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Abstract
With the rapid growth of image processing technologies, ob-

jective Image Quality Assessment (IQA) is a topic where consid-
erable research effort has been made over the last two decades.
IQA algorithms based on image structure have been shown to
correlate well with Mean Opinion Scores (MOS). No-Reference
(NR) image quality metrics are of fundamental interest as they
can be embedded in practical applications This paper deals with
a new NR-IQA metric based on natural scenes statistics. It pro-
poses to model the best correlated statistics of seven well known
no-reference image quality algorithms by a MultiVariate Gaus-
sian Distribution (MVGD). A part of LIVE database is used with
the associated DMOS to fit the MVGD model, namely Model Im-
age Quality Index (MIQI). Hence, the quality of a distorted image
is given by the DMOS that maximizes the multivariate Gaussian
probability density function. Experimental results demonstrate
the method effectiveness for a wide variety of distortions.

Introduction
The rapid development of image and video processing tech-

nologies and the exponential increase in the demand of new multi-
media services raise the critical issue of assessing the visual qual-
ity. To meet this need, reliable methods have been developed.
Since the human observer is the ultimate judge, subjective as-
sessment when properly implemented [1, 2] is the most accurate
method to evaluate the visual quality but is time consuming and
unsuitbale for real-time applications. Objective IQA algorithms
[3] aim at predicting image quality from objective features ex-
tracted from images. Two approaches are generally considered
in the design of objective IQA algorithms : (i) the visually based
approach that aims to mimic the human visual system behavior
and (ii) the signal based approach that extracts and analyses fea-
tures in image signals. Signal based approaches which represent
the context of this paper, present a good tradeoff between perfor-
mance and complexity. Generally, these approaches require two
steps. In the first one, relevant features are extracted while, in the
second, these features are pooled in order to produce the quality
score of the image under test. The first step has been the subject
of several investigations [4, 5, 6]. In contrast, the second step still
uses conventional combinations. To avercome this drawback, sta-
tistical modeling of natural images has been considered and has
been shown to correlate well with perceived quality as measured
by subjective assessment. Statistical modeling is based on the as-
sumption that natural scenes belong to a specific subspace within
which all the images evolve. In the case of no-reference metrics,
the features extraction procedure is followed by a learning step.
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Figure 1. General scheme of the proposed NR-IQA algorithm based on

combination of features.

When a large ground truth is available, the learning methods can
efficiently map features and MOS [7, 8, 9, 10, 11]. Instead of
looking to define new features, this paper will exploit the features
of seven well-known metrics. These features are then sorted re-
garding their specific correlation coefficient. The most correlated
ones are then used by the learning step to fit a multivariate gaus-
sian distribution (MVGD). This MVGD handles the features of a
given distorted image to assess its quality. This paper is organized
as follows. Section 2 describes the extracted features. Section 3
presents the proposed method and section 4 gives the experimen-
tal results.

Features description
All features considered in this paper are extracted from nine

commonly used learning-based NR-IQA learning-based metrics
: 1) BRISQUE [12], 2) BLIINDS [13], 3) BLIINDS-II [14], 4)
NIQE [15], 5) DIIVINE [16], 6) BIQI [11], 7) IL-NIQE [17], 8)
SSEQ [18] and 9) OG-IQA [19]. A second reason of the choice
of those trial algorithms is motivated by the fact that the code of
all of them is publicly available.
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NR-IQA algo-
rithm

Comments Features

BRISQUE Natural scene statistic-based distortion-generic 36 f1, . . . , f36

BLIINDS Machine learning-based approach (Probabilistic model) 4 f37, . . . , f40

BLIINDS-II Machine learning-based approach (Probabilistic model) 4 f41, . . . , f44

NIQE Space domain natural scene statistic model 35 f45, . . . , f79

DIIVINE Classification (SVM) and Regression (SVR) 83 f80, . . . , f162

BIQI Machine learning-based approach (SVM). 4 f163, . . . , f166

IL-NIQE Global Multivariable Gaussian model 5 f167, . . . , f171

SSEQ 2-stage framework distortion classification and Regression (SVR) 12 f172, . . . , f183

OG-IQA AdaBoosting back-propagation neural network 6 f184, . . . , f189

Table 1: NR-IQA metrics considered to investigate the relevance of features.

MIQI feature Selected from Initial feature SROCC

a1 BLIINDS-II f42 0.924
a2 ILNIQE f167 0.842
a3 ILNIQE f168 0.840
a4 ILNIQE f170 0.815
a5 BIQI f163 0.749
a6 BIQI f166 0.714
a7 BLIINDS-II f43 0.555
a8 BLIINDS-II f44 0.550
a9 BLIINDS-II f41 0.547
a10 BIQI f164 0.543
a11 NIQE f48 0.516
a12 NIQE f51 0.509
a13 NIQE f56 0.505
a14 NIQE f52 0.505
a15 NIQE f55 0.505
a16 BIQI f165 0.503
a17 NIQE f63 0.499
a18 NIQE f59 0.485

Table 2: SROCC mean values of each selected feature to be
used by MIQI (LIVE database).

percentile 10 th 100th

MIQI 0.952 0.942
Table 3: SROCC values computed between subjective DMOS
and MIQI scores with highest 10th percentile and 100th per-
centile

MIQI NR-IQA method
General Scheme

All the trial NR-IQA methods applies the same principle:
after computing a set of different features, a combination of this
set is performed in different ways. In this paper, the design a NR-
IQA algorithm is based on a new selection process of relevant
attributes provided by different common NR-IQA methods. Fig
1 displays the general scheme of the proposed method. From all
trial NR-IQA schemes, all features are computed. This yields to
a set of n features. From this initial set a subset of M attributes is
generated (under the constraint that M ≤ n) in order to keep the
most relevant features with respect to some criteria. Then from
selected criteria, a MultiVariate Gaussian Distribution (MVGD)

is deployed to predict the final score of images.

Selection of features
All previously described features are computed for all orig-

inal images (and their associated degraded version) of the LIVE
IQA database [20]. This database contains 29 original images,
each impaired by many levels of 5 distortion types: JPEG2000,
JPEG, white noise, Gaussian blur, and fast-fading channel dis-
tortions. The total number of distorted images is 779. Then for
each feature, the Spearman Rank-Order Correlation Coefficient
(SROCC) between values of features and subjective DMOS is
computed. Finally, only the highest 10th percentile is considered
to design the NR IQA method. Indeed, it has been previously
observed that percentile pooling results in high correlations with
subjective perception of quality [21, 14]. In addition, percentile
pooling is motivated by the fact that the worst distortions in an im-
age dominate subjective impressions. We choose 10% as a round
number to avoid the possibility of training.

Table 2 shows the best eighteen features with their corre-
sponding SROCC for the test LIVE image database. It also spec-
ifies the NR-IQA algorithms from which, each selected feature is
extracted. These features are used to compute MIQI values. We
observe that all the 18 selected features only come from four re-
cent NR-IQA methods: BLIINDS-II, IL-NIQE, BIQI and NIQE.
The six first parameters show SROCC values greater than 0.7
(0.924 for the higher), that correspond to good to high correlation
levels with subjective scores. The remaining features provides
SROCC values around 0.5. Thus, all the selected features range
from 0.485 to 0.924 including medium to high correlated features
with DMOS. One can observe that all features from BLIINDS-II
and BIQI have been selected since they present high correlation
level with DMOS.

From BLIINDS2, the extracted features are based on a Nat-
ural Scene Statistics (NSS) model of DCT coefficients in order to
compute the generalized Gaussian Model shape parameter (which
allows to capture primary distortion affecting the image qual-
ity),the coefficient of frequency variation, the energy subband ra-
tio measure to capture the difference in the local spectral signa-
tures between original and distorted images, and the Orientation
Model-Based Feature to capture directional information that may
be significant in subjective assessment of quality. THose kind of
features are agnostic parameters that do not need any assumption
on degradation.

From BIQI, the selected features refer to NSS parameters
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Test LIVE subset BIQI DIIVINE BLIINDS BLIINDS-II NIQE BRISQUE ILNIQE SSEQ OG-IQA MIQI
JP2K 0.802 0.913 0.912 0.943 0.906 0.938 0.953 0.942 0.937 0.965
JPEG 0.879 0.910 0.839 0.954 0.847 0.923 0.843 0.951 0.964 0.959

White Noise 0.958 0.984 0.974 0.980 0.975 0.986 0.972 0.978 0.986 0.985
Gaussian Blur 0.821 0.921 0.957 0.941 0.945 0.978 0.898 0.948 0.961 0.981

Fast Fading 0.730 0.863 0.750 0.933 0.882 0.929 0.787 0.904 0.898 0912
Cumulative subsets 0.824 0.916 0.799 0.912 0.877 0.941 0.468 0.935 0.950 0.952

Table 4: SROCC values computed between predicted scores and MOS values LIVE Images database. Considering MIQI, median
SROCC values are computed between predicted scores and MOS values for the 1000 train-test LIVE Images database.

CSIQ subset BIQI DIIVINE BLIINDS BLIINDS-II NIQE BRISQUE ILNIQE SSEQ OG-IQA MIQI
JP2K 0.708 0.830 0.575 0.895 0.906 0.866 0.906 0.848 0.857 0.914
JPEG 0.867 0.799 0.264 0.901 0.883 0.903 0.899 0.865. 0.923 0.912
Gaussian Noise 0.324 0.176 0.293 0.379 0.299 0.252 0.850 0.872 0.877 0.842
Add. Gaussian Pink
Noise

0.879 0.866 0.555 0.801 0.810 0.925 0.874 0.046 0.024 0.933

Gaussian Blur 0.771 0.871 0.774 0.891 0.892 0.903 0.858 0.873 0.893 0.931
Global Contrast
Decrement

0.585 0.396 0.078 0.012 0.232 0.029 0.501 0.200 0.467 0.652

Cumulative subsets 0.619 0.596 0.170 0.577 0.286 0.566 0.815 0.528 0.559 0.832

Table 5: SROCC values computed between predicted scores and MOS values for the CSIQ Images database.

computed in the wavelet domain to coarsely mimics the scale-
space-orientation decomposition that is assumed to occur in area
V1 of the primary visual cortex of the human visual system. The
selected features are degradation oriented to score the quality of
four sets of images : JPEG and JEPG2000 compressed images,
Gaussian blurred and white noisy images.

Considering IL-NIQE, three of the five available features are
used to defined MIQI. IL-NIQE is based on constructing a collec-
tion of ”quality aware” features. Those features are derived from
the distribution of locally mean subtracted and contrast normal-
ized (MSCN) feature and are statistics of normalized luminance,
statistics of MSCN products and statistics of Log-Gabor Filter Re-
sponses to mimic orientation and frequency selectivity of neurons
in the visual cortex. The two first are spatial features and the third
one is computed in the frequency domain.

Regarding NIQE, the used features are space domain NSS,
and correspond to the parameters of asymmetric generalized
Gaussian distribution along three orientations plus the mean of
the distribution. The main idea is to mimic the human judgment
that seems to be more heavily weighted from sharp image regions.
Those features are computed in the space domain.

Finally, one observes that features from frequency, spatio-
frequency and space domain are used to designed MIQI. Another
remark relies to the fact that even if many features are agnostic,
degradation-based attributes are also used. A combination of the
two sets of attributes seems to be necessary to design a NR-IQA
index.

Prediction model
Let Xi = {a1,a2, . . . ,ak} be the vector of selected attributes,

where i is the index of the image to be assessed. In addition
let DMOSi be the associated subjective DMOS. To model the
distribution of (Xi,DMOSi), a multivariate generalized Gaussian
model (MVGD), namely Model Image Quality Index (MIQI), is

used to compute the final score as

MIQI(x) =
1

(2π)k/2|Σ|1/2 exp
(
− 1

2 (x−β )T
Σ−1 (x−β )

)
(1)

where x = (a1, ..,ak,DMOS) corresponds to the k most relevant
features to which is added the DMOS of training distorted images.
β and Σ denote the mean and covariance matrix of the MVGD
model and are estimated using the maximum likelihood method.
The probabilistic model is trained on a subset of the LIVE IQA
database, for which, one has access to DMOS values. To ensure
a robustness of results, multiple training sets were constructed. In
each, the image database was subdivided into distinct training and
test sets (completely content-separate). For each train set, 80% of
the LIVE IQA Database content was chosen, inducing that the
remaining 20% is considered for the test set. Specifically, each
training set contained images derived from 23 original images,
while each test set contained the images derived from the remain-
ing 6 original images. 1000 randomly chosen training and test
sets were obtained and the prediction of the quality scores was
run over the 1000 iterations.

Experimental results
Experimental setup

To evaluate the performance of the proposed IQA algorithm,
two other publicly available databases are used: 1) TID2013
database [22] and 2) CSIQ image database [23]. Even if the LIVE
database has been used to fit the MVGD model MIQI, TID2013,
CSIQ and the 1000 train-test LIVE Images databases will serve
as test set.

To perform this evaluation, the SROCC is computed between
DMOS values and the scores predicted by the proposed metric and
the seven trial NR-IQA algorithms. In this paper, the number of
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TID2013 subset BIQI DIIVINE BLIINDS BLIINDS-II NIQE BRISQUE ILNIQE SSEQ OG-IQA MIQI
Additive Gaussian Noise 0.785 0.855 0.515 0.722 0.819 0.852 0.876 0.807 0.809 0.897

Additive Noise in Color Components 0.541 0.712 0.331 0.649 0.670 0.709 0.815 0.681 0.681 0.815
Spatially Correlated Noise 0.465 0.463 0.457 0.767 0.666 0.491 0.923 0.635 0.095 0.901

Masked Noise 0.494 0.675 0.470 0.512 0.746 0.575 0.512 0.565 0.691 0.801
High Frequency Noise 0.877 0.878 0.677 0.824 0.845 0.753 0.868 0.860 0.834 0.897

Impulse Noise 0.748 0.806 0.637 0.650 0.743 0.630 0.755 0.749 0.597 0.802
Quantization Noise 0.389 0.165 0.653 0.781 0.850 0.798 0.873 0.468 0.710 0.859

Gaussian Blur 0.764 0.834 0.664 0.855 0.795 0.813 0.814 0.858 0.814 0.854
Image Denoising 0.409 0.723 0.469 0.711 0.590 0.586 0.750 0.783 0.585 0.831

JPEG Compression 0.857 0.629 0.771 0.864 0.840 0.852 0.834 0.825 0.867 0.879
JPEG2000 Compression 0.733 0.853 0.740 0.898 0.889 0.893 0.857 0.885 0.882 0.921

JPEG Transmission Errors 0.304 0.239 0.094 0.117 0.003 0.315 0.282 0.354 0.013 0.2321
JPEG2000 Transmission Errors 0.367 0.060 0.289 0.620 0.510 0.360 0.524 0.561 0.138 0.665
Non Eccentricity Pattern Noise 0.007 0.060 0.128 0.096 0.070 0.145 0.080 0.011 0.066 0.127
Local Block-wise Distortions 0.081 0.093 0.161 0.209 0.127 0.224 0.135 0.016 0.075 0.215

Mean Shift 0.035 0.010 0.279 0.128 0.163 0.124 0.184 0.108 0.166 0.201
Contrast Change 0.413 0.460 0.036 0.150 0.018 0.040 0.014 0.204 0.094 0.532

Change of Color Saturation 0.142 0.068 0.264 0.017 0.246 0.109 0.162 0.074 0.098 0.498
Multiplicative Gaussian Noise 0.642 0.787 0.479 0.716 0.694 0.724 0.693 0.679 0.682 0.791

Comfort Noise 0.642 0.116 0.229 0.017 0.155 0.008 0.359 0.033 0.188 0.358
Lossy Compression of Noisy Images 0.526 0.633 0.641 0.719 0.801 0.685 0.828 0.610 0.656 0.823

Color Quantization with Dither 0.698 0.436 0.434 0.736 0.783 0.764 0.748 0.528 0.294 0.806
Chromatic Aberrations 0.544 0.661 0.639 0.539 0.561 0.616 0.679 0.688 0.616 0.692

Sparse Sampling and Reconstruction 0.760 0.834 0.738 0.816 0.834 0.784 0.865 0.895 0.832 0.903
Cumulative subsets 0.294 0.355 0.289 0.393 0.311 0.367 0.494 0.332 0.292 0.512

Table 6: SROCC values computed between predicted scores using NR-IQA schemes from which some attributes are extracted to
design LEVIQI and MOS values for TID2013 Images database.

BIQI DIIVINE BLIINDS BLIINDS-II NIQE BRISQUE ILNQE SSEQ OG-IQA
MIQI 111111 11-111 11-111 1--101 11-101 11--01 111111 1--1-1 1--1--

Table 7: Statistical significance matrix of NR-IQA/DMOS on test LIVE database subsets. Each entry in the table is a codeword con-
sisting of 1sixsymbols. The position of the symbol represents the tested subsets as {jp2k, jpeg, white noise, Gaussian
blur, fast fading, all}. Each symbol gives the result of the hypothesis test on the subset: ’1’ means that the algorithm for
the row is statistically better that the algorithm for the column, ’0’ means it is worse, and ’-’ means it is indistinguishable.

selected features to design MIQI is 18 since it corresponds to the
highest 10th percentile of features.

In Table 3, we report SROCC values between the LIVE
DMOS and MIQI scores for the highest 10% and 100% pooled
features, respectively. We observe that the correlations are con-
sistently higher when the lowest 10th percentile pooling strategy
is adopted. This may be interpreted as further evidence that hu-
man sensitivity to image distortions is not a linear function of the
distortion. Actually, human being tends to judge small degraded
regions in an image more harshly than good ones, and by the way,
tends to penalize the whole image quality [21].

In addition, to ascertain which differences between NR-IQA
schemes performance are statistically significant, we applied an
hypothesis test using the residuals between the DMOS values and
the ratings provided by the IQA algorithms. This test is based on
the t-test that determines whether two population means are equal
or not. This test yields us to take a statistically-based conclusion
of superiority (or not) of an NR-IQA algorithm.

Performance evaluation
Table 4 gives SROCC mean values computed between pre-

dicted scores and MOS values for the LIVE Images database. For
distortions that are similar to the learned ones (JP2K, JPEG, Gaus-
sian blur), using MIQI leads to a better result than using the other
NR-IQA algorithms. In all cases, it performs better. Moreover,

it achieves a significant performance gain when considering the
Gaussian noise distortion.

Table 5 gives SROCC mean values computed between pre-
dicted scores and MOS values for the CSIQ Images database.
For distortions that are similar to the learned ones (JP2K, JPEG,
Gaussian blur), using MIQI leads to a better result than using the
other NR-IQA algorithms. In all cases, it performs better. More-
over, it achieves a significant performance gain when considering
the Gaussian noise distortion. For non learnt distortions such as
Global Contrast Decrement, MIQI remains very interesting since
it outperforms trial algorithms. This tends to demonstrate the gen-
eralization capability of the proposed method to score the quality
of images.

Table 6 presents results when SROCC is computed between
predicted scores and MOS values for the TID13 Images database
subsets. This will yield us to measure the generalization capabil-
ity of the proposed method to score the quality of an image with
a high level of confidence when distortions have not learnt. When
considering each distortion, one can see that the performance of
MIQI equals or, in several cases exceeds all of the NR-IQA met-
rics on 15 distortions. We observe that some of them have not
been learnt such as ”contrast change”, ”Change of color satura-
tion”, ”Chromatic aberrations” or ”Sparse sampling and recon-
struction”. Yet, MIQI is less efficient on nine degradations includ-
ing learnt artifact such as ”Gaussian Blur”. When considering all
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BIQI DIIVINE BLIINDS BLIINDS-II NIQE BRISQUE ILNQE SSEQ OG-IQA
MIQI 1111111 1111111 1111111 --11111 -111111 --1-111 ---1111 --11111 1-01111

Table 8: Statistical significance matrix of NR-IQA/DMOS on test CSIQ database subsets. Each entry in the table is a codeword
consisting of seven symbols. The position of the symbol represents the tested subsets as mentioned in the first column of Table
5. Each symbol gives the result of the hypothesis test on the subset: ’1’ means that the algorithm for the row is statistically better
that the algorithm for the column, ’0’ means it is worse, and ’-’ means it is indistinguishable.

BIQI DIIVINE BLIINDS BLIINDS-II NIQE BRISQUE ILNQE SSEQ OG-IQA
MIQI 1 1 1 1 1 1 - 1 1

Table 9: Statistical significance matrix of NR-IQA/DMOS on the entire TID2013 image database.. Each entry in the table is a symbol.
The symbol gives the result of the hypothesis test on the subset: ’1’ means that the algorithm for the row is statistically better that
the algorithm for the column, ’0’ means it is worse, and ’-’ means it is indistinguishable.

distortions (cumulative subsets line), the overall performance of
MIQI is significantly better than that of the other algorithms. The
increase of SROCC is about 4% when compared to that of the best
algorithm (ILNIQE in this case).

In addition, Table 7 gives obtained results when a One-sided
t-test is used to provide statistical significance of NR-IQA/DMOS
on the test LIVE database. Each entry in this table is coded using
six symbols. The position of each symbol corresponds to one
subset of the LIVE database as {jp2k, jpeg, Gaussian
noise, Gaussian blur, fast fading, All} . Each
symbol gives the result of the hypothesis test on the subset. If
the symbol equals ’1’, the NR-IQA on the row is statistically bet-
ter than the NR-IQA on the column (’0’ means worse, ’-’ is used
when NR-IQAs are indistinguishables).

On can observe that difference between quality scores pre-
dicted with MIQI and any trail algorithms is most of the time
significant when the entire database is considered or when any
subset is used. Even when non learnt distortions are considered,
the SROCC difference between MIQI and any trail algorithm is
mostly significant.

Table 8 shows similar results when CSIQ database is con-
sidered. Most of the time, the quality scores predicted by MIQI
is statistically better than the other trial algorithms. For only one
degradation (Gaussian noise), OG-IQA is performs better.

Table 9 presents obtained results when a One-sided t-test is
used to provide statistical significance of NR-IQA/DMOS on the
TID13 database. Only results for the entire database is given.
Except for ILNIQE, the difference between the predicted scores
provided by MIQI and any other tested NR-IQA method if signif-
icant. Considering ILNIQE, the difference is not significant.

Finally, to compare the computational complexity of the pro-
posed algorithm, we measured the average computation time re-
quired to assess an image of size 512× 578 (using a computer
with Intel Core-I7 processor at 2.2GHz). Table 10 reports the
measurement results, which are rough estimates only, as no code
optimization has been done on our Matlab implementations. It
can be observed that the proposed method is highly competitive
with faster methods.

Conclusion
In this paper, a new NR-IQA metric is proposed, namely

MIQI. The main idea applied to design this new metric is the
following: recent NR-IQA metrics predict quality with level of

Algorihm BIQI DIIVINE BLIINDS BLIINDS-II
time (s) 6.95 38.39 509.82 131.25

Algorihm NIQE BRISQUE ILNIQE SSEQ
time (s) 0.83 0.75 20.26 22.24

Algorihm OG-IQA MIQI
time (s) 12.65 9.11

Table 10: Comparison of computational time (in sec-
ond/image)

correlations with subjective scores, but present high variability of
correlation depending on considered degradation that impacts the
global correlation rate. Thus selecting highest correlated features
with DMOS, one should design one algorithm that provides high
correlation value that usual NR-IQA schemes. Thus, MIQI mod-
els the best correlated statistics of nine well known algorithms by
a multivariate Gaussian distribution.
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