. For feature
matching, we use the SIFT implementation from the Vlfeat
library.30 For the SIFT descriptors, we use a bin size of 8 and
step size of 4.

In order to evaluate the performance of our proposed
method, we compare it with other fusion methods. As the
codes for the fusion methods2,22 were not available to the
authors, we implemented all these techniques using fast BF
filter from Durand et al.10 and WLS filter from Farbman
et al.3 for image fusion. For fair comparison, we compare all
the methods under the same evaluation protocol discussed
above with the same parameters. The default parameters for
all the methods are shown in Table I. For comprehensive
discussion, we refer the readers to Refs. 3, 10. The source
codes for fast BF,10 WLS3 are publicly available.

In addition, we also report the mean squared error
(MSE), peak signal-to-noise ratio (PSNR), and time to fuse

Table I. Parameters of BF and WLS filters for RGB–NIR image fusion. For fast BF,10 the
parameters edgemin, edgemax, σs and σr of the method are adapted to each image,
thus requires no parameter setting. n is the total number of levels for decomposition.

Method Parameters

Fre-BF22 fast BP:10 parameters adapted for each image.
Sch-WLS2 λ= 0.1, c = 2, and n = 6
Far-WLS3 λ1 = 0.125, λ2 = 0.50, c = 1.2, and n = 1
BFWLS fast BF:10 parameters adapted for each image,

and WLS: λ= 0.125, c = 1.2, and n = 1
Viv-WLS λ= 0.125, c = 1.2, and n = 1
DWT4 haar mother wavelet, and n = 9
CVT5 #levels in the wavelet pyramid: 4

#scales in the local ridgelets: {3,4,4,5}

an RGB–NIR image pair as an evaluation criterion for each
method. The PSNR and MSE are computed between the
fused and the original RGB image. The metrics shown in
Table II are mean values computed across 477 image pairs.

We can see in Table II that our method has more stable
feature matches over state-of-the-art methods. BFWLS-Avg
performs the best among all methods. BFWLS-Avg obtains
improved feature matches over RGB images by 8.78% (Rel.
Change: SIFT) and 6.27% (Rel. Change: SIFT+RANSAC),
respectively. The performance gap of BFWLS-Avg is
5.49/5.45% better when compared to BFWLS-Max using
Rel. Change: SIFT/SIFT+RANSAC criterion. BFWLS-Avg is
4.6%, 9.67%, and 3.75% better than the Fre-BF.,22 Sch-WLS2
and Far-WLS3 using Rel. Change: SIFT+RANSAC criterion.
Also, BFWLS-Avg is 4.6%, and 4.83% better than the
Fre-BF.,22 Viv-WLS using Rel. Change: SIFT+RANSAC
criterion, which clearly shows that simply not averaging the
detail layers i.e., using either the BF (Fre-BF) or WLS
(Viv-WLS) detail layer alone gave worse results than
with the fusing of the two methods. Note that Sch-WLS2
feature matches degrade by 1.11/3.49% against RGB images
after the image fusion. Our enhanced images have better
high-frequency details, and further improve the ability to
preserve edges because our approach can extract details at
fine spatial at arbitrary scales due to combined fusion from
BF and WLS filters, shown in Figure 4. As an additional
example, in Figure 3 we illustrate the impact of feature
matching using enhanced image versus non-enhanced
image. The source code for all the fusion methods will be
made publicly available.

Application to Biometric Verification Tasks
We test our proposed fusion approach for face and palmprint
verification tasks using CMU hyperspectral face12 and
CASIA multispectral palm-print5 databases in biometric
settings. In order to evaluate the performance of our
proposed method, we compare it with traditional biometric
fusion methods and other baseline methods. For this eval-
uation, we generate an RGB image and panchromatic-NIR
image for both datasets using standard image conversion of
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Table II. Comparison of BFWLS with the other methods. The metrics shown are mean values computed across 477 image pairs. The images are of resolution 1024× 680 pixels.

Metric Fre-BF22 Sch-WLS2 Far-WLS3 BFWLS-Max BFWLS-Avg Viv-WLS
(Mean) (ours) (ours) ours

Rel. Change: SIFT (%) 4.31 −1.11 4.92 3.29 8.78 3.83
Rel. Change: SIFT+Ransac (%) 1.67 −3.49 2.52 0.82 6.27 1.44
Time (Sec) 0.20 38.20 6.65 6.39 6.59 6.54
PSNR 32.36 22.83 13.28 30.28 32.69 33.45
MSE (10−4) 6.76 61 637 10 6.45 6.42

Table III. Details of the training and test set for CMU-HSFD12 and CASIA5 datasets.

CMU-HSFD12 CASIA5

Number of Subjects 29 32
Images/Subject 12–20 12
Training Images/Subject 8 6
Testing Images/Subject 4–12 6
Resolution (cropped) 132× 132 172× 172
Genuine Pairs 828 576
Impostor Pairs 11600 5760

Figure 3. Example of a flower image taken from Farbman et al.3 Note the
higher contrast and sharpness in the WLS filtered image leads to feature
matching with high confidence, in comparison to that of the RGB image.
Best viewed in color.

hyperspectral (HSI) to RGB and panchromatic-NIR images
(For transforming the HSI to RGB color space, we use (a)
CIE 2006 tristimulus color matching functions, (b) CIE
standard daylight illuminant (D65), (c) Silicon sensitivity of
Hamamatsu camera, (d) RGB–NIR filters for modulating
wavelengths in 400–1000 nm.). In this regard, we refer the
reader to the book by Ohta and Robertson34 for detailed
steps.

As an evaluation criterion, in addition to True Positive
Rate (TPR or Recall), we report the PSNR, MSE and
processing fusion time for each fusion method. We now

explain the experimental details: dataset, implementation
details, reference/testing protocol, and baselines.

Experimental Details
Datasets
The CMU-HSFD face and CASIA palmprint datasets are
publicly available datasets used in our experiments. Detailed
specification of both databases is given in Table III.

Carnegie Mellon University Hyperspectral Face Dataset
(CMU-HSFD)12 (see Table III) is acquired using the CMU
developed AOTF with three halogen light sources. Each
hyperspectral cube contains 65 bands (450–1090 nm, with
step size of 10 nm). The database contains data of 54
subjects acquired in 1–5 different sessions over a period
of about two months. For each individual, frontal, left and
right views with neutral expression were acquired. The
database contains 4–20 cubes per subject over all sessions.
We use 29 (i.e. M = 29) subjects in our experiments, for
whom we have at least three sessions, and 12–20 cubes. The
dataset suffers from shot noise. We apply a median filter
of size 3 × 3 to remove the shot noise. We transform the
hyperspectral cubes into an RGB and panchromatic-NIR
image representations.34

CASIA Multi-Spectral Palmprint Image Database V1.0
(CASIA)5 (see Table III) is acquired using five narrow band
illuminator ({460,630,700,850,940}nm) and a white light.
The database contains data of 100 subjects acquired in two
sessions with the time interval of over one month. In each
session, three samples were captured. Each sample contains
six palm images for six illuminators respectively captured
at the same time, leading to a total of 7,200 palmprint
images for 100 different subjects over all sessions. The
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Figure 4. Visual comparison of BFWLS against state-of-the-art algorithms for RGB–NIR image fusion. In the zoomed-in view, note how BFWLS-Avg adapts
well to the local structures and details when compared to the other methods. Best viewed in color.

ROIs were extracted according to the technique proposed
in Ref. 35. Only 32 subjects palmprint were detected
accurately using the extraction technique.35 Therefore, in our
experiments only 32 (i.e.,M = 32) subjects were considered
for the experimental evaluation. We use {460,630,700}nm
as an RGB image and {850,940}nm were transformed into
panchromatic-NIR image (by taking a simple mean of two
images), while the image acquired with a white light is
discarded.

Protocols
For face verification using CMU-HSFD, the reference
samples of each subject are taken from the first session, while
test samples are taken from all other sessions. For palmprint
verification using CASIA, the reference samples are taken

from the first session, while the test samples are taken from
the second session.

Implementation Details
To extract the SIFT features, we use a bin size of 4, step size
of 8, then the extracted SIFT features are Fisher encoded.
To compute Fisher encoding, we build a visual dictionary
using GMM with 100 clusters for CMU-HSFD and also 100
clusters forCASIA.Wenormalize the features using `2-norm.
We denote dense SIFT Fisher vectors by DSIFT-FVs. These
parameters are fixed for all descriptors. For all fusion
methods, we keep these parameters fixed.

Verification System
The verification system is evaluated by computing simi-
larity of the features for genuine and impostor pairs via
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Table IV. Comparative performance on the CMU-HSFD12 dataset.

Metric Fre-BF22 Sch-WLS2 RGB Raghu-DWT4 Hao-CVT5 BFWLS- BFWLS- Viv-WLS
(Mean) Avg (ours) Max (ours) (ours)

PSNR 36.04 19.78 — 47.79 14.00 38.47 34.37 39.36
MSE (10−5) 25 1123 — 1.86 4722 14.73 37.27 12.16
Time (Sec) 0.02 1.69 — 0.05 26.15 0.29 0.3 0.29
DSIFT-FVs+ Euclidean Distance:
TPR(%)@EER 57.61 60.87 61.22 62.68 60.95 65.42 59.78 59.78
DSIFT+ Cosine Similarity:
TPR(%)@EER 94.57 92.03 94.2 94.2 93.48 94.2 94.57 94.2

Table V. Comparative performance on the CASIA5 dataset.

Metric Fre-BF22 Sch-WLS2 RGB Raghu-DWT4 Hao-CVT5 BFWLS- BFWLS- Viv-WLS
(Mean) Avg (ours) Max (ours) (ours)

PSNR 46.55 37.41 — 57.55 26.29 48.49 43.94 43.94
MSE (10−5) 2.36 19 — 0.18 348 1.73 4.19 4.24
Time (Sec) 0.02 0.63 — 0.05 25.35 0.13 0.13 0.1
DSIFT-FVs+ Euclidean Distance:
TPR(%)@EER 69.62 66.61 66.15 76.01 67.19 67.6 70.31 71.86
DSIFT+ Cosine Similarity:
TPR(%)@EER 83.33 83.8 82.6 82.69 84.31 83.8 84.38 83.59

Euclidean/L2 distance. The Euclidean/L2 distance is given
by ||y − ŷ||2, where y and ŷ are the DSIFT-FVs features for
genuine/impostor pairs. The performance of the system is
measured by calculating the Equal Error Rate (ERR), which
is defined as a point when the rate of impostor pairs accepted
(FAR) is equal to the rate of genuine pairs rejected (FRR). The
lower the EER, the better is the biometric system. We report
the true positive rate (TPR or Recall in %) at the EER. The
approach is denoted as DSIFT-FVs+ Euclidean Distance.

To compute DSIFT+FVs, we need to build a visual
dictionary using GMM with a given pre-defined number of
clusters. The performance of the system is influenced by the
number of clusters, increasing the number of clusters leads
to better performance. Optimizing the number of clusters
and thus improving the performance is not the goal of this
paper. Thus, for a better assessment to evaluate the feature
quality we present another technique. Given that we have
a pair of images I and I ′ , we extract a dense set of SIFT
features: y ∈RD×K and ŷ ∈RD×K , where D denotes feature
dimensions and K is the number of features extracted. Then
we compute the cosine similarity between the descriptors
given as: scorek = < yk, ŷk > /||yk|| ||ŷk||, k ∈ [1, . . . ,K ].
The final similarity score is computed by taking mean of
all scores given as: Similarity(I , I ′)= 1/K

∑K
k=1 scorek. The

approach is denoted as DSIFT+ Cosine Similarity.

Baseline Fusion Methods
We compare BFWLS with a few baselines: the traditional
fusion approaches from biometrics and image processing
community, Raghu-DWT (Raghavendra et al.4), Hao-CVT
(Hao et al.5), Fre-BF (Fredembach et al.22), Sch-WLS (Schaul
et al.2), and Viv-WLS. In Raghu-DWT,4 the images are
the first multi-scale decomposed in n levels, then at each
nth level weighted fusion rule is applied to combine the
decomposed wavelet coefficients. And finally, the fused
image is constructed by inverse DWT. Similar is the case
with Hao-CVT,5 where the authors multi-scale decompose
the RGB–NIR image pairs, and fuse them at each nth
level of wavelet pyramid. For a fair comparison, we use an
average weighting as a fusion rule for both Raghu-DWT and
Hao-CVT to combine the RGB and NIR pair images. As
the codes for the fusion methods2,4,5,22 were not available
by the authors, we implemented all these techniques using
fast BF filter from Durand et al.,10 WLS filter from Farbman
et al.,3 Curvelet Transform (CVT) from Starck et al.,36 and
Discrete Wavelet Transform (DWT) for image fusion. The
default parameters for all the methods are shown in Table I.
The source code for all the fusion methods will be made
publicly available.

Results
InTables IV–V,we quantitatively evaluate theTPR(%)@EER
of our proposed method and compare with tradition
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(a) CMU-HSFD (b) CASIA

Figure 5. The ROC curves for the CMU-HSFD and CASIA datasets using DSIFT + Cosine Similarity method for verification tasks.* denotes the EER when
the false accept rate is equal to the false reject rate. Best viewed in color.

biometric fusionmethods and other baseline fusionmethods
for face andpalmprint verification tasks. For fair comparison,
we compare all methods under the same evaluation protocols
discussed above.

It is evident from Tables IV–V that BFWLS shows
promising results in comparison to other fusion methods
on CMU-HSFD and CASIA datasets using DSIFT + Cosine
Similarity method. Note that the TPR of BFWLS is better for
RGB images on both datasets. Figure 5 shows the ROC curve
for CMU-HSFD and CASIA datasets.

In case of DSIFT-FVs + Euclidean Distance method,
we can see that for CMU-HSFD our method performs the
best, while Raghu-DWT performs the best on CASIA. As
previously mentioned, we give a pre-defined number of
GMM clusters; hence the performance is influenced by the
number of clusters. Thus, DSIFT + Cosine Similarity is a
better evaluation criterion for feature quality assessment.

CONCLUSION
In this paper, we present a method to combine visible
and near-infrared images using edge-preserving filters:
bilateral filter and weighted least square filter. Our method
successfully enhances the visible images using near-infrared
information, to attain a result image richer in information for
computer vision applications. To illustrate the effectiveness
of the proposed method, experiments are performed to
evaluate the image feature quality on RGB–NIR Scene
dataset. Our proposed fusion method is also tested on two
challenging biometric face and palmprint verification tasks.
The proposed method not only improves the image feature
quality for recognition tasks, but also the resulting fused
image has more detail information and high image contrast
that makes visually these images appear very pleasant.
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