Evaluation of gradient operators for

hyperspectral image processing

Hilda Deborah; Colourlab, Dept. of Computer Science, Norwegian University of Science & Technology; Gjevik, Norway
Noél Richard; XLIM Laboratory, UMR CNRS 7252, University of Poitiers; Futuroscope Cedex, France

Jon Y. Hardeberg; Colourlab, Dept. of Computer Science, Norwegian University of Science & Technology; Gjovik, Norway
Christine Fernandez-Maloigne; XLIM Laboratory, UMR CNRS 7252, University of Poitiers; Futuroscope Cedex, France

Abstract

Gradient is an important image processing tool allowing to
carry out edge detection, segmentation, and texture analysis. It
is expected to provide significantly more accurate and complete
information when combined with the hyperspectral imaging tech-
nology. And such gain in accuracy justifies the cost and complex-
ity of a hyperspectral acquisition. But how to measure accuracy?
This article presents our first study in the accuracy assessment of
hyperspectral gradient, where an assessment protocol based on a
basic edge detection task is proposed. This protocol is then used
to evaluate the full-band gradient approaches, where the results
suggest to improve the protocol to include more complexity.

Introduction

The gradient of an image captures directional changes of
pixel values in the spatial coordinates of the image. For intensity
images, gradient is defined only by its norm and spatial direction,
obtained from the derivative forms of a discrete image. For hyper-
spectral images, as for color images, the direction in the spectral
space must also be considered in order to completely define the
hyperspectral gradient. But how should the derivation of spectral
images be developed?

Hyperspectral image processing is employed for its poten-
tial in providing highly accurate results. However, to preserve the
acquired image quality in the subsequent processing chain, each
processing step must be carried out in a full-band manner. Thus,
data reduction techniques such as PCA are to be avoided. The
full-band approach to gradient extraction requires gradient to be
defined with regards to the definition of a spectral function, allow-
ing to establish the derivative form of a hyperspectral image.

In [13], it was shown that a spectrum must be considered as a
continuous digitalized function. The provided demonstration fol-
lowed protocols and results previously obtained in [5], which had
presented the limitations of approaches that consider a spectrum
as a vector or probability density function. Afterwards, the term
spectrum will be replaced by its correct definition, i.e., spectral
function. These achievements have allowed defining a metrologi-
cally valid spectral difference measure, subsequently enabling the
construction of a full-band spectral ordering relation that satis-
fies metrological constraints [6]. The development was continued
and a full-band spectral mathematical morphology was obtained,
including a proposal of a spectral Beucher gradient in [4]. The
work aimed to address the question of whether there is an interest
to the complexity of a full-band processing, whether it preserves
and valorizes the accuracy of an acquired hyperspectral image.

In this paper, the extensions of several known image gradi-
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ent operators to the spectral domain are shown. Aiming to mea-
sure their accuracy, an edge detection-based assessment protocol
is developed. This includes the use of an existing criterion and
a proposal of a basic spectral dataset specifically developed for
gradient assessment task.

Image gradient operators

The concept of edge in an image can be expressed either in
the spatial or frequency domains. Focusing on the former, in this
work we associate the identification of an edge to the computation
of gradients and other derivative forms of an image. Table 1 pro-
vides the mathematical notations frequently used in this article.

From graylevel to multivariate gradients
In the continuous domain, the derivative of a one-
dimensional signal #(x) can be expressed as follows.

Vi(x) = lim Ha+ax) —t(x)

Ax—0 Ax @

Its extension to the two-dimensional case is obtained below, by
partial derivations of each axis.

e = o] = R @

With this expression, several image derivatives were proposed for
grayscale images, e.g., Prewitt and Sobel operators. They com-
bine a directional gradient detection and a low-pass filter which
reduces the sensitivity of gradient computation to noise. Their lo-
cal gradients are then obtained using the norm and direction of
gradient as follows.

Syw
IV f(x,3)| = \/m7 LV fi(x,y) = atan {g-”l 3)
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These gradients were further extended to the multivariate do-
main, essentially in the context of color images [11, 18]. How-
ever, the extension is more complex when it comes to hyper-
spectral images. As illustrated in Fig. 1, a pixel value is not a
three-component color value but a function of wavelength S(A4).
The basic strategies approximate multivariate gradient through a
marginal approach, followed by combining the marginal results
with a maximum function in (4) or weighted sum [16].

Vo= max VA
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Table 1: Mathematical notations

fx,y) A digital image as a function of two dimensional
spatial coordinates x,y € Z; A spectral image is
expressed as f(x,y) =S

S(A) A continuous expression of spectrum as a function

of wavelength 4
S A sampled/ discrete expression of spectral func-
tion S, where S = {s,,, w € [0,n,, — 1]}

Ny, W Number of sampled spectral bands or wavelengths
A and any arbitrary one

fw(p) An intensity image corresponding to the w-th spec-
tral band

Sy A spectral measure at a sampled spectral band w

Vf,|Vf], Gradient of image f, its norm, and its direction,

LVf respectively

8xy & Partial derivation of an image in each of its axes

A4, A_ Eigenvalues in the context of Di Zenzo gradient

B An arbitrary structuring element centered in (x,y)

OB, € Dilation and erosion, respectively, relative to flat
structuring element B

o(S) Ordering relation with spectral function S as input

d(S1,8,) Difference function between two arbitrary spectral
functions S; and S»

S, Minimum and maximum convergence coordi-

St nates, respectively

V, A Maximum and minimum operators, respectively

u, o Average and standard deviation, respectively

The problem with a marginal approach lies in the fact that
it does not preserve metrological constraints and is less sensitive
to gradient coherence between the spectral bands [7]. With this
consideration, Di Zenzo [7] and, later, Cumani [3] proposed a
way to extend gradient to the multivariate domain. Starting by
expressing the square of a minimal displacement around a spatial
coordinate (x,y), the quadratic expression below was proposed.

9 f(x,y)? = a.0x* +2b.9xdy +c.dy* where
'y (afw(x,y>)2 5 (afw<x,y>)2
wso N 9x ) =y )T

SO f(x,y) A fw(x,y)
and b = Z 9 . ay

w=0

Its gradient norm is then computed by, first, obtaining the extrema
of this quadratic form, i.e., eigenvalues A+ and A_ in (6). In this

expression, the term 4/ (a — c)2 +4b? expresses the coherence be-

tween marginal gradient directions [3, 7].
1 2
Aj[:E a+cE/(a—c)” +4b2 (6)

Then, Di Zenzo and Cumani estimated the ’edge strength’ lo-
cally at point (x,y) by v/AL, thus extending the one-dimensional
case since A_ = 0 for grayscale images. But, Sapiro [15] ex-
pressed that the ’strength’ of an edge in multi-valued case is not
given simply by the rate of maximal change A, but by how A4
compares to A_" and, thus, further proposing the gradient norm
approximation as a function of (A4 —A_).
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Figure 1. lllustration of pixel value in a hyperspectral image as a function
over the wavelength S(1). Spectral functions obtained within the respective
colored circles in the top figure are plotted in the bottom figure.

In all of the aforementioned expressions, the problem of mul-
tivariate gradients have been formulated in a theoretical domain,
where an image is considered in a vector space and, thus, its chan-
nels considered independent. In the case of hyperspectral images,
these assumptions are not satisfied [5, 13]. This calls for defining
a suitable approach, even if the obtained results of these existing
approaches can be reasonably good in a number of cases.

Existing spectral morphological gradients

Limitations of continuous approaches to the gradient extrac-
tion of discrete images was expressed in [14]. Starting from the
definition of a morphological gradient in a continuous space, its
equivalence to a continuous derivative form was shown and fur-
ther extended to the discrete domain, see (7). The morphological
gradient is also known as the Beucher gradient.

Vf=238(f)—es(f) @)

The extension of the Beucher gradient to the hyperspectral do-
main is not straightforward. It is necessary to develop an order-
ing relation that is valid for the spectral domain. To avoid this
complex question, a marginal approach has been employed, by
weighting or aggregating gradients obtained individually for each
channel [9]. An alternative approach can be found in [8]. It re-
duces (7) to the local extraction of a maximum distance between
pixels (x;,y;) in the spatial neighborhood of a structuring element
P, see (8). However, this approach suffers from the same theo-
retical limitations expressed by Di Zenzo [7], i.e., the inability to
account for channel coherence in the gradient extraction.

Vixy) = max {F Gy, f(x2,32)) |} ®)

V(x,uy,‘)e

A full-band approach to spectral gradients
The main challenge in extending mathematical morphol-
ogy framework to the multivariate domain lies in defining a
suitable ordering relation, especially as there are multitudes of
them [1, 17]. In the particular case of hyperspectral images, more
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constraints are required. First, there is the necessity to preserve
accuracy and, thus, maintaining the metrological properties of
spectral gradient. The latter constraint demands preserving the
physical sense of spectral measures since they are acquired by
spectral sensors. Then, taking the constraints into account, an or-
dering relation must be constructed from a valid spectral distance
function. Finally, when these are accounted for, metrological as-
sessment of morphological operators will become possible [4].

Distance-based spectral ordering relation

The notions of maximum and minimum, which are central in
morphological processing, are dependent on the processing goals.
Thus, they must be defined through convergence coordinates, ei-
ther in a supervised or unsupervised manner. The ordering rela-
tion in (9) was defined within the supervised context, where S™*
and ST are minimum and maximum convergence coordinates,
respectively [4].

05 (81) > 05 (S,) or
Siz&h e {Og(&) :R0§(52)’ ORA(SI) < 0a(S)

0} (81) > O (Sy) or
Siz&S e {0;(31) :Rogész), ORA(821) > 04(52)

&)
d(S,8%> d(s,87~
where Of (S) = ﬁ, 0% (S) = ﬁ>
d(8,87%)

and OA(S) =2 W

In this paper, both S~ and S** are defined by a theoretical black
and white spectral functions where values at each spectral band
are the minimum and maximum of the value space, respectively.
Constraints expressed in (9) are needed to enable total ordering
property and to preserve morphological properties, i.e., duality,
idempotency, and the physical sense of complementary.

Since in (9) the ordering relation combines measures of dis-
tances d to the convergence coordinates, the key question is which
distance function to use. A spectral function S is not a vector in
the Euclidean space [5]. Consequently, distance functions such
as the Euclidean distance and spectral angle [10] cannot ensure
validity of results as required by metrology. A suitable spectral
difference function was proposed [13], i.e., spectral Kullback-
Leibler pseudo-divergence (KLPD) in (10). It is composed of two
independent measures of color and intensity differences, AC and
Al, between two continuous spectral functions.

dxipp(S1,82) = AC(S1,82) +AI(S1,52)
AC(S1,8,) = ki -KL(S1,8;) 4+ ko - KL(S,,81)

L (10)
AI(S1,8,) = (ki — k) log (é)

S, k, and KL in (11) are normalized spectral function, its normal-
izing factor, and Kullback-Leibler divergence function.

N Si1(A)
KL(SI,SZ)_//lmi“ §1(2)-n g1 dh, o

/’Lmax — - Sw
k=], "S(yar, S=8= {?, Vw € [o,an]}
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Spectral Beucher gradient

Since there is no valid addition operation for hyperspectral

data, the morphological operators are limited to the use of flat
structuring elements*. Thus, dilation and erosion are defined as

S(fxy)=\ Siy)

(xi.yi)€Pp

eg(fxy) = N Sly)

(xiyi)€Pp

12)

The remaining task to extend the Beucher gradient to the spectral
domain is to replace the subtraction operation in (7) by KLPD
function, thus obtaining following expression.

Vf =dkrep(8s(f), €8(f)) (13)

Recalling from (10), that KLPD is decomposable into indepen-
dent measures of color and intensity differences, the spectral
Beucher gradient can also be decomposed into color and inten-
sity components by replacing dgzpp with AC or Al. In addition to
embedding the difference function and ordering relation suitable
for the spectral domain, this gradient is the first full-band one that
is able to define the gradient norm, spatial- and spectral-direction
for hyperspectral images. This proposal of the spectral Beucher
gradient can be found in [4].

Evaluation protocol of spectral gradients

Image gradients can be used for edge detection tasks or for a

more advanced purpose of texture analysis. But before applying
spectral gradients to real application tasks using, e.g., natural im-
ages, it is important to measure the performance and validate these
gradients with an increasing level of image and task complexities.
In the following, a protocol of spectral gradient assessment is pro-
posed, by means of a more basic task of edge detection. An image
dataset serving this purpose is thus required, particularly one with
ground truth information available. The protocol will then be used
to assess the performance of three gradient operators for spectral
images, i.e., extended Sobel combined using a maximum func-
tion (Max-Sobel), extended Di Zenzo-Sapiro operator, and the
spectral Beucher gradient.

Image datasets

Very few hyperspectral image datasets are available and even

fewer are suitable for the accuracy assessment of edge detection
algorithms. Ground truth information of the available datasets is
typically human-annotated segmentation results of remote sens-
ing images [2]. In the context of cultural heritage applications,
spatial resolution of the data is significantly higher. Thus, optical
mixing characteristics induced by acquisition distance in the con-
text of remote sensing is reduced. Finally, there is a need for a new
spectral dataset specifically developed for assessing the accuracy
of edge detection in spectral images.

Using hyperspectral images acquired from pigment patches

and a painting from our repository, a dataset is created follow-
ing the protocol shown in Fig. 2. Each image in the dataset is
created by selecting image subsets using one of the shown object
templates as the foreground object. The extracted object is then

*In the context of Sobel and Di Zenzo filters, structuring element is

equivalent to the filtering window.
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Foreground source

Background image

Object templates

Generated image
Figure 2. Image dataset generation protocol. Using an object template (out
of two), a target image is generated by patching an object whose content is
obtained from the foreground image source to the background image source.

(al) KKA

b) KKB
Figure 3. Three image targets fo(r t)he gradient computation, each an exam-
ple from the respective dataset. Each dataset consists of 112 image targets.
Note that all images are generated by mixing contents obtained from different
hyperspectral images of real physical objects.

(c) KFR

patched onto another image that will play the role of background
content. The use of these object templates allow to obtain non-
ambiguous edge locations in the generated image. Selecting to
work with datasets of varying but relatively low content complex-
ity, three datasets are generated. In each case, the background
part of the image comes from images of pigment patches. The
increasing complexity comes from the selected foreground object
content. They are obtained from homogeneous (KKA dataset)
and heterogeneous (KKB dataset) regions of pigment patches
which are different from the chosen background pigment. The last
dataset is generated by taking the foreground object from a hyper-
spectral image of a painting (KFR dataset). Finally, we obtain 3
datasets each containing 112 images, see examples in Fig. 3.

Evaluation criteria

Each target image in the dataset comes with a ground truth
image, showing the exact location of the foreground object and
its edge. With this, an evaluation criteria originally developed for
edge map quality measure will be employed [12]. Considering
the evaluation of edge location based on edge presence and local-
ization, the criteria is expressed below.

_ Erp+Ery
2

1 R 1
Y 1-———— ], and
ng—no =5 1+(XdF1,i

1y 1
Epy = — l————
no 1; 1+ adgy,

E=1 , Where

Erp= (14)
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ng, no, npp, and npy are image target size, number of edge pixels
in the ground truth edge image, number of false positive, and of
false negative pixels in the edge image under evaluation, respec-
tively. drp is the distance between i-th false positive edge pixel
and the nearest ideal edge pixel, dry; is the distance between i-th
false negative edge pixel and the nearest correctly detected edge
pixel, and « is a penalty score set to 1/9 as suggested by [19].
The evaluation scores range between 0 and 1, with 1 indicating
a perfect match. Note that the criteria in (14) was developed for
edge detection performance assessment, thus requiring to binarize
the obtained gradient images. In this work, binarization is carried
out by means of threshold selection maximizing the said criteria.

Results and discussion

Performance evaluation of the spectral Beucher, Di Zenzo-
Sapiro, and Max-Sobel gradient operators for each group of image
targets is provided in Fig. 4. Their average and standard deviation
performance scores are also provided in Table 2. For KKA and
KKB datasets, Max-Sobel outperforms the spectral Beucher and
Di Zenzo-Sapiro gradients. This is as expected since a spectral
band characterizing the foreground object can typically be found
for these images. As an illustration, spectral functions obtained
from both background and foreground contents of a red pigment
image (Fig. 5) are given in Fig. 6. For this image, differences be-
tween the spectral functions of background and foreground parts
can be summarized by the small peak at approximately 540 nm.
Performance of Max-Sobel decreases and starts to be comparable
to other gradient operators when the more complex KFR dataset
is employed. However, performances of these gradient operators
are not significantly different. Their average scores are very close
to 1.0 and standard deviations approaching 0.

Table 2: Average and standard deviation of performances of
the spectral Beucher, Di Zenzo-Sapiro, and Max-Sobel.

Data- Spectral Di Ze.nzo- Max-Sobel
set Beucher Sapiro
u c u c U c
KKA | 0.998 | 0.006 | 0.998 | 0.008 | 0.999 | 0.006
KKB | 0.996 | 0.014 | 0.995 | 0.016 | 0.997 | 0.007
KFR 0.987 | 0.012 | 0.983 | 0.015 | 0.989 | 0.012

Observe also the results shown in Fig. 5, where each image
target is causing the lowest score for the spectral Beucher (Fig. 4).
For KKA and KKB, it is expected that when the background and
foreground contents are of very similar colors, the gradient opera-
tors will be challenged. If the spectral content of the image is as il-
lustrated in Fig. 6, where the characterizing information is located
in very few spectral bands around 540 nm and also of very low in-
tensity, slight variations in the background would easily confuse
the gradient operators. Especially since the background and fore-
ground reflectance spectral functions are of very similar overall
intensity. It is due to this that KKA and KKB results in Fig. 6 are
rather noisy. But nevertheless, visually, there is no significant dif-
ferences between all gradient images of the same image in Fig. 6.
Finally, these results suggest that there is a need to improve the
proposed image datasets. They further indicate that for each pixel
in the employed datasets, there is almost always one spectral band
allowing to characterize the different objects. Due to this, Max-
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Figure 4. Evaluation scores of each gradient operator for each image target
in the respective dataset. Better performance is achieved when the score is
approaching 1. Nevertheless, there is no significant difference between the
operator performances. Note the identical x-axes for all sub-figures.

Sobel operator is able to perform well but at the same time the
full-band approach of the spectral Beucher is not valorized.

Conclusion

Gradient processing is at the core of many image processing
and analysis tools, from image segmentation to texture analysis.
To preserve the high spectral sampling and metrological proper-
ties of a hyperspectral image, this work focuses on full-band gra-
dient detection for hyperspectral images. Three operators were
presented. The first operator works in a marginal way, search-
ing per-channel maximum gradient, but unable to define gradient
norm and gradient spatial- and spectral-directions. The second
operator extends the Di Zenzo construction by considering a spec-
tral function as a vector, without the ability to process spectral
gradient direction. The third one extends the Beucher gradient to
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Original images, left to right: KKA, KKB, KFR

The spectral Beucher gradients

Max-Sobel gradients

Figure 5. Targetimages of KKA, KKB, and KFR datasets yielding the lowest
scores for the spectral Beucher in Fig. 4. Given in the same column are their
corresponding gradient images obtained by the 3 operators.
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Figure 6. Spectral reflectance functions of the red pigment image in Fig. 5.
Spectral functions corresponding to the foreground object present a small
peak around 540 nm, which does not appear in those of the background.

the hyperspectral domain, with the ability to process 3 gradient
features, i.e., the norm and spatial- and spectral-directions.

Since there is no hyperspectral database dedicated to the ac-
curacy assessment of gradient detection, a hyperspectral dataset
of increasing complexity was proposed. With background content
obtained from relatively homogeneous pigment patches, the com-
plexity of each image is determined by the selected foreground
object. Aiming to test the performance of spectral gradient opera-
tors on a basic edge detection task, this image dataset is designed
to have a rather low complexity. Dataset with higher content com-
plexity will be needed for a more complex task of texture analysis.

Performances of the three gradient operators were found to
be very good, with scores closely approaching 1 in a range of 0-
1. It was also observed that they decrease as spectral complexity

This work is licensed under the Creafive Commons Attribution 4.0 Internafional License.



of the content increases. The marginal approach obtained slightly
better scores, indicating that there is always a single characteristic
spectral band for each image in the dataset. These results suggest
the limitations of the proposed dataset and the necessity to im-
prove it in order to discover the limitation of each gradient opera-
tor. Nevertheless, in a more generic manner, the spectral Beucher
is the only one able to provide the 3 gradient features. Due to this,
it can be selected for a metrological gradient extraction.
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