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Abstract
This work presents a local (spatially-variant) gamut reduc-

tion algorithm that operates only on the saturation channel of the

image, keeping hue and value constant. Saturation is reduced by

an iterative method that comes from inverting the sign in a 2D

formulation of the Retinex algorithm of Land and McCann. This

method outperforms the state-of-the-art both according to a quan-

titative metric and in terms of subjective visual appearance.

Introduction
Gamut reduction deals with the problem of modifying the

color gamut of an input image to make it fit into a smaller destina-

tion gamut. Gamut reduction occurs both in the printing industry

where images must be carefully mapped to those colors that are

reproducible by the inks presented at a particular printer and in the

cinema industry where cinema footage needs to be passed through

a gamut reduction method in order to be displayed on a television

screen [4], [10].

A thorough survey of gamut reduction methods can be found

in the book of Morovič [18]. In general, we can group gamut

reduction methods into two classes: global and local methods.

Global methods [6, 9, 14, 15, 17, 20–22] treat pixels of the image

independently from their surround by applying a point-to-point

mapping from the colors present in the source gamut to those in

the target gamut. While global methods are fast and quite effec-

tive in general, by construct they disregard the spatial distribution

of colors which does cause some issues, like turning a smooth

color gradient image region into a flat-color object by mapping

several out-of-gamut colors onto the same in-gamut color, and ig-

noring the fact that in visual perception the appearance of colors

is heavily influenced by their spatial context in the image. Lo-

cal methods, like the ones presented in [2, 3, 8, 11, 16, 19, 23], are

designed to cope with those problems.

The contribution of this paper is to present a novel, local

gamut reduction algorithm that outperforms the state-of-the-art

both according to a quantitative metric and in terms of subjective

visual appearance. Our work builds on the assumption that, in or-

der to perform gamut reduction in the HSV space, it is sufficient

to decrease the saturation values while keeping the hue and value

channels constant. We achieve this by applying, just to the satu-

ration channel, an iterative method that reduces contrast, adapted

from [5].

Proposed Gamut Reduction Algorithm
In their kernel-based Retinex (KBR) formulation, Bertalmı́o

et al. [5] take all the essential elements of the Retinex theory

(channel independence, the ratio reset mechanism, local averages,

non-linear correction) and propose an implementation that is in-

trinsically 2D, and therefore free from the issues associated with

implementations based on random paths. For each initial image

channel intensity I0, the KBR method iteratively computes the

perceived value I with the equation

Ik+1(x) =
Ik(x)+∆t

(

β I0(x)+
γ
2 RIk (x)

)

1+β∆t
, (1)

where k is the iteration index, x is the pixel location, ∆t is

the time step, β and γ are constants, and RIk (x) denotes a contrast-

modification function:

RIk (x) = ∑
y∈I

w(x,y)

[

f

(

Ik(x)

Ik(y)

)

sign+(Ik(y)− Ik(x))

+sign−(Ik(y)− Ik(x))

]

,

(2)

where w(x,y) is a normalized Gaussian kernel of standard

deviation σ , f is a monotonically increasing function, and the

functions sign+(·) and sign−(·) are defined as:

sign+(a) =







1, if a > 0,
1
2 , if a = 0,

0, if a < 0,

(3)

sign−(a) = 1− sign+(a). (4)

In [5] it is shown that, with γ > 0, running Eq. (1) to steady

state produces a contrast-enhanced output Iss where Iss(x) ≥

I0(x),∀x. But, if γ < 0, then the output Iss has its values reduced

with respect to the original, Iss(x)≤ I0(x),∀x.

The human visual system is highly sensitive to hue changes,

which is why one main aim while performing gamut mapping is

to preserve hue. Therefore, we opt to work in the HSV color space

and modify only the saturation component, keeping both hue and

value constant: the gamut reduction goal can be formulated as

decreasing the saturation. For this purpose, then, we first convert

the RGB input image into the HSV color space, and then apply

Eq. (1), with a negative value for γ , to the saturation component

only.

Implementation
In the gamut mapping community, it is a very common and

recommended practice to leave those colors of the input image

unchanged that are already inside the destination gamut and ap-

ply gamut reduction operation to the out-of-gamut colors only. To

follow this approach, the proposed GRA works iteratively. The

general structure of our iterative GRA is as follows: at each itera-

tion, we run Eq. (1) for some particular values of β and γ until we

reach the steady state (in the first iteration the values are β = 1,

and γ = 0). The steady state of each iteration will provide us with

some pixels that we mark as “done” and we would not modify
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Figure 1: Gamut reduction procedure. (a) Gamuts on chromaticity diagram. (b) Results of gamut reduction. Top left: input image.

Top right: reduced gamut image (same as of input image) when γ = 0. Bottom left: reduced-gamut image with γ = −2.13. Bottom

right: reduced-gamut image with γ =−4.67. Out-of-gamut colors are masked with magenta color; as we reduced γ value the number of

out-of-gamut colors is also decreased.

Figure 2: sRGB test images. From left to right, top to bottom:

first 2 images are from [1], image 3 and 4 are from [7], image 5

is from [8] and the last two images are from the photographer Ole

Jakob Bøe Skattum.

Table 1: Primaries of gamuts.

Gamuts Red Primaries Green Primaries Blue Primaries

x y x y x y

sRGB 0.640 0.330 0.300 0.600 0.150 0.060

Toy 0.510 0.320 0.310 0.480 0.230 0.190

their values in subsequent iterations (i.e. these pixels are now part

of the final output). We move to the next iteration where we make

a small decrement in the γ value (for example, setting γ =−0.05)

and run again Eq. (1) until steady state, and then check whether

any of the pixels that were outside the gamut at the previous itera-

tion are now inside the destination gamut: we select those pixels

for the final image and leave them untouched for the following it-

erations. We keep repeating this process until all the out-of-gamut

colors are mapped inside the destination gamut. An example of

this iterative procedure is shown in Fig. 1b, where pixels in color

magenta represent the out-of-gamut pixels remaining in that iter-

ation. The corresponding evolution of the gamut is illustrated in

Fig. 1a, showing that as γ decreases the gamut is gradually re-

duced.

Experiments and Results

In this section we compare, visually and by using a percep-

tual error metric [13], the performance of our GRA with other

methods such as LCLIP [21], HPMINDE [20] and the algorithms

of [22] and [2]. We apply the proposed GRA in HSV color space

and the parameters values used in Eq. (1) are β = 1, ∆t = 0.10.

The non-linear scaling function that we use is f (r) = A log(r)+1,

where A = 1
log(256) . The value for σ , the standard deviation for

w(x,y), is equal to the one-third of the number of rows or columns

of the input image (whichever is greater). In order to map colors

from a larger source gamut to a smaller destination gamut, we

keep iterating the evolution equation (1) for each γ value until the

difference between two consecutive steps falls below 0.5%.

Visual Quality Assessment

To evaluate the image reproduction quality, we map colors

of sRGB images (Kodak dataset [12] and images of Fig. 2) to a

challenging smaller ‘Toy’ gamut using the competing GRAs. The

color primaries of sRGB and Toy gamuts are given in Table 1. The

results presented in Fig. 3 show that the proposed GRA produces

images that are perceptually more faithful to the original images

than the other methods, preserving hues and retaining texture and

color gradients. In the close-ups shown in Fig. 4 we can see

that HPMINDE may introduce noticeable artifacts in the repro-

ductions because it may project two nearby out-of-gamut colors

to far-away points on the destination gamut. Also, the HPMINDE

algorithm can produce images with loss of spatial detail, as it can

be observed in rows 1 and 4 of Fig. 4. The methods of LCLIP and

Schweiger et al. [22] may produce results with excessive desatu-

ration in bright regions, as shown on the close-ups of the helmet

and on the neck of the yellow parrot. The algorithm of Alsam et

al. [2] can over-compensate the contrast, as shown in the example

of the first row of 4. In the example of the second row of Fig. 4,

all tested GRAs except the proposed one produce tonal disconti-

nuities on the face of the woman.
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Figure 3: Reproductions of GRAs. Column 1: input images. Column 2: LCLIP [21]. Column 3: HPMINDE [20]. Column 4: Schweiger

et al. [22]. Column 5: Alsam et al. [2]. Column 6: Our GRA. The original image in the last row is from [7], while rest of the input images

are from Kodak dataset [12].

Figure 4: Comparison of GRAs: crops are from Fig. 3. Column 1: original cropped regions. Column 2: LCLIP [21]. Column 3:

HPMINDE [20]. Column 4: Schweiger et al. [22]. Column 5: Alsam et al. [2]. Column 6: Our GRA.
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Quantitative Assessment
This section is devoted to examining the quality of the com-

pared GRAs using the perceptual color image difference (CID)

metric [13], which is particularly tailored to assess the quality of

gamut reduction results. The CID metric compares the gamut-

mapped image with the reference (original) image and analyzes

differences in several image features such as hue, lightness, struc-

ture, chroma and contrast.

We apply the competing GRAs on the Kodak dataset [12]

and on seven other images (that are shown in Fig. 2). In Table

2 we summarize the results obtained using the CID measure. It

can be seen that our GRA outperforms the other methods in 24

out of 31 test images. Furthermore, the statistical data (mean,

median and root mean square) presented in Table 3 also underlines

the good performance of the proposed algorithm over the other

GRAs.

Conclusions
We have presented a gamut mapping method that efficiently

maps colors of a large source gamut to a smaller destination

gamut. We show that our GRA outperforms other gamut reduc-

tion methods in terms of visual quality and according to a percep-

tual error metric.

We are currently working on reducing the computational cost

of our method aiming for real-time implementation
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[18] J. Morovič. Color gamut mapping, volume 10. Wiley, 2008.
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Table 2: Quantitative assessment using CID metric [13]. The first 24 images are from Kodak dataset [12] and the rest of the images are

sequentially shown from left to right in Fig. 2.

Image # LCLIP [21] HPMINDE [20] Schweiger et al. [22] Alsam et al. [2] Our GRA

1 0.0046 0.0242 0.0059 0.0255 0.0051

2 0.1098 0.3238 0.1195 0.1668 0.1135

3 0.0397 0.0831 0.0405 0.0631 0.0291

4 0.0114 0.0766 0.0131 0.0398 0.0101

5 0.0158 0.0252 0.0188 0.0330 0.0061

6 0.0275 0.0155 0.0324 0.0792 0.0002

7 0.0123 0.0369 0.0121 0.0504 0.0109

8 0.0067 0.0061 0.0157 0.0326 0.0001

9 0.0037 0.0097 0.0047 0.0525 0.0047

10 0.0010 0.0019 0.0012 0.0216 0.0004

11 0.0014 0.0055 0.0022 0.0277 0.0010

12 0.0077 0.0114 0.0082 0.0453 0.0008

13 0.0038 0.0060 0.0049 0.0231 0.0012

14 0.0238 0.0635 0.0252 0.0473 0.0224

15 0.0278 0.0452 0.0275 0.0716 0.0157

16 0.0014 0.0032 0.0018 0.0214 0.0003

17 0.0018 0.0012 0.0030 0.0116 0.0003

18 0.0082 0.0175 0.0134 0.0325 0.0056

19 0.0042 0.0096 0.0086 0.0428 0.0013

20 0.0478 0.0358 0.0517 0.0945 0.0041

21 0.0071 0.0037 0.0095 0.0293 0.0001

22 0.0080 0.0157 0.0121 0.0327 0.0009

23 0.0309 0.1480 0.0336 0.0668 0.0308

24 0.0028 0.0017 0.0057 0.0175 0.0001

25 0.0040 0.0175 0.0038 0.0284 0.0045

26 0.0142 0.0413 0.0145 0.0467 0.0156

27 0.0087 0.0443 0.0094 0.0321 0.0100

28 0.0752 0.1503 0.0741 0.1067 0.0832

29 0.1476 0.2081 0.1333 0.1324 0.1148

30 0.0299 0.0769 0.0372 0.0830 0.0289

31 0.0083 0.0130 0.0102 0.0230 0.0098

Table 3: Quantitative assessment: statistical data

LCLIP [21] HPMINDE [20] Schweiger et al. [22] Alsam et al. [2] Our GRA

Mean 0.0225 0.0491 0.0243 0.0510 0.0171

Median 0.0083 0.0175 0.0121 0.0398 0.0051

RMS 0.0396 0.0855 0.0397 0.0618 0.0346
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