Spectral Divergence for Cultural Heritage applications

A. Plutino;XLIM laboratory JRU CNRS 7252; Poitiers University; Futuroscope/France

N. Richard;XLIM laboratory JRU CNRS 7252; Poitiers University; Futuroscope/France

H. Deborah; The Norwegian Colour & Visual Computing Laboratory, Dpt of Computer Science, NUS&T; Gjovik, Norway
C. Fernandez-Maloigne;XLIM laboratory JRU CNRS 7252; Poitiers University; Futuroscope/France

N. G. Ludwig; Dept. of Physic; State University of Milano; Italy

Abstract

Using reflectance spectra allows to compare the pigment
mixtures in paintings. In order to improve the actual subjective
spectral comparison, we propose to use spectral similarity mea-
sures. The Kullback-Leibler spectral Pseudo-Divergence (KLPD)
is selected due to his expected metrological properties. The com-
parison between a subjective assessment and the objective assess-
ment is developed for mixture of pigments coming from a cultural
heritage painting. The obtained results show the good quality of
the relationship between the subjective results and the objective
ones using the KLPD.

Introduction

Acquiring spectra from artwork is now a current task for cul-
tural heritage preservation or conservation [7, 10, 6, 17, 5, 8] .
Nevertheless, comparing spectra in a metrological way is actually
a challenge. Even if such results are expected in order to improve
the detection of copies, to assess the degradation evolution or to
propose solutions for restoration purposes. Actually the main re-
sponse to this challenge are based on subjective assessment of the
spectral variations [4, 2, 9] or by translating the purpose into the
trichromatic domain [14, 23], loosing so all the spectral accuracy.

In parallel, recent advances in the metrology of spectral data
allowed to produce a first metrologically valid measure of spec-
tral similarity : the Kullback-Leibler spectral Pseudo-Divergence
(KLPD)[22]. One of the particularity of this measure is to natu-
rally split the spectral difference into a sum of an intensity and a
shape difference. Thanks to this decomposition, the authors pro-
posed to define bi-dimensional histograms of spectral differences
(BHSD) in order to analyse the spectral diversity in hyperspectral
images[11].

Inside this work, we propose to study the quality of the re-
lationship between a subjective comparison of the spectrum sim-
ilarities and an objective measure of these similarities using the
KLPD. Bi-dimensional representations (objective and subjective)
of the spectral differences are used to perform the comparison.
In addition, we ask ourselves about the necessity to use this re-
cent measure in confront with the most used ones (Spectral Angle
Mapper and Euclidean distances). This work is developed in a
real case coming from our cultural heritage.

After having shortly defined the relationship between the
spectra and the optical properties of the pigments, we expose the
used spectral difference and similarity measures (Euclidean, SAM
and KLPD). Then, we develop the used dataset, coming from ac-
quired and expertised data from a real painting and the parameters
of the comparison. The comparison results are provide and com-
mented before a short conclusion.
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Spectra in Cultural Heritage (CH)

The protection, conservation or restoration require accurate
scientific analysis, and if possible using non-destructive testing.
In this way, characterizing materials, mixing products and pig-
ments is crucial to study the provenance, the authentication and
to improve the datation of artworks. In this way, the spectrometry
methods based on the electromagnetic radiation and considered
as non-invasive for the support, present efficient solutions.

When an electromagnetic radiation interacts with the matter,
the energy is decomposed in absorbed, transmitted and reflected
parts. The spectrometry methods registers the correlation between
the reflectance of the energy and the wavelength. The reflectance
(R) of a surface is usually expressed in percentage of the reflected
light I, from the incident one /;:
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The reflectance measure is fundamental in the study of the
materials, because the properties of absorbance, and so the ones
of reflectance, are linked to the chemistry of the matter and also
to the thickness of the painted layer:
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The physical nature of the reflectance spectrum S induces to
consider it as a function over the wavelength A defined on a fixed
spectral support, S : s(1),YA C [Amin, Amax]

s: R—1R 3)
A — r, with r C [0.0,1.0] for reflectance values
The spectral acquisition is performed by digital system using
spectral sampling. Nevertheless, in order to be independent from
the spectral acquisition sensor and his specific spectral sampling,
we will keep the continuous integrals in the following parts of this
work.

Spectral Distance and Similarity

The easiest and the most used way to process the difference
between two spectra is to consider them as vectors. In a direct re-
action, the most used distance between spectra is a L, Minkowski
norm [15, 3, 13].
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Following this consideration of vectors, some authors
searched to be independent from the white mixing, using a vector
angle as measure rather than the L2 distance. The Spectral an-
gle Mapper (SAM) measure is then naturally defined as the nor-
malised dot product between two multivariate vectors[16, 21]:

dSAM(S],Sz) = arccos(l 7P) (5)
J{messy ()52 (A)dA
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In [20], Nidamanuri wondered about the limits of such ap-
proaches for spectrum intraclass and interclass discrimination.
In particular, the authors developed the fact that SAM measure
is more adapted to discriminate dissimilar materials (vegetation
from non-vegetation). And in an opposite manner, the Euclidean
distance (L, norm) was identified as more adapted to measure
variations inside spectral groups. Thanks to these considerations,
Nidamanuri constructed empirically a similarity score combining
the two measures (Normalised Spectral Similarity Score).

Following a parallel way, in [22], the authors proposed a
spectral similarity measure combining also a shape AC and an
intensity difference AW. However, this construction inherits from
the Kullback-Leibler divergence measure (known as spectral di-
vergence [19, 18]). The theoretical construction induced to adapt
the Kullback-Leibler divergence using normalised spectra S (eq.
8). The obtained Kullback-Leibler spectral pseudo-divergence is
then defined by:

divgp (Svsref) = AC(SaSref) +AW(Svsref) N

AC(S,Syer) = k1-KL(S,S,07) + k2 - KL(Syer,5)
with K
AW (S,Sper) = (k — ko) log (1)

considering the normalised spectrum S and the total energy k of S
as defined by:
s(A)
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-
with k = /,1 s(A)dA.

Splitting the spectral difference in two combined measures
attached to basic spectral characteristic, present a direct interest
in the analysis of spectral set, in particular in the relationship with
the human judgement of spectral similarities. Thanks to this con-
struction, we propose to display bi-dimensional representations
of the spectral differences, interrogating so the similarity measure
ability to discriminate spectral groups.

In [12, 22] it was shown that the KLPD is, for the moment,
the only one spectral difference measure respecting the metro-
logical constraints, by opposition to the used approaches based
on Minkoswki metrics, and associated spectral angles. Neverthe-
less, following the Nidamanuri construction, we search to iden-
tify if such metrological property must be necessary. So, in the
following, we propose another kind of bidimensional representa-
tion based on the dgsys and dyp measure. As the dgqys measure
assesses the spectral shape variations (dot product), it can be com-
pared to the spectral shape difference AS. In the same manner,
the L, difference is more sensitive to the intensity change, as the
AW measure. This empirical construction induced two theoretical
limits. Firstly the two axis are not independent.
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Figr 1: nalysed artwork: Copy of Traiano’s Justice (nknwn
author) and spatial locations of the considered spectra acquired
using a FORS system.

A first Experiment
The dataset

The spectral data The used dataset comes from the analysis of
a painting (Copy of Traiano’s Justice coming from an unknown
author) of a private collection. The analyses devoted to elemental
and optical characterization of pigments were developed by the
DIART Laboratory - diagnostica per I’arte, physics department,
University of Milan.

The applied technique is the FORS (Fiber Optic Reflectance
Spectroscopy). The data were collected using an Ocean Optics
spectrophotometer (HR4000), with spectral sensitivity ranging
between 360 and 1100 nm (spectral resolution of 0,27 nm, see
table 1). The selected lightning is a Xenon source (HPX-2000).
The lightning/acquisition angle between the surface to acquire,
the reflection and backscattering probes is fixed to 45 thanks to a
dedicated support. A Y QR400-7-VIS-NIR fibre model,that avoids
specular reflection, was used for the acquisition. The calibration
protocol used a white (R ~ 99%) and a black (R = 2%) references.
The table 1 resume the used acquisition parameters. In this work
only the visible part of the spectra (380-780 nm) was taken into
account.

Table 1: FORS parameters

Integration Time 100 (ms)
Spectral Average 5 (nm)
Time | 100 x 5 =500 (ms)
Boxcar 7
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Table 2: Identified composition of the colours thanks to the human
analysis of the acquired spectra

Spectra’s Name | Color Pigment
12.Dead Rosy Vermilion and lead white
16.Flag Red Vermilion
21.CapeL Red Vermilion
28.TCape Red Red varnish
37.Blower Rosy Vermilion and lead white
38.TFace Rosy | Vermilion, red varnish and lead white
39.TKnee Rosy Red varnish and lead white

Subjective pigment analysis Several pigments were analysed,
inducing spectral acquisition at different locations in the painting
(fig. 1). In this work, we are focusing on a particular red, and
more specifically to colours close to the vermilion. The corre-
sponding spectral responses were compared to pigment references
(dedicated database from the IFAC [1] ) by two experts. Table 2
presents the proposed pigment nature and mixing when necessary.

In order to improve the pigment -characteriza-
tion/discrimination, an Energy-dispersive X-ray fluorescence
spectroscopy (ED-XRF) was performed in order to obtain
a chemical characterization of the painting surface, so the
pigments. A portable XRF spectrometer (LITHOS 3000,
Assing) employing the monochromatic radiation of molybdenum
(Mo,K = 17,4KeV) was used. The ED-XRF detected a great
presence of lead (Pb) in all the analysed locations. This presence
is characteristic from the white lead and from the common
preparation layer in paintings. The red points under ED-XRF
analysis were /2.Dead, 16.Flag and 38.TFace and the instrument
detected the presence of mercury (Hg), characteristic of the
vermilion and iron (Fe), typical element for the ochre, but also
trace element of many pigments and preparations.

Subjective Bidimensional representation of the spectral sim-
ilarities Our objective is to compare the experts way to dis-
criminate pigments by spectra with the proposed approach using
the Kullback-Leibler spectral pseudo-divergence (KLPD). So, we
ask to the expert to organize in a bidimensional representation the
spectral differences using the notion of intensity and shape dif-
ferences. In such construction, the quantitative values have no
sense, but the order on each axis are preserved in front of the ex-
pert judgement.

The value of intensity correspond to the increase of re-
flectance associated with the white lead, than, the shape differ-
ence value is based on the shape difference between the analysed
spectrum and the vermilion reference from the Milano’s Labora-
tory database. The obtained bidimensional representation can be
observed in figure 2b.

Firstly, we observe that naturally more than one half of the
red pigments (red circle) are close from the representation ori-
gin (vermilion). Secondly, the closest colours are the pure ver-
milion (12.Dead and 16.Flag). Then the 3 others are organ-
ised in front of the quantity of the added and mixed pigments.
Thirdly, a second group of colour appears at the bottom right of
the representation (inside the blue circle), including the 28.7Cape
and 39.TKnee locations. These two colours was identified as
formed by red varnish. The observed spectra in figure 2a shown
why the spectral shape and intensity was judged as very different
(28.TCape and 39.T Knee are the two lowest spectra). Finally, the
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Figure 2: Acquired spectra from the selected location pointed out
in figure 1 and the subjective representation of the spectral differ-
ences between the acquired spectra.

colour corresponding to 37.Blower is located between the vermil-
ion and the varnish group. This behaviour of the spectrum could
be due to the presence of a third pigment or to a mixture of the
first two.

Results

The references Before to draw the bidimensional representa-
tion of spectral differences (BHSD), we need to select the refer-
ence to use. As defined previously, the reference must be outside
the spectral dataset and stay close from it in order to increase the
discrimination ability. In a first consideration, we could imagine
to choose the vermilion spectrum as reference. Unfortunately, this
spectrum don’t respect the second constraint (his intensity level is
too important and the considered spectrum is then too far from the
spectral data to analyse, see figure 5).

In order to respect the defined constraints, we selected to
analyse the spectra using two references framing the spectral set.
The reference Ref1 is selected to be under the spectra with a
shape (the step part) slightly sliced to the right of the 28.7Cape
spectrum. The second reference Ref2 is by opposition located
upper the spectra 38.7 Face. Thanks to this direct construction,
the constraints are solved and the spectra can be compared using
the bidimensional representation of spectral differences.

As previously expressed, we propose two kinds of represen-
tation. First ones (fig. 3) are based on a combination of an Eu-
clidean and a spectral angle mapper measures (SAM). The second
ones (fig. 4) are based on the two parts of the Kullback-Leibler
spectral pseudo-divergence. In the two cases, we mark using blue
and red ellipsods, the spectral groups identified using the FORS

143



SAM and Euclidean distance from REF 1

Group 1
250

REF 2 @ 38_Tface

200

o
=] 12_Dead
g 16_Flag 21 _Capel -
B 150
[=]
=
©
3 100 37_Blower
= Group 2
S
et

50 @ 39_Tknee

_CapeT
0 ® REF1
0,00 0,10 0,20 0,30 0,40 0,50 0,60
SAM Distance
(a) spectral difference to reference 1
SAM and Euclidean distance from REF 2
300
28 CapeT ® REF1

a
s 39 TKnee
5 200 Group 2
g 37_Blower ®
c 150
©
@
=
= 100
=1
It

50

0 ® REF2
0,000 0,100 0,200 0,300 0,400 0,500 0,600

SAM Distance

(b) spectral difference to reference 2
Figure 3: Bidimensional representation of the spectral difference
using a combination of a Spectral Angle Mapper(SAM) as shape
difference and an Euclidean measure as intensity difference.

combined with ED - XRF and the human assessment.

Spectral distribution relative to reference Ref1 Firstly we
consider fig. 3a and 4a. The two spectral representations seems
very similar. The two main groups are well separated, and the
spectrum 37.Blower is, as expected, located between these two
groups. Secondly, the spectra 28.7Cape and 39.T Knee are very
close from the representation origin (location of the Ref1 spec-
trum). Some differences exist between the two representations.
Typically, in the relative location of the spectrum 37.Blower to the
16.F lag on the horizontal axis (shape or angle difference). Some
inversions can be observed on the vertical axis (intensity differ-
ence) : Ref2 versus 38.T face or 28.T Cape versus 39.T Knee.

Spectral distribution relative to Ref2  Considering the sec-
ond subset of representations (3b and 4b), firstly, we note that the
39.TKnee and 28.TCape spectra are located in top-right corner
of the representation, farthest of the Ref2 spectrum. Secondly,
we observe that the relative order of the spectra are not preserved
from the first representations. Such fact is normal due to the prob-
lem dimensionality and to the positive nature of the difference
measures. It is interesting to remark also that the intra-class dy-
namic in the two bidimensional representations are different due
to the expressions used to assess the shape and intensity differ-
ences. In addition, we remark also the important dynamic of the
KLPD representation for the shape difference by opposition to the
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Figure 4: Bidimensional representation of the spectral difference
using a Kullback-Leibler spectral pseudo-divergence.

SAM measures restricted to [0, 1].

Discussion

Looking at the figures 4a and 3b is possible to discriminate
the spectra due to their shape and intensity differences. This is an
advantage when analysing pigment’s spectra because the shape is
strictly correlated with the absorption bands of the materials and
the intensity is linked with the lightness and the presence of white
in the mixture.

The results obtained through the spectral difference con-
firms the subjective judgement dividing the pigments in two main
groups, but the KLPD gives us more interesting informations
about the different spectra inside the groups. In this way, we have
the certitude of two main pigments used to make the red colour,
but we can also have a clear discrimination of the pigments that
presents more white inside them. In fact Group I forms a coher-
ent group made with the same pigment, vermilion, but the differ-
ences in shape and intensity indicates us the presence of white
that increase the intensity and tend to change the spectra’s shape.
Another interesting point is spectra 37.Blower, because thanks
to KLPD we have the confirm that it is a mixture of two different
pigment, but we can also know that it is more similar to the Group
1.

From the results that we obtained, it should be possible in
a quick approximation to consider the two kinds of representa-
tions as equivalent. Nevertheless the observed differences must
be taken with care. If we focus on the easiest measure to anal-
yse, the intensity difference, the expected measure will consider
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Vermilion

Wavelenght (nm)
Figure 5: Reference spectra framing the spectral set and the ver-
milion spectrum .

the relative difference of intensity. This measure is naturally link
to the integral of the considered spectra. Having a look on the
21.TCape, 39.T Knee and Ref1 spectra (figure 2a) we see that
the expected order would locate 39.7 Knee as being the closest in
intensity to the Ref1 spectrum. Only the representation based on
the KLPD measure obtains this result, that is easily confirmed by
the integral values. In a more theoretical point of view, we need to
not forget that the Euclidean distance embed a part of the spectral
angle mapper, inducing so his own limits for the construction of
the intensity axis.

So, the main advantage of KLPD measure is then to have
a natural decomposition of the spectral difference into intensity
and shape differences inherited from the Kullback-Liebler diver-
gence rewriting, instead of an empirical construction. However,
this construction of the KLPD allows to compute the total spectral
distance in the representation as a L1 norm and consequently to
take into account the relative position of two spectra combining
the two dimensions. In an opposite manner, the empirical con-
struction of the SAM/Euclidean constructions don’t allow such
total difference computation due to the dependency of the two
axis. This difference is fundamental for spectral analysis, which
describes the physical properties of a material.

The main limit of the presented results is link to the analy-
sis of only one pigment from only one painting. As our purpose
was to develop and analyse the relationship between theoretical
spectral difference measures and our traditional way to compare
pigment spectra, the database size is not a problem. We are in
front of two new representations, an empirical one improving the
Nidamanuri construction [20], and a construction theoretically de-
fined for metrological purposes. One of the questions to solve was
about the necessity to choose the KLPD construction, that seemed
more complex. The obtained representations show that the results
interpretation are direct, and more correlated to our way to con-
sider the spectral similarity. Increasing the number of analysed
pigments will not change this result.

The following question, on this way to produce tools for ex-
pert in cultural heritage, is linked to the automatic pigment de-
tection in painting (unmixing problem), or to the statistical anal-
ysis of the spectral distributions. In such case, the bidimensional
representation is transformed into a bidimensional histogram of
spectral differences (BHSD)[22]. Such bidimensional histograms
are adapted for clustering/classification approaches. Neverthe-
less, also in this case a total distance of a spectrum to a reference
in the bidimensional representation is required, requiring so the
KLPD distance rather than the SAM/Euclidean ones.
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Conclusion

Inside this work we explored the interest of recent advances
in spectral differences assessment in order to help the experts in
cultural heritage for pigment analysis. Even if it exists several
spectral distances and classification tools for hyperspectral data,
none reach the metrological level before the Kullback-Leibler
pseudo-divergence and associated histogram of differences.

One of the interests of the pseudo-divergence is to split the
spectral difference into a shape and an intensity differences allow-
ing so the bi-dimensional representation. We proven the perfor-
mance of the bi-dimensional histogram of differences based on
the proposed pseudo-divergence in front of an alternative using
the two mainly used spectral distances (Spectral Angle Mapper
and Euclidean distance). This result reinforces the limits of non-
metrological approaches for spectral image/data processing.

The result confrontation to the experts judgement imposed
to create bi-dimensional representation of his perception of the
spectral differences. Creating so a subjective representation for
which the ordering of the spectral differences were preserved un-
der his own judgement. The construction was enabled (but not
commented) by the a-priori knowledges about the pigment anal-
ysis by XRF measures. The obtained comparisons proven the di-
rect relationship between the subjective way to proceed by the
expert and the objective and metrological processing obtained by
the pseudo-divergence using the histograms of differences.

Thanks to this first results, more complete works are in
course in order to address the question of the spectral diver-
sity analysis, or automatic pigment detection from these n-
dimensional representations of spectral differences. Such results
are expected in the scientific tools for cultural heritage analysis,
in order to improve the analysis using statistical points of view.
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