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Abstract 
A print property closely related to color and with a strong 

dependency on the choices made for the sake of color separation is 
the smoothness of a printed pattern. While certain obvious choices 
are simply related to grain, such as the degree of black ink use in 
colorant-channel imaging pipelines, the domain of all possible 
printable patterns that HANS (Halftone Area Neugebauer 
Separation) [1] provides access to eludes such simple rules of 
thumb. At the same time, the magnitude of the new control domain 
gives access to new patterns that allow for a reduction of grain 
and an increase in smoothness beyond what is possible using 
conventional techniques. In this paper, a framework for optimizing 
smoothness is presented first, followed by a mechanism for varying 
it in a controlled and continuous way, when the aim is a given 
trade-off between smoothness and other attributes such as colorant 
use efficiency or robustness to perturbations. 

Introduction  
While color is the most prominent variable controlled in 

printing, there is redundancy in achieving it, which opens the door 
to varying other print attributes at the same time. Due to the 
inherent color-redundancy of printing systems, there are entire sets 
– metamer sets – of either colorant combinations (in traditional 
imaging pipelines) or of Neugebauer Primary area coverage 
vectors (in HANS pipelines) that result in a given color. Some of 
these will use less ink than others while some will yield smoother-
looking prints and others will result in grainier ones. 

Considering grain, the main control mechanisms used for 
varying it have until now been choices in terms of halftoning (i.e., 
the use of green versus blue noise halftone matrices [2] would 
result in clusters that increase the graininess of a print) and black 
generation (i.e., increasing the strength of gray component 
replacement would result in more black colorant being used and 
therefore in more visible, grainier printed patterns). While this 
yielded variation in grain, the relationship between the choices and 
the resulting level of grain has been indirect, often discrete (i.e., 
the use of one halftoning matrix versus another) and usually global 
(i.e., a single set of choices had to be made for all colors). 

In this paper, an approach to smoothness optimization and 
control is presented that allows for direct choices to be made about 
it, where control can be exercised in a continuous way and that 
benefits from an access to the vast variety of printable patterns that 
the HANS framework provides. 

Before proceeding with grain prediction, optimization and 
continuous control using HANS, it is worth reviewing the basic 
principles of this imaging pipeline framework that enable them. 

The key insight of HANS is that print can be controlled at the 
level of its atomic states, i.e., the contents of individual halftone 
pixels. Looking at such pixels, they can specify any combination of 
a printing system’s colorants. E.g., for a three-colorant, binary 
system, there are eight possible halftone pixel states: blank 
substrate, one colorant at a time (three states), two colorants at a 
time (another three states) and all three colorants combined in a 
single pixel. For a CMY system, the states are B, C, M, Y, CM, 
CY, MY and CMY. These states are also known as the 

Neugebauer Primaries [3] and a halftone pattern can be specified 
by assigning relative area coverages to each one of them. The 
resulting Neugebauer Primary (NP) area coverage (NPac) vector 
expresses the probability with which each of a printing system’s 
NPs is to be used within a spatial neighborhood. 

An important consequence of specifying NPacs instead of 
colorant amounts is that they represent a convex combination of at-
pixel states and that their color therefore is the result of convexly 
combining the color of their constituent pixel colors (in an 
appropriate color space, such as Yule-Nielsen (YN) corrected XYZ 
[4]). This also means that NPacs can be convexly combined while 
remaining in that same convex domain. Such associativity [5] 
means that the convex combination of relative area coverage 
weighted NP colors can also be seen as the convex combination of 
two or more constituent sub-patterns, i.e., individual patterns that, 
when convexly combined, give rise to a continuum of patterns 
between them (Figure 1). 

 

 
Figure 1. Associativity of pattern convex combination. 

Since what varies as two patterns are combined are only 
convex weights that represent area coverages, a transition obtained 
by varying such weights occurs in the optical additivity domain 
resulting from the human visual system’s limited spatial resolving 
power and is therefore smooth. A second feature of convexly 
combining NPacs is that only NPs that have non-zero coverage in 
those NPacs are used in the transition between them. E.g., if the 
end points only contain colorants by themselves, no overprinting 
between colorants will take place in a transition between them. 
This property of convex combinations can be thought of as 
“closedness.” Given arbitrary patterns, determined individually, 
their convex combinations will therefore form a smooth transition 
in visual terms, which will be relied on when optimizing color to 
NPac mappings, such as the ones described here, which are aimed 
at controlling a print’s smoothness. 

The following sections will introduce the modeling and 
optimization of print smoothness, followed by a mechanism that 
allows for continuous control over it, including results about the 
success of the approach on a test system. 

Smoothness prediction 
There are a number of ways in which the grain of a halftone 

pattern can be quantified, all of which share the basic feature of 
linking it to the standard deviation of local colors within a 
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neighborhood [6, 7]. The greater such a standard deviation of local 
component colors, the more visible the pattern they form and the 
greater the resulting perception of grain. However, existing 
methods typically involve psychometric evaluation and/or a 
scanning of prints whose grain is then predicted from the resulting 
images. Since grain optimization requires a metric that is applied 
before any printing takes place, it is first necessary to identify both 
a suitable metric for application to digital data and an appropriate 
domain to which to apply it. A further requirement for a good 
grain-optimization metric will be simplicity and computational 
efficiency, since it will need to be applied to 10s or 100s of 
millions of candidate printable patterns. 

To test candidate metrics, a small-scale experiment was first 
conducted in which six observers with color-normal vision were 
asked to view 16 color patches, printed using CMYK inks on a 
matte paper substrate, and judge their level of grain in terms of 
three categories: low, medium and high. The result, using the mode 
of individual category judgments, was a categorization where eight 
patches were judged to have low grain, five patches were identified 
as having medium grain and three as having high grain (Figure 2). 
A candidate grain optimization metric will be considered 
successful if its predictions separate low from high grain. 

 

   
Figure 2. Scans of example color patches with (left) low, (center) medium and 
(right) high levels of perceived grain. 

Since existing metrics all share the use of standard deviation, 
a starting point was to apply it directly to NPacs. Because an NPac 
specifies area coverages of a printing system’s NPs, its standard 
deviation can be obtained from the area coverage weighted color 
difference between each NP’s color and the NPac’s color: 

 (1) 

where g is the grain metric, an is the area coverage of the n-th 
NP, NPn is its color, T is the color of the NPac (i.e., the area-
coverage weighted sum of its constituent NPs’ colors) and || || is a 
color difference metric. In this simple framework, the best results 
(Figure 3) were obtained by using YN-corrected XYZ to compute 
T and ∆E2000 as the color difference metric. As can be seen, there 
is a significant overlap between the high and low grain patches 
here, which does not make this a suitable solution. This, in fact, is 
not surprising, since the very simplistic approach used here is 
entirely agnostic of the halftone matrix used by the PARAWACS 
algorithm [8] to provide print-ready halftones for the 16 NPacs in 
question and would yield the same predictions regardless of 
whether halftone structure was clustered or not, which however 
would result in very different levels of grain of the halftoned 
patches. 

The next step, therefore is to go from an NPac to generating a 
corresponding halftone pattern and to then derive a metric from 

that halftoned image. If all that was done were to compute a 
standard deviation of the halftoned image’s pixels, then the exact 
same result as before would be obtained, since the pixels’ statistics 
are identical to the NPac. Two alternatives present themselves 
here: first, to take into account optical dot-gain by filtering the 
halftones in a YN-corrected XYZ domain, and, second to take into 
account the contrast sensitivity function (CSF) of the human visual 
system. Since for the kinds of printed content where smoothness of 
halftone patterns is important, prints are often inspected up-close, 
the benefit of taking CSFs into account is limited. This however, 
would be a useful extension of what follows, in cases where 
smoothness optimization would be applied to prints made for 
viewing at greater distances. 

 

 
Figure 3. Grain predictions using simple NPac-applied grain metric. 

 
Figure 4. A pair of (left) low and (right) high grain halftones, (top) before and 
(bottom) after filtering in Yule-Nielsen XYZ over 3×3 local neighborhoods. 

In the case of interest here, where prints are inspected up-
close, halftones obtained from NPacs using the PARAWACS 
halftoning algorithm will only have the effect of optical dot-gain 
simulated. This is done by taking the halftoned image and 
replacing the NP at each pixel with its corresponding colorimetry, 
predicted using the RONT model, which extends Kubelka-Munk 
and Yule-Nielsen by a T matrix that reinforces spectral correlation 
[9]. NP colorimetry computation is here performed by taking 
NPacs that use only a single NP at a time (i.e., representing some 
unit area with that NP at each location) and then pass through the 
three stages of color prediction to arrive at spectral reflectance and 
from there colorimetry. Then, each pixel’s colorimetry is replaced 
by the mean of its’ r×r neighborhood’s pixels, computed in YN 
XYZ and then transformed back to XYZ (Figure 4). This 
processing is akin to a convolution filtering with a mean filter and 
therefore the result is, as expected, a blurring of the original 
halftone, which is broadly consistent with the effect of dot-gain. 

g  an NPn T
i1

n


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Finally, the grain metric is computed as in equation 1 over the 
halftone patch’s filtered pixel colorimetries instead of over area-
coverage-weighted NP colorimetries, resulting in the following 
grain predictions (Figure 5).  

 

 
Figure 5. Grain predictions from metric applied to YNN-filtered halftone. 

As can be seen, color patches judged to have low and high 
grain are successfully separated by the grain metric derived from 
YN-filtered halftone images. However, patches judged to have 
medium grain have predicted grain values interspersed with the 
predictions of both high and low grain patches. To understand 
whether this level of performance was acceptable, the 16 NPacs 
were printed in the order of their predicted levels of grain and 
again inspected by the original six observers in comparison with 
their manual ordering and with the ordering obtained using the 
NPac-only metric (Figure 6). Here the judgment of the observers 
indicated a similar level of performance for their original grain 
ordering and for the ordering predicted from YN-filtered halftone 
colorimetries. 

 

 
Figure 6. Printed halftone patterns ordered left to right from low to high by 
(top) perceived grain, (middle) grain predicted from NPacs and (bottom) grain 
predicted from YN-filtered halftones. 

To test the suitability of this, simple, digital grain metric, it 
was then used in the context of optimizing a HANS color 
separation. While the grain metric derived here is based on a 
clustering into categories of grain (low-medium-high), it may not 
be suitable for a ranking of arbitrary patches in order of grain. 
However, it does allow for distinguishing of the aforementioned 
categories. This in turn also allows for optimization, since here in 
every neighborhood the halftone that has the lowest (or highest) 
metric will be selected, hence this too is a categorization problem 
and does not strictly require the ability to strictly order by grain. 

Smoothness optimization 
Since the NPac domain of HANS provides the ability to 

smoothly transition between arbitrary NPacs, it enables an 
optimization of color separation, where individual nodes of a 
colorimetry to NPac look-up table (LUT) may freely and 
independently have their content determined. At high-level, the 
approach here is one of mining NPac space, followed by an 
evaluation of mined NPac properties, by a grouping of mined 
NPacs by color and finally by a selection of one NPac per color 
group. 

More specifically, the following process can be used to 
optimize a color separation for smoothness: 

1. Generate NPacs using a RANSAC approach [10], where 
random values are assigned to a printing system’s NPacs 
and where these are subsequently adjusted to sum to one. 
To make this NPac synthesis more useful, the process 
can be performed for specific choices of NPs having 
non-zero area coverages, since the process would 
otherwise favor NPacs with many, or even all, NPs of a 
system being used. Given a printing system with n NPs, 
NPacs with 2, 3, 4, … and up to n NPs can be generated 
in turn by generating the appropriate number of random 
values and then assigning them randomly to NP indices. 

2. For each of the NPacs generated in step 1, predict their 
colorimetry using the RONT model and their grain using 
the standard-deviation computation applied to YN-
filtered halftones generated from an NPac. 

3. Subdivide color space into bins of given dimensions, 
e.g., in L*, a* and b* and assign each NPac from step 1 
to its corresponding bin based on its predicted color 
(from step 2). The bins here can be thought of as paramer 
sets. As bin size reduces, these paramer sets approach 
being metamer sets. 

4. For each bin from step 3, select the NPac that has the 
lowest grain score. 

 

 

 
Figure 7. NPacs with (top) lowest and (bottom) highest grain, where the 
chosen NPac per bin’s marker shows its color and the marker’s size indicates 
the grain score. The black lines connect the NPac’s predicted color to the 
centroid of the bin that contains it. 
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The result of the above process is one NPac per color space 
bin, where that NPac has the least amount of grain in that part of 
color space, given the sampling used. 

The above approach was used on a printing system with four 
inks, CMYK, using HP Heavyweight Coated paper and having the 
ability to print up to one drop per ink per halftone pixel. In this 
case there are 34=81 NPs since up to two drops could be specified 
for each ink at a halftone-resolution pixel, which results in three 
levels per ink per pixel. The RONT model tuned to this printing 
system had a mean accuracy of color prediction of 0.9, a 95th 
percentile of 2.2 and a maximum error of 3.4 ∆E2000. An oblong 
enclosing the colors of the 81 NPs was subdivided into 253 bins 
and a total of 13 171 174 NPacs were generated, evaluated and 
binned as described above. The result were 1257 non-empty bins, 
grouping the above NPacs by color (Figure 7). 

Finally, the NPacs with both lowest and highest predicted 
grain were kept for each bin. Delaunay-tessellating each of the two 
sets of NPac-color sets in color terms then provides the means to 
take color inputs, gamut mapped to the system’s color gamut, and 
interpolating NPacs for them both for grain minimization and 
maximization. Using the two LUTs for processing image content 
then resulted in prints with very different degrees of grain and in 
both cases with consistent levels of grain within each of the prints 
(Figure 8). 

 

 
Figure 8. Photos of two prints made on the same printing system using the 
(left) grain minimizing and (right) grain maximizing color to NPac LUTs. 

Even with the very limited ground truth from which the 
simple grain metric was derived here, the NPac choices made on 
the basis of their predictions resulted in consistently low versus 

high grain, depending on the choices made per color bin. These 
per-bin choices can be thought of each as akin to the simple 
experiment conducted initially to derive the metric, whereby all 
NPacs in a single bin are clustered into the low-medium-high 
categories by the metric and the lowest and highest are kept. 
Again, since the purpose of the metric is not an absolute ordering 
of all NPacs by grain, but a relative clustering, and this being 
performed for a uniform sampling of color space, the end result is 
a consistent choice of low and high grain NPacs that jointly 
constitute low-grain and high-grain LUTs. 

Continuous control 
In addition to enabling the per-bin optimization of NPacs 

described above, the convexity, associativity and closedness of the 
unconstrained NPac domain also provides access to the continuum 
between individual optimized LUTs. Since the content of each bin 
is chosen independently of the other bins’ contents, it can also be 
adjusted independently and, as long as the resulting NPac has the 
correct color associated with it, it can be tessellated with other 
NPac-color pairs to form a valid color to NPac mapping. 

While it is in some cases desirable to maximize the 
smoothness of a print (and therefore minimize its grain), in other 
cases some grain may be desirable since it may provide some 
degree of robustness to perturbations in a printing system. E.g., a 
missing print head nozzle or a change in drop size may be less 
noticeable when printing a grainier than a smoother print. As a 
result, it may in some cases be desirable to choose a level of grain 
that is not at the minimum possible. 

Here the most direct solution is to run the optimization 
presented above and to select not the minimum grain at each bin, 
but a grain level that is at a certain, higher level. While this is 
certainly a valid approach, it comes with two challenges: the need 
to re-compute an optimization (or to re-select NPacs per color bin 
from having kept all of the NPacs as an optimization proceeded) 
and the need to know what specific level of grain is desired. Here 
the first challenge is about compute resources while the second 
introduces the risk of having to iterate until the correct level of 
grain is arrived at. 

A simple alternative that the HANS NPac domain enables is 
to blend LUTs, since the NPac domain is associative [5]. However, 
before proceeding with the blending, it is beneficial to perform a 
regular resampling of the minimum and maximum LUTs obtained 
by the optimization. Taking a regular grid in CIELAB and 
interpolating NPacs for each of its nodes gives us two NPac sets 
where corresponding members match in color and differ only in 
grain. 

  

Figure 9. Prints made using (from left to right): grain minimization (i.e., w=0), w=0.25, w=0.5 and grain maximization (i.e., w=1) LUTs. 
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From such colorimetry-regular minimum and maximum grain 
LUTs, it is then possible to compute LUTs in-between by 
assigning weights to the two extreme LUTs that add up to one. 
This results in LUT members of an intermediate, blended LUT 
being computed from the minimum and maximum LUTs as 
follows: 

acblended,n,i = w*acmax,n,i + (1-w)*acmin,n,i (2) 

where ac represents the area coverage of the n-th NP in the i-
th NPac and w is the weight of the maximum-optimized LUT. Note 
that more LUTs could be blended in this way, using a set of 
convex weights. E.g., the minimum and maximum grain LUTs 
could be combined with the minimum and maximum ink use ones. 

Looking at the result of LUT blending of the minimum and 
maximum grain-optimized LUTs in Figure 9, it can be seen that 
there is a continuous increase of grain as we proceed from 
minimum to maximum. It can also be seen from Figure 9 that the 
change is not linear, which can be solved by characterizing the 
relationship between w and perceived grain. Again, using the small 
panel of 6 observers, the w-grain relationship shown in Figure 10 
was determined, which then allows for linear control over grain 
between the extremes accessible on the test system used here. 

 

 
Figure 10. Relationship between perceived grain and w used to blend 
minimum and maximum grain LUTs. 

Finally, it is worth noting that all of the above variation in 
grain was achieved solely by varying NPac composition and that 
there is another, important vector that could be adjusted, which is 
the use of halftoning matrix, where greater clustering can increase 
grain. To use the above method with a different matrix however 
requires a new optimization since the grain prediction metric takes 
the halftone matrix into account and would not preserve the 
categorization or choices made for another matrix. 

Summary 
Color separation choices provide control over a variety of 

print attributes and while this is the case already with colorant-
space approaches, using the HANS NPac domain for affecting 
them provides a host of additional benefits. Choices for individual 
colors can be made in isolation, due to the convex, closed nature of 
transitioning in this domain. Making choices about NPacs also 
benefits from their close proximity to printed properties, which 
allow for effective predictions to be made on their basis. 

In this paper, results were shown for making predictions about 
grain on the basis of digital halftones and for using such models in 
the process of optimizing color separations for grain. Finally, it 
was also demonstrated that the HANS NPac domain allows for 
continuous transitioning between individually-optimized 

separations, which, in turn, allows for interactive user control over 
print properties. 

The framework presented here has in the past been used for 
controlling ink use [1], and will in future work be applied to other 
print properties. 
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