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Abstract 

Multispectral reconstruction from single RGB image can 

eliminate the geometric distortion problem existing in optical 

bandpass filters-based multispectral cameras and save the 

capturing time, but the reconstruction accuracy is limited by just 

using the original three channels response. Camera response 

expansion is an optimal choice to increase the dimensions of the 

input information for multispectral reconstruction as the imaging 

and processing is practically not linearity for the trichromatic 

digital cameras. In this paper, the camera response expansion 

based on polynomial model was tested for multispectral 

reconstruction from single RGB image, the pseudoinverse method 

was adopted for the training-based multispectral reconstruction, 

and the local inverse distance weighted (LIDW) optimization was 

proposed to improve the reconstruction accuracy. The proposed 

method was compared with the current existing methods through 

practical experiment, and the results indicated that it outperformed 

existing methods. 

Introduction 

Multispectral imaging techniques are developing rapidly in 

the domains of remote sensing,[1] color imaging,[2] biometrics and 

medicine,[3] cultural heritage and artwork studies[4] because of their 

high-quality imaging in colorimetric and spectral aspects. Different 

multispectral imaging systems have been devised to encompass 

this wide range of applications, such as digital cameras combined 

with line-scan spectrographs,[5] color filter wheels,[6] broadband 

filters,[7] narrowband filters,[8] multiple light sources,[9] and tunable 

filters of liquid crystal technology.[10] Reflectance reconstruction is 

a key issue for most of the above optical bandpass filters-based 

multispectral system as it is an ill-posed problem solution for high-

dimensional reflectance estimation from the low-dimensional 

multi-channel digital response, and has been extensively 

studied.[11-13] Besides, the geometric distortion, which reduces the 

multispectral imaging accuracy, is an inherent problem for optical 

bandpass filters-based multispectral system and is difficult to 

calibrate and correct because of the complexity of optical imaging 

systems.[14] Rethinking of the principal of the current available 

optical bandpass filters-based multispectral system, the main 

advantages of these system compared with the traditional 

trichromatic digital imaging devices is that they have more 

response channels, and therefore generates more dimensions of the 

response signal. Inspired by this finding, we intend to reconstruct 

the multispectral image from single RGB image based on the 

concept of camera response expansion, which could effectively 

overcome the geometric distortion problem, and at the same time 

save the capturing period. 

In this paper, the camera response expansion basing on 

polynomial model was tested for multispectral reconstruction from 

single RGB image. The trichromatic digital camera response was 

firstly expanded to more items than the original three channels, and 

the spectral reflectance was reconstructed from the expanded 

camera response using the training-based pseudoinverse 

reflectance reconstruction method. The LIDW optimization 

method was proposed to improve the reconstruction accuracy. The 

influences of the number of local training samples and the number 

of expansion items on reconstruction accuracy was explored, and 

the optimal number of local training samples and response 

expansion items were determined. The proposed method was 

compared with the current existing methods under the premise of 

all these methods using their optimal parameters, including PLS 

method,[15] SR-LLA method,[16] PCA-based method,[17] the method 

proposed by Cao et al.,[13] and the method proposed method by 

Zhang et al..[18] 

The paper is organized as follows. In Sec. 2 we give a short 

introduction about the current available multispectral systems, the 

advantages and the principal of multispectral reconstruction from 

the single RGB image. Sec. 3 depicts the system model of digital 

camera and the multispectral reconstruction method whereas the 

experiment results are shown and discussed in Sec. 4. In Sec. 5 we 

finish the paper with some concluding remarks and an outlook on 

future developments. 

System and methodology 

System model and multispectral reconstruction 
methods 

Supposing a linear optoelectronic transfer function of the 

trichromatic digital camera,[10] the response of the digital camera 

can be formulated by the equation: 

max

min

( ) ( ) ( ) ( )i i i id l s o r d b n





      
, (1) 

where the camera response di is related to the channel i of a sample 

or a pixel in the image, λ is wavelength, ranging from λmin to λmax in 

visible wavelength range, l(λ) is the relative spectral radiance of 

the illuminant, si(λ) is the spectral sensitivity of the ith channel of 

the camera, o(λ) is the spectral transmittance of the camera optical 

system, r(λ) is the spectral reflectance of a sample or a pixel in the 

image, bi and ni are the mean zero Gaussian white noise and the 

dark current noise of the ith channel in the digital camera 

respectively, which are often ignored for simplicity. The Eq. (1) 

can be written in matrix notation as follows: 
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where d is the response vector of a sample or a pixel in the image, 

M is the overall spectral sensitivity matrix of the camera imaging 

system including the product of the matrix form of l(λ), si(λ), and 

o(λ), and r denotes the spectral reflectance vector of a sample or a 

pixel in the image. For multispectral reconstruction, the goal is to 

reconstruct the high-dimensional reflectance rrec from the low-

dimensional camera response vector d by: 

recr Qd . (3) 

The accuracy of reflectance reconstruction is determined by 

the method of solving the transformation matrix Q. If the spectral 

sensitivity matrix M is accurately characterized before the 

reflectance reconstruction, the rrec can be directly reconstructed 

from d using pseudoinverse, PCA or Wiener estimation method.[13] 

However, in most instances, it is hard and inconvenient to 

characterize the matrix M instrumentally as several imaging 

system parameters are included in it. Therefore, the training-based 

pseudoinverse method is widely selected by most studies as shown 

in Eq. (4), where the superscript + is the pseudoinverse operator, 

the Rtrain denotes the reflectance matrix of the training sample set, 

and Dtrain represents the camera response matrix of the training 

sample set. The training-based pseudoinverse multispectral 

reconstruction method is also used in this paper. 

rec train trainr R D d . (4) 

Proposed method 

As pointed by previous studies, reflectance reconstruction 

accuracy was limited by just using the original three channels 

response.[19, 20] However, except for the methods of increasing the 

imaging channels in multispectral system, the method of increasing 

the camera response items by expanding the original three 

channels response was also proved to be an effective method.[13,15-

18] In Eq. (1), we assume the imaging process is ideal linearity for 

trichromatic digital camera, but this is not true for practical digital 

imaging process as the image-enhancement step is non-linear and 

difficult to simulate.[21] Therefore, the polynomial model which 

had been applied for the color correction and characterization of 

color imaging device, was applied as the referenced model for 

camera response expansion. The fourth-order polynomial model 

including 35 items, as shown in Eq. (5), was selected as the basic 

referenced model for camera response expansion in this paper. 

2 2 2 2 2 2 2

2 2 3 3 3 3 2 2 3 3 2 2

3 3 2 2 3 2 2 2 4 4

[1 r g b rg rb gb r g b rg r g rb r b

gb g b r g b rgb rg r g rg rb r b

r b gb g b r b r gb rg b rgb r g

              

          

        

expanded
d

4 ]b

 (5) 

Where dexpanded is the expanded response vector, and r, g and 

b are the response values of the R-channel, G-channel, and B-

channel of the trichromatic digital camera. However, if all items of 

the expanded response in Eq. (5) are used for multispectral 

reconstruction, it may lead to the over-fitting problems as 

explained in literature.[22] Thus, the optimal number of response 

expansion items should be determined before the formal 

reflectance reconstruction. The method of traversal all possible 

situations of response expansion to determine the optimal number 

of response expansion was adopted in this paper as shown in Eq. 

(6). 
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.(6) 

It is known that the spectral or chromatic similarity between 

training samples set and test targets determines the reconstruction 

accuracy, the higher the similarity, the better the reconstruction 

accuracy, and vice versa.23 Furthermore, too many samples in the 

training set may lead to color or spectral information redundancy, 

which would increase the computation time and slightly decrease 

the reconstruction accuracy as shown in Figure 2(a). Therefore, the 

LIDW optimization method was proposed to improve the 

reconstruction accuracy. Firstly, the euclidean distance between 

the test samples and the training samples are calculated in RGB 

color space as shown in Eq. (7): 

2 2 2( ) ( ) ( ) ( 1, 2, , )j test j test j test je r r g g b b j N         , (7) 

where subscript j is the jth sample in the training sample set, ej is 

the euclidean distance between the jth training sample and the test 

sample, and N is the number of samples in training sample set. 

Then, the training samples were sorted in ascending order 

according to their distance with the test sample. The first p (1 ≤ p ≤ 

N) samples were extracted as the local optimal sample set, and the 

inverse distance weighted coefficient wk was calculated for each of 

the selected local optimal samples as shown in Eq. (8): 

1
( 1, 2, , )k

k

w k p
e 

   


, (8) 

where subscript k is the kth sample in local optimal sample set, ek 

is the euclidean distance between the kth local optimal training 

sample and the test sample, ε is a very small value added to avoid 

zero divided in Eq. (8), ε = 0.001 is used in this paper. The 

weighted matrix W can be written as: 

1

2

   0      0

0       0    

     0       0

0       0    p p p

w

w

w


 
 
 
 
 
  

W . (9) 

At last, the spectral reflectance of the test sample was 

reconstructed as follows: 

( test localtrain localtrain testexpandedr  WR WD d） , (10) 
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where rtest is the reconstructed spectral reflectance vector of the 

test sample, Rlocaltrain is the reflectance matrix of the selected local 

optimal samples, Dlocaltrain is the expanded response matrix of the 

selected local optimal samples, and dtestexpanded is the expanded 

response vector of the test sample. 

Experiment 

In this paper, a mineral pigment color book including 784 

color patches was used to verify the proposed methods. The 

spectral reflectance of the sample set was measured with the X-rite 

Eye One Pro spectrophotometer at 10nm intervals from 400 to 

700nm. The odd number samples are selected as training set to 

reconstruct the even number testing samples. The chromaticity 

coordinates of the training and testing samples in CIELab color 

space calculated using D50 illumination and CIE1931 standard 

observer functions are plotted in Figure 1(a) and Figure 1(b), 

respectively.  

 
(a) 

 
(b) 

Figure 1. Chromaticity distribution of samples: (a) training samples, (b) testing 
samples. 

 
Figure 2. The relative spectral power distribution of the flat fluorescent lamp. 

The digital image of the samples was captured with a Canon 

600D trichromatic digital camera in the normal direction under the 

illumination of a flat fluorescent lamp at an angle of 45°. The 

relative spectral power distribution (SPD) of the flat fluorescent 

lamp measured with the PR705 spectroradiometer and the 

Spectralon® standard whiteboard is plotted in Figure 2. The 

parameters set for the camera were fixed during the experiment, 

with the aperture size was set to 3.5, the exposure time was 1/40 

second, and the ISO was 100. The dark current noise was recorded 

with the camera lens cap closed and was subsequently subtracted 

from the images. The illumination uniformity was corrected using 

the uniform gray card as described in literature 20. The spectral 

root-mean-square (RMS) error and the CIEDE2000 color 

difference (DE00) under D50 illumination and CIE1931 standard 

observer functions were selected to evaluate the multispectral 

reconstruction accuracy. The calculation of spectral RMS error is 

shown in Eq. (11), the superscript T is the transpose operator, rrec 

is the spectral reflectance vector of the reconstructed sample, rref is 

the measured reference spectral reflectance vector of the sample, K 

is the sampling number of spectral reflectance in visible spectrum, 

for spectral wavelength ranges from 400 to 700nm at 10nm 

intervals, K = 31. The calculation of the CIEDE2000 color 

difference can be referred to literature 24.  

1
( ) ( )TRMS

K
  rec ref rec refr r r r . (11) 

Results and discussion 

 
       (a) 

 
       (b) 

Figure 3. Relationship between the local number of training samples and 
reconstruction accuracy in different number of response expansion items from 

4 to 35 (thin black line) and the overall average (thick gray line): (a) DE00, (b) 
RMS. 
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The influence of the number of local training samples and the 

number of expansion items on reconstruction accuracy are 

investigated as shown in Figure 3 and Figure 4. The thin black 

lines represent the relationship between the number of local 

training samples or the number of expansion items and the 

reconstruction errors, and the thick gray line indicates the overall 

average of the thin black lines. The relationship between the 

number of local training samples and the corresponding 

reconstruction errors in different number of response expansion 

items from 4 to 35 is plotted in Figure 3, the overall average 

reconstruction errors of the testing samples initially increases and 

then decreases with the number of local training samples, when the 

number local training samples reaches to 50, the overall average 

reconstruction errors began to stabilize, and when the number local 

training samples reaches to 100, the overall average reconstruction 

errors has stabilized. But for some small number of camera 

response expansion items in Figure 3(a), too many local training 

samples are causing the slightly increases of the mean color 

difference. 

 
       (a) 

 
        (b) 

Figure 4. Relationship between the number of response expansion items and 
reconstruction accuracy in different number of local training samples from 100 
to 392 (thin black line) and the overall average (thick gray line): (a) DE00, (b) 
RMS. 

The relationship between response expansion items and the 

corresponding reconstruction errors in different number of local 

training samples from 100 to 392 is plotted in Figure 4. With the 

number of the items, the overall average reconstruction errors 

initially decrease rapidly, and then decrease slightly when the 

items reaches to 10. However, when the number of items is greater 

than 10, the vibration phenomenon occurs for both the color 

difference and the spectral error as indicate of the insert in Figure 

4(a) and the Figure 4(b), which proves that the number of local 

training samples has an effect on the choice of the optimal number 

of response expansion items. Simultaneously, the number of 

response expansion items also has an effect on the choice of the 

optimal number of local training samples.  

According to the above analysis, two optimal combinations of 

the number of local training samples and number of response 

expansion items in our proposed method are selected to compare 

with the current existing methods. The first optimal combination is 

100 local training samples and the corresponding 18 response 

expansion items (named as Proposed-1), while the second optimal 

combination is 27 response expansion items and the corresponding 

all 392 local training samples (named as Proposed-2). And all the 

compared methods also use their optimal parameters for 

reflectance reconstruction in this paper. The experiment results are 

summarized in Table 1. 

Table 1. Comparison between the proposed method and the 
current existing methods 

 DE00 

 Mean Median Max. Std. 

PLS 1.4256 1.1177 7.3434 1.0587 

SR-LLA 1.6429 1.3501 14.3672 1.3212 

PCA-based 1.4854 1.1993 7.8975 1.0698 

Cao 2.9773 2.4797 12.8931 2.1213 

Zhang 1.4262 1.1209 7.3488 1.0598 

Proposed-1 1.0057 0.8892 3.5445 0.5881 

Proposed-2 1.0030 0.8734 3.3959 0.5788 

 RMS 

 Mean Median Max. Std. 

PLS 0.0303 0.0244 0.1780 0.0235 

SR-LLA 0.0357 0.0254 0.4098 0.0386 

PCA-based 0.0312 0.0248 0.1776 0.0234 

Cao 0.0311 0.0250 0.1646 0.0244 

Zhang 0.0333 0.0277 0.1794 0.0228 

Proposed-1 0.0246 0.0184 0.1706 0.0235 

Proposed-2 0.0247 0.0190 0.1617 0.0226 

 

It can be seen from Table 1 that the proposed method is 

apparently superior to the other several method for both the color 

difference and spectral error. The reflectance reconstruction 

accuracy of the two optimal combinations of the proposed method 

is very close. Among the current existing methods, the PLS 

method has the best reconstruction accuracy although it is inferior 

to the proposed method. The method proposed by Zhang et al. 

obtains the very close reconstruction accuracy to the PLS method. 

The PCA-based method also acquires the reasonable 

reconstruction accuracy, while the SR-LLA method and the 

method proposed by Cao et al. are bad compared with other 

methods.  

In order to compare the reconstruction accuracy of the above 

methods more intuitively, the reconstruction error distribution of 

test samples is counted and plotted in Figure 5. There are more test 

samples of the proposed method located in the small error interval 

than other methods. For the proposed method in Figure 5(a), there 
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are 226 test samples smaller than 1 DE00, 389 samples smaller than 

3 DE00 and on three samples bigger than 3 DE00. However, for the 

PLS method, the corresponding number are 161, 358 and 34 

respectively, the distribution of color difference of other methods 

is worse. The statistical results about distribution of spectral error 

in Figure 5(b) are similar to Figure 5(a).The statistical results in 

Figure 5(a) and Figure 5(b) further illustrates the advantages of the 

proposed method in this paper. 

 

 
(a) 

 

 
(b) 

 
Figure 5. The error distribution of test samples of different methods: (a) 

distribution of test samples in different color difference (DE00) intervals, and (b) 
distribution of test samples in different spectral (RMS) error intervals. 

Conclusion and outlook 

An improved multispectral reconstruction method from single 

RGB image based on camera response expansion and LIDW 

optimization is proposed in this paper. The experiment result 

shows that the proposed method can obtain the reasonable 

reconstruction accuracy and is apparently superior performance to 

the current existing methods. Compare to the best the current 

existing method, the mean and median CIEDE2000 color 

difference of the proposed improved about 0.4, and the maximum 

is halved. The mean and median spectral error also acquires a 

significant improvement. In the future research works, based on 

the prior knowledge of specific artworks (such as the ancient 

murals), we will explore the feasibility of non-visible multispectral 

reconstruction from single RGB image using the proposed method 

in this paper. And if feasible, more valuable information will be 

acquired from the RGB image for scientific analysis of artworks. 
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