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Abstract. Dehazing methods based on prior assumptions derived
from statistical image properties fail when these properties do
not hold. This is most likely to happen when the scene contains
large bright areas, such as snow and sky, due to the ambiguity
between the airlight and the depth information. This is the case
for the popular dehazing method Dark Channel Prior. In order to
improve its performance, the authors propose to combine it with the
recent multiscale STRESS, which serves to estimate Bright Channel
Prior. Visual and quantitative evaluations show that this method
outperforms Dark Channel Prior and competes with the most robust
dehazing methods, since it separates bright and dark areas and
therefore reduces the color cast in very bright regions. c© 2017
Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2017.61.4.040408]

INTRODUCTION
Haze is an atmospheric phenomenon, which leads to
visibility degradation in digital images. Dehazing is a process
that aims to enhance visibility and reduce the undesirable
effects present in hazy images.1–5 Dehazing is needed in
several applications of computer vision, such as object
recognition and tracking in bad visibility conditions.6

Visibility Degradation Model
In the presence of haze, the observed intensity of light coming
from an object from a given point of view is the sum of two
processes that occur concurrently, as shown in Figure 1. One
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is the direct transmission Jt , which is the light energy that
emanates from the scene toward the observer. It is a fraction
of the scene radiance J (x), which is gradually attenuated by
scattering and absorption along the line of sight. The other is
the airlight A that comes from a light source (i.e., Sun), and
it is redirected by the haze particles toward the observer.7
The formation of hazy images is physically presented by
the Koschmieder model8 represented in Eq. (1). For each
pixel x , the hazy image I(x) formed on the camera sensor
is the sum of the scene radiance J (x) and the airlight
A(x) = A∞(1 − t(x)), weighted by a transmission factor
t(x):

I(x)= J (x)t(x)+A∞(1− t(x)). (1)

The atmospheric light A∞ is the airlight scattered by
the fog when the object is at infinite distance from the
observer. The transmission factor t(x) depends on the
scene depth d (distance from the sensor) and the scattering
coefficient β of the haze, such that t(x) = e−βd(x) and
t ∈ [0; 1]. The transmission factor t tends toward zero when
it accounts for distant objects or heavy haze and is close to
1 when it accounts for near objects or light haze. Unlike
other traditional image degradations, haze/fog has some
degrading particularities. It is a natural, depth-dependent
perturbation that spans non-uniformly over the whole
image. The degradation and the loss of information increase
with depth, as the amount of fog between the imaged surface
and the sensor increases. Hazy and foggy images also have
different prevailing colors, which depend on the density of
the scattering particles and the ambient light. The process to
recover J (x) from I(x) is known as dehazing or defogging.

J. Imaging Sci. Technol. 040408-1 July-Aug. 2017

mailto:vincent.whannou.de.dravo@gmail.com


Whannou de Dravo et al.: An adaptive combination of dark and bright channel priors for single image dehazing

Figure 1. Imaging through haze. The observed intensity of light I coming
from an object placed at distance d from the camera is controlled by two
processes. One is the direct transmission Jt , which is the light energy that
emanates from the scene toward the observer. It is a fraction of the scene
radiance J , which is gradually attenuated by scattering and absorption
along the line of sight. The other is the airlight A, which comes from a
light source (i.e., Sun) and is scattered by the haze particles toward the
observer.

State of the Art of Dehazing Methods
Two main categories of dehazing approach are usually
considered. The first relies on inversion of the physicalmodel
of haze Eq. (1). The second aims to enhance the quality
of the image according to the visual experience without
considering Koschmieder’s model. Both approaches provide
good performance on natural scenes of homogeneous light
haze.9 However, they both fail when it comes to enhancing
the visibility of scenes that contain white objects, snow or
heavy haze. Methods that estimate the Koschmieder model
parameters do not provide particularly good results when
there are too many white objects in the scene, as the haze
density is estimated over the dark pixels. They also fail when
removing a heavy haze or the haze over distant objects, where
the related physical model is almost invalid.10 Although
image enhancement algorithmsmeet real requirements, they
also fail in the aforementioned situations. Some examples of
these failures are shown in Refs. 11–13.

We separate the first category into two subcategories.
The first one consists of using some additional information
besides the color hazy image that can help to break down
the ill-posedness of the problem. For instance, Narasimhan
et al.4 and Schechner et al.5 indicated how to take advantage
of two images of the same scene taken under different
weather conditions or with different polarizer orientations,
respectively. Kopf et al.14 associated the corresponding depth
map with the hazy image. In Refs. 15, 16, dehazing is
performed based on the dissimilarities between the RGB
and the near-infrared image of the same scene. Methods
belonging to the second subcategory consider only the
hazy image. They are mainly based on prior assumptions
deduced from a large collection of similar images. For
instance, Fattal17 made his estimation based on independent
component analysis. He et al.11 proposed a solution based on
the Dark Channel Prior (DCP) assumption explained below.
Tarel and Hautière18 proposed a dehazing method based on
a filtering approach. Their method consists of estimating the

atmospheric light as the median of the minimal channel of
the image and deducing the transmission parameter of the
Koschmieder model (1) through a bilateral filter, which has
good behavior at the edges and the corners. Local smoothing
is applied to reduce noise and artifacts.

The second category includes themethods that combine
image enhancement tools with the properties of the haze
physical model. Based on the assumption that a dehazed
image has a higher contrast than its corresponding hazy
image, Tan19 proposed an optimization based on Markov
random field. Galdran et al.20,21 assumed that the physical
model is too simple to model the real situation, and
fails to handle change of size of the atmospheric particles
and the spatial non-uniformity of the illuminant. Thus,
they developed a variational framework for contrast en-
hancement of hazy images that considers spatially variant
features. Recently, Whannou de Dravo and Hardeberg22
proposed a multiscale version of STRESS (M-STRESS)
for dehazing. Based on the STRESS framework,23 they
combine edge detection and the Hidden Markov Model
(HMM). In M-STRESS, they use a spatial algorithm STRESS
(Spatiotemporal Retinex-inspired Envelope with Stochastic
Sampling) to approximate the haze model. Through the
STRESS framework, which is a simplification of the Retinex
algorithm or the ACE algorithm,24 the reflectance of the
scene is estimated based on the concept of two envelopes, the
minimum and maximum envelopes calculated on a circular
patch centered at a given pixel within the image. More details
are given in the M-STRESS section.

Observation and Contribution
According to He et al.,11 the DCP hypothesis is stated
as follows: in most of the non-sky patches of natural color
scenes, at least one color channel has some pixels whose
intensity values are very low and close to zero. This statistical
observation defines the dark channel, from which the
transmission factor t and the atmospheric light A∞ are
estimated (refer to the DCP section).

From the DCP hypothesis, we deduce the Bright
Channel Prior (BCP) assumption, which states that for sky
and bright areas, every color channel in the haze-free image
has a pixel with a high intensity, which is close to 255 if
we consider an image with 8 bits per channel.22 The BCP
is approximated by the maximum envelope of the image,
which is calculated and enhanced through the M-STRESS
method. Several dehazing algorithms are based on the
DCP hypothesis.18,19,22,25 They usually suffer from some
drawbacks: since this hypothesis depends on the dark pixels
in the scene, the DCP fails to estimate the transmission when
the light coming from an object is similar to the atmospheric
light. Thus, DCP based methods are not good at restoring
images with a large bright area such as snow or sky. Since
it has been proved in Ref. 13 that a good labeling of pixels
should overcome the color cast in bright regions, our first
goal in this article is to verify whether the BCP holds in
bright regions as the DCP holds already in dark regions.
The second goal consists of unifying both concepts into
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the same framework. Thus, we combine the DCP method11
and M-STRESS.22 The BCP cannot be directly derived from
the DCP (cf. the Proposed Method section) since it does
not simplify the ill-posedness of the haze model. Thus, the
BCP is estimated thanks to the maximum of the STRESS
algorithm from two scales (cf. the M-STRESS section).
This combination provides a beneficial enhancement of
the overall quality, observed through visual and objective
assessment. Since the processing of bright and dark areas is
performed separately, the color cast is remarkably reduced in
very bright regions.

In the following sections, we introduce the dehazing
steps of both the DCP and M-STRESS methods. We then
describe how these methods are applied on segmented parts
of the same image, which represents one of the scenarios that
causes failure of previous methods. Finally, we discuss the
results and further ways to overcome limitations.

THE DCP
Dark Channel Estimation
Based on the DCP hypothesis stated earlier, the dark channel
Jdark is the minimum intensity value over the channels, red
(r), green (g ) and blue (b), of a local patch �(x) centered
on each pixel x within the image. It is formally defined as
follows:

Jdark(x)= min
c∈{r,g ,b}

(
min

y∈�(x)
(J c(y))

)
, (2)

where J is the scene radiance, as in Eq. (1). The low intensities
within the dark channel are usually due to shadows and
dark or colorful surfaces. The dark channels Jdark are usually
computed using a patch size of 15× 15. The definition of the
patch size is critical. A large patch increases the probability
that a patch contains dark pixels. Therefore, the dark channel
can be accurately estimated. However, with a large patch, the
assumption that the transmission is constant within a patch
becomes less appropriate and the halo artifacts near depth
edges in the dehazed image become stronger.11

Atmospheric Light Estimation
As the dark channel of a hazy image is supposed to
approximate the haze density well, it is used to estimate the
atmospheric light. The atmospheric light A∞ is estimated
by picking 0.1% of the brightest pixels in the dark channel.
Among these pixels, the pixel with the highest intensity in the
input image is selected as the atmospheric light.11

Transmission Estimation
The transmission t is estimated from the airlight as follows:

t(x)= 1−w min
c

(
min

y∈�(x)

(
I c(y)
Ac
∞

))
(3)

= 1− 0.95X , (4)

where X =minc( min
y∈�(x)

(I c(y)/Ac
∞)). Here, w is the amount

of haze kept in the image to avoid unnatural scenes. It is fixed
to 0.95 in Ref. 11. In Eq. (3), t behaves as the complementary

in [0, 1] of the hazy image. Due to the halos that this
estimation can induce in the output image, the transmission
is refined by making an analogy between the haze model and
the matting equation.

Scene Radiance Recovery
After estimating the unknown parameters A∞ and t of
Eq. (1), the haze-free image is calculated as follows:

J (x)=
I(x)−A∞

max(t(x), t0)
+A∞. (5)

The scene radiance is usually not as bright as the atmospheric
light, so the image looks dim after dehazing. To avoid dim
images or a division by zero, t0 is set equal to a typical value
of 0.1.

THEM-STRESS METHOD
The STRESS framework introduced in Ref. 23 for contrast
enhancement and color correction was adjusted in Ref. 22
to be applied to the dehazing problem. According to the
observation that a relatively bright detail in a very bright
region of an image appears darker than a darker detail in
a very dark region, Kolås et al.23 calculated, for each pixel
within the image, local reference lightness and darkness
points for each color channel. Thus, for each pixel in a
circular patch, a maximum and a minimum envelope are
calculated in an iterative manner.

They represent the envelopes that contain the image sig-
nal. The calculation of these envelopes and their relationship
with the haze model formulation is provided in the following
paragraph.

For each pixel I c(x) in each color channel c,M pixels are
sampled according to a random sampling with probability
proportional to the Euclidean distance in the image from
the sample pixel I cj (x) (6= I c(x)), j ∈ {1, . . . ,M}, to the pixel
I c(x). These pixels are randomly sampled i times from a
circular patch with radius rad centered at I c(x). For one
iteration i, where i ∈ {1, . . . ,N }, the maximum and the
minimum samples are calculated as follows:

Imax,c
i (x)= max

j∈{1,...,M}
I cj ; Imin,c

i (x)= min
j∈{1,...,M}

I cj . (6)

As I c(x) is included in the sampled set, Imin,c
i (x)≤ I c(x)≤

Imax,c
i (x).

The range r ci of the sampled pixels and its normalized
value vci ∈ [0, 1] are given as

r ci (x)= Imax,c
i (x)− Imin,c

i (x); (7)

vci (x)=

{
1/2, if r ci = 0,
((I c(x)− Imin,c

i (x)))/r ci (x), else.
(8)

These parameters are averaged over the N iterations in
order to refine estimation:

r̄ c(x)=
1
N

N∑
i=1

r ci (x); v̄c(x)=
1
N

N∑
i=1

vci (x). (9)
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The maximum and minimum envelopes at each channel c,
Emax,c(x) and Emin,c(x), are calculated from r̄ c(x) and v̄c(x):

Emin,c(x)= I c(x)− v̄c(x)r̄ c(x); (10)
Emax,c(x)= I c(x)+ (1− v̄c(x))r̄ c(x)= Emin,c(x)+ r̄ c(x).

(11)

As vci (x) ∈ [0, 1], also v̄c(x) ∈ [0, 1]. This implies that
Emin,c(x)≤ I c(x)≤ Emax,c(x).

Local contrast enhancement of grayscale images is one of
the applications of the STRESS method.23 Thus, to obtain a
local effect, the corrected value of a given pixel I c(x) is scaled
between Emin,c(x) and Emax,c(x) values:

pcSTRESS(x)=
I c(x)−Emin,c(x)

Emax,c(x)−Emin,c(x)
. (12)

Considering the definitions of Emin,c(x) and Emax,c(x)
in Eqs. (10) and (11), we can deduce

I c(x)= Emax,c(x)− (1− v̄c(x))r̄ c(x); (13)
I c(x)= Emin,c(x)+ r̄ c(x)− (1− v̄c(x))r̄ c(x);
I c(x)= Emin,c(x)+ [1− (1− v̄c(x))]r̄ c(x). (14)

Assuming w̄c(x) = 1 − v̄c(x), as v̄c(x) ∈ [0, 1], also
w̄c(x) ∈ [0, 1], and Eq. (14) becomes

I c(x)= Emin,c(x)+ (1− w̄c(x))r̄ c(x). (15)

In order to meet the haze model in Eq. (1), we assume that
w̄c

1(x)= 1 and w̄c
2(x)= w̄c(x). Thus, Eq. (15) becomes

I c(x)= Emin,c(x)w̄c
1(x)+ (1− w̄c

2(x))r̄
c(x). (16)

The output of the STRESS framework is given in
Eq. (12). Thus, pcSTRESS corresponds exactly to calculating
the relative position of a pixel x of the input hazy image I
within the envelopes. In other words, it stretches the contrast
at pixel x :

I c(x)= pcSTRESS(x)w̄
c
1(x)+ (1− w̄c

2(x))r̄
c(x). (17)

From the above relationships, we point out some deductions
and indications.

• I c(x) is the input pixel value.
• pcSTRESS is the output pixel value stretched toward either
Emax,c(x) or Emin,c(x).
• The minimum envelope Emin is equivalent to the dark
channel since it can be assimilated to the local reference
darkness points in each chromatic channel.22,23

• DCP uses a fixed single scale as a parameter to dehaze
a hazy image, and all pixels in a given patch are
used for estimating parameters. According to Ref. 11,
the chromatic distortions change with the patch size.
These effects decrease within the sky region when the
patch size increases. To deal with this issue, two scales
are used in M-STRESS. Each parameter in Eq. (18)
is estimated according to the current pixel through

a random process using some predefined number of
samples in a circular patch. By doing this, the scale
in this model influences all of the parameters. The
atmospheric light, for instance, is computed in the first
model as a constant or a scalar value in each channel
without taking into account whether or not the pixel
belongs to a sky region, whereas, in the second model,
the estimation of this parameter takes into account the
three different regions of the model: far objects, which
denote objects that have dark pixels in non-dense fog;
near objects, which denote objects that have dark pixels
in heavy haze; and regions similar to the sky, which
have bright pixels. Far objects are well enhanced using
�1 from STRESS, and near objects are well enhanced
with �2 from STRESS. The terms �1 and �2 are,
respectively, two circular patches of radius such that

rad1 =
1
10

max(width, height),

rad2 =max(width, height),

where width and height represent the width and height
of the image.

• Comparing with (1), instead of a single transmission
factor t , two parameters w̄c

1 and w̄
c
2 are defined. A good

simulation of t should be such that tε[0, 1]. This is true
for w̄c

1 and w̄c
2 . Since w̄

c
1 is equal to 1, it accounts only

for near objects. In the case of rad1 when the circular
patch is small, Imax,c

i and Imin,c
i are close to each other.

Thus, r ci = Imax,c
i − Imin,c

i is small and roughly less than
1/2 since we consider a small patch and far objects.
This small value makes vci a little high. As w̄c

2 is the
complementary of vci , it will be small and will therefore
denote the distant objects. When the circular patch of
radius rad2 accounts for the whole image, r ci should be
high as more pixels of different objects are considered;
thus, Imax,c

i has the chance to be very high and Imin,c
i

to be very low. Accordingly, vci is less than 1/2 and w̄c
2

is therefore high. Thus, it accounts for near objects and
light haze.
• In DCP, the transmission is related to the depth.

The pseudo-transmission parameter in M-STRESS is
calculated separately on color channels. Therefore, even
this function may have the same behavior as that
defined in Eq. (1); it does not necessarily have here a
physical meaning that is related to the depth.
• The other difference between the dark channel Jdark and
the minimum envelope Emin,c in the way that they have
been used for dehazing is the fact that the first has been
applied to at least one channel while the second has been
applied to all channels.

Bright Channel Estimation
From the definition given in Ref. 22, the BCP can be written
formally as follows:

J bright,c(x)= max
�c (x)∈S

(Emax,c(�c(x))) (18)
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≈ max
�c (x)∈S

(pcSTRESS(�
c(x))) (19)

≈ max
�c (x)∈S

(J c(�c(x))). (20)

The term � in M-STRESS represents a given scale from the
set of scales S = {�1(x),�2(x)}. In Eq. (19), Emax,c (from
Eq. (18)) is approximated by pcSTRESS and then by J in Eq. (20)
to make a link with Eq. (1).

Atmospheric Light Estimation
The parameter r̄ c is a good approximation of the atmospheric
light when the circular patch accounts for the whole image
(radius rad2). The large value of r ci meets the definition of
the atmospheric light. It represents the haze veil that is added
to the haze-free image, represented as minimum intensities
for each color channel. The averaged value r̄ c calculated
over N iterations provides a more accurate estimation.
In M-STRESS, r̄ c is calculated for each color channel c.
According to Eq. (9), the total number of iterations N has
been set between 100 and 150. This value changes only in the
case of STRESS and is fixed for DCP.

Transmission Estimation
In M-STRESS, two pseudo-transmissions are used. The first
one, w̄1, is well suited for near objects since its value has been
set to 1. The second one is defined as w̄2 = 1− pSTRESS. Here,
the optimization of the pseudo-transmission w̄2 is performed
in a stochastic and iterative form. Thus, it seems clear that
the transmissions in the two models are close to each other,
since they can be seen as the complementary of the dark
channel from the input image in the first model11 and the
complementary of the minimum envelope in the second
model.22

Scene Radiance Recovery
The M-STRESS method estimates the haze-free image by
working on either the minimum or the maximum envelope.
When the calculation of the haze-free image is made using
the minimum envelope, this means that the input pixel
belongs to the near region or the far region. When it is made
considering the maximum envelope, this implies that the
algorithm is dealing with pixels in the sky region.

PROPOSEDMETHOD
Our method consists of segmenting an image into two parts.
The dark region where the DCP holds and the bright region
which is subject to BCP. Here, we assume that the image has
been segmented perfectly. The algorithm DCP11 is applied
on dark regions and the algorithm M-STRESS22 is applied
on regions similar to the sky. It is worth noting here that it
is more efficient to implement the BCP from the STRESS
framework than from the DCP. To show this, let us take a
look at the definition of the BCP directly derived from the
definition of the DCP given by Ref. 11. The bright channel
J bright,c at each color channel c is calculated as follows:

J bright,c(x)= max
c∈{r,g ,b}

(
max

y∈�(x)
(J c(y))

)
. (21)

According to the DCP definition, J bright,c has the following
behavior:

J bright,c(x)→ 1. (22)

Let us now include this in the initial equation of
Koschmieder’s law, Eq. (1). Following then the same steps
as in Ref. 11, we have the following equation after dividing
Eq. (1) by a known Ac

∞ and also applying the bright channel
definition to Eq. (21):

max
y∈�(x)

(
max
c

I c(x)
Ac
∞

)
= t c(x) max

y∈�(x)

(
max
c

Jc(x)
Ac
∞

)
+ 1− t c(x). (23)

Assuming that the pixel is from a bright region and
taking into account the relation in Eq. (22), we have the
following formula:

max
y∈�(x)

(
max
c

I c(x)
Ac
∞

)
= t c(x)+ 1− t c(x)= 1. (24)

Unfortunately, from Eq. (24), we could not deduce the
expression for t . Likewise, the definition of the bright channel
in Eq. (21) is not formally true; thus, it does not really help
to simplify the ill-posedness of the haze model. Due to the
difficulty of implementing the BCP from the DCP, it is worth
noting that the BCP, unlike the DCP, is not an observation
deduced from natural color scenes. It may be seen as a direct
consequence of the definition of the DCP. Thus, the formal
definition of the BCP is as follows:

∀c ∈
{
r, g , b

}
, J bright,c(x)= max

y∈�(x)
(J c(y))≈ 1. (25)

Our method flowchart in Figure 2 shows the key steps to
verify the validity of the DCP and BCP in different contexts.
When the bright region is very large compared with the
dark region, such as in snowy scenes (Figure 3), the BCP is
then applied to the whole image without prior segmentation.
When the sky is the main brightest part of the image, a
prior segmentation is required to label bright and dark pixels,
which will be dehazed by the BCP and DCP, respectively.

EXPERIMENTS
Setup
Our experiments consist of evaluating dehazing methods
with hazy images that contain either sky (Figure 4) or snow
and sky (Fig. 3). For this, we used the DCP algorithm and our
proposed method to investigate the enhancement that the
combination approach induces in comparison to DCP. We
also used Tarel’smethod tomake clear that such problems are
common for methods based on the physical model of haze.
For these experiments, we used the following settings.

• Considering the large dimensions of the images (4290×
2856) we took in Gjøvik, Lake Mjøsa at the beginning
of winter 2014–2015 (Fig. 3), all of these images have
been resized to 1128 × 635 in order to reduce the cost
in terms of calculation time.
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Figure 2. Flowchart of the adaptive combination of DCP and BCP for
sky and snow image dehazing.

• For the algorithm developed in Ref. 11, we used the
same patch size of 15× 15 as in the original article for
all of the images.
• For results obtained fromRef. 18, the default parameters
introduced in the original article were used.
• For the proposed approach, settings that have been used
in Refs. 11 and 12 have been combined.

To evaluate the performance of dehazing methods,
dehazed images are usually assessed visually and quan-
titatively using blind measures.26 This is done because
of the lack of haze-free images of outdoor scenes. We
uphold the visual judgment by some dehazing-dedicated
metrics. FADE (Fog Aware Density Evaluator),27 which is
a prediction model for perceptual fog density, denotes the
amount of haze remaining on the image after dehazing.
This is performed through similarity computation between
dehazed images, Natural Scene Statistics and fog aware
statistical features. These features include those that
are directly altered by haze, such as sharpness, contrast,
image entropy, saturation and colorfulness. The Contrast
ascension–Structural similarity metric (CS)28 combines the
ascension of contrast degree with the structural similarity

between the hazy and dehazed images. A high structure
similarity underlines a consistency of edges before and
after dehazing. This means that no artificial edges such
as blocking artifacts have been introduced after dehazing.
Unlike CS, the Contrast–Naturalness–Colorfulness (CNC)
evaluating metric29 estimates the perceived quality of the
color reproductions in terms of naturalness and saturation
in addition to the contrast. A good reconstruction is denoted
by FADE scores close to zero and high scores ofCNC andCS.

RESULTS
Considering the dehazed images shown in Fig. 3, it is easy
to observe that DCP based methods fail to recover natural
colors of bright areas, especially in the upper part of the
image. The DCP method works better on snow than on
sky, since the contrast enhancement resulting from dehazing
generates more unnatural colors in patches with higher
saturation and they are hardly distinguishable because of the
large scene depth and the high density of haze. This is seen
in all images of Fig. 3 and the first two images of Fig. 4.
This confirms the robustness of the DCP statement, which
underlines the non-sky regions, where at least a small patch is
dark. The BCP applied to the luminance channel of CIELAB
in bright regions turns out to be more appropriate than the
DCP. Although the DCP fails in such contexts, it performs
well on the last two images of Fig. 4, where a very light haze
prevails over a clear sky. We can also single out the resulting
dark contrast in dark regions, which is shown clearly in the
images of the second and fourth columns of Fig. 4. This
results from an overestimation of the haze level. A possible
relief consists of adjusting thew and t0 parameters in Eqs. (3)
and (5) to reduce unnatural and dim images.

Compared with DCP, Tarel’s method produces similar
color effects such as color cast, not only on the sky part, but
also on the snow. These effects are more accentuated on the
sky. Halo artifacts are significant near the edges separating
the upper and lower parts of images. In Figs. 3 and 4, the
images subject to Tarel’smethod remain hazy. This was stated
before in Ref. 30. This is positively rated for images with light
haze and foreground areas where thismethod keeps a natural
perception of the dehazed scene. The scores presented in
Tables I and II are calculated on images presented in Figs. 3
and 4, respectively. Besides the dehazed images, the scores of
the no-reference metric FADE are calculated on the original
hazy images, which contain a higher density of fog than
the dehazed images. The proposed method seems to be the
most efficient at fog removal for all images. According to
the CS values, our method outperforms its peers on contrast
enhancement and maintaining image structure. When color
and naturalness are considered through CNC, it is revealed
that DCP followed by Tarel’s method provide a slightly better
natural enhancement for light haze (the last two images of
Fig. 4), as stated before from visual judgment. However,
for the other images with more complicated contexts, our
method has particularly better performance.
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(a) (b) (c) (d)

Figure 3. From top to bottom, the images correspond to SNOW 1, SNOW 2, SNOW 3 and SNOW 4, respectively. (a) Original image, (b) He’s
method (DCP), (c) Tarel’s method, (d) our method. We can see that DCP methods like that of Tarel are not suited for snowy hazy images.

Table I. The scores of the FADE, CNC and CS metrics corresponding to the images dehazed by He’s method, Tarel’s method and our method and presented in Fig. 3. The best scores of
FADE, CNC and CS are given in brackets, bold and underlined, respectively. A good reconstruction is denoted by FADE scores close to zero and high scores of CNC and CS.

Original image He’s method Tarel’s method Our method
FADE FADE CNC CS FADE CNC CS FADE CNC CS

SNOW 1 3.7868 0.7827 2.2755 0.9693 1.0293 1.5668 0.8488 (0.5019) 2.4445 1.6505
SNOW 2 1.3346 0.5906 1.6929 0.2959 0.5302 1.2959 0.3584 (0.3033) 1.7583 0.8802
SNOW 3 1.3346 0.7013 1.8090 0.9341 0.8389 1.6329 0.5710 (0.4218) 1.9106 1.5535
SNOW 4 2.0149 0.4881 1.3189 0.8725 0.6501 1.3614 0.3303 (0.2585) 2.0865 2.0985
SNOW 5 1.9177 0.4606 1.2745 1.0776 0.5498 1.1969 0.3618 (0.2066) 2.3013 2.1352

DISCUSSION
From the above experiments, we can conclude that for
some haze contexts, such as the last two images of Fig. 4,
where the state-of-the-art methods perform well, they
seem more natural than our proposed method. Despite its
good performance at haze removal and enhancement of
global quality of complicated image contexts, there is still
room to improve the behavior of our proposed method
by considering amplified noise and the boundary artifacts

between dark and bright regions in the resulting image,
which would be relieved through a good labeling of pixels.

The main difficulty with our method is that it is not
completely automatic. Through the interactive graph cut
based segmentation,31,32 the user may need to relabel the
pixels that are not well identified from a first segmentation
until all pixels in the image get the right labeling.

One may ask how we can determine or know whether
the selected bright area (sky or snow, for instance) is
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(a) (b) (c) (d)

Figure 4. From top to bottom, the images correspond to SKY 1, SKY 2, SKY 3 and SKY 4, respectively. (a) Original image, (b) He’s method (DCP), (c)
Tarel’s method, (d) our method.

Table II. The scores of the FADE, CNC and CS metrics corresponding to the images dehazed by He’s method, Tarel’s method and our method and presented in Fig. 4. The best scores of
FADE, CNC and CS are given in brackets, bold and underlined, respectively. A good reconstruction is denoted by FADE scores close to zero and high scores of CNC and CS.

Original image He’s method Tarel’s method Our method
FADE FADE CNC CS FADE CNC CS FADE CNC CS

SKY 1 1.0172 0.5244 1.5756 0.6867 0.4230 1.5489 0.5499 (0.2837) 1.8376 0.8036
SKY 2 2.5307 0.6273 1.7948 1.0534 0.6286 1.7709 0.5288 (0.4293) 1.9776 1.1396
SKY 3 1.1784 0.4303 2.0221 0.8833 0.4631 1.9996 0.4685 (0.2572) 1.9267 0.9075
SKY 4 0.9123 0.3222 2.0118 1.0406 0.4282 1.9831 0.3126 (0.2061) 1.9504 1.0681

large enough or well segmented. For the sake of simplicity,
we assume that it is possible for the user to change the
segmentation that has been made if the output looks
saturated or to assume that the whole image is bright. As
we have said previously, it is possible to reduce chromatic
distortions in the sky and similar regions using a dehazing
algorithm like DCP by increasing the patch size. However, at
the same time, in a scenario in which all regions in the scene
except the sky region are dark, the output image looks almost

the same as its corresponding hazy input image. Therefore,
in that specific case, the multiscale of Ref. 11 may not be
sufficient to solve the saturation issue or remove the fog.

One important point here is that the haze prior may
change according to the context in which the haze occurs.
Therefore, it is hard to introduce a single framework or
single prior that works in any context. Moreover, in a heavy
haze, it is always a good idea to improve the visibility of
the foreground, since enhancement of the far region may
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suppose that the data are available in the input image.
However, this assumption is not valid in the case of a
heavy haze. Many scenarios are then possible in that kind
of application, and the priors that will be applied for some
specific applications may fail in other cases.

CONCLUSION
Wehave proposed an approach that combines a local contrast
enhancement method with the most popular and widely
used dehazing method, DCP. Since the latter fails for images
containing large bright regions such as sky and snow, we
proceeded by segmenting the image into two parts, namely,
bright and dark. To meet its prior hypothesis, DCP was
only applied on the dark part. We applied BCP, which is an
adjusted contrapositive formof theDCP through the STRESS
approach, on the bright part. The resulting dehazed images
outperform the results of the DCP for complicated contexts
of hazy images showing snow and sky scenes in terms of
the perceived quality. Future work may consider automatic
segmentation and optimal separation between areas, which
will be tested on a large image dataset.
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