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Abstract
Illuminant estimation algorithms are often evaluated by cal-

culating recovery angular error which is the angle between the
RGB of the ground truth and the estimated illuminants. However,
the same scene viewed under two different lights with respect to
which the same algorithm delivers illuminant estimates and then
identical reproductions - and so, the practical estimation error
is the same - can, in fact and counterintuitively, result in quite
different recovery errors. Reproduction angular error has been
recently introduced as an improvement to recovery angular error.
The new metric calculates the angle between the RGB values of
a white surface corrected by the ground truth illuminant and cor-
rected by the estimated illuminant. Experiments show that illumi-
nant estimation algorithms could be ranked differently depending
on whether they are evaluated by recovery or reproduction angu-
lar error. In this paper a psychophysical experiment is designed
which demonstrates that observers choices on ‘what makes a good
reproduction’ correlates with reproduction error and not recovery
error.

Introduction
Colors in an image captured by the camera often do not look

as they appear naturally to the human observer. This is due to
the effect of light on the colors captured by the camera’s sensors.
To discard this effect, the illuminant in the scene is often esti-
mated by an illuminant estimation algorithm and the estimated
RGB of the light is divided out from the RGB values of the im-
age. Many illuminant estimation algorithms have been proposed
over the years [1]. Evaluating and comparing he performance of
illuminant estimation is of great importance. Illuminant estima-
tion algorithms are often evaluated by measuring the errors that
they introduce over a set of images captured by a single camera (a
benchmark dataset). Usually, an average (median, mean or even
95% quantile and max [2].) of the error over all the images of the
dataset is reported as the final error and the algorithms are ranked
accordingly [3, 4].

Many error measurement methods have been recommended
such as the angle between the RGB values of the estimated and
the ground truth illuminants or the mean square error between the
two values. As well as the improved angular error - reproduction
angular error - which measures the angle between the RGB value
of a white surface corrected by the estimated and the ground truth
illuminants which is introduced recently [5, 6].

In this paper, we wish to study with which angular error- re-
covery or reproduction- the human observers agree more. To this
end a psychophysical experiment is conducted where two scenes
color corrected by two different illuminant estimation algorithms
are shown to the observers along with their corrected version by
the ground truth illuminants. The recovery and reproduction er-
rors for the two algorithms estimating the illuminant of the two
scenes is different resulting in opposite ranking of the two algo-

rithms by the two metrics. Put it another way, suppose A and B
are respectively the reproduction of a scene for an (arbitrary) illu-
minant estimation algorithm and B is the same scene reproduced
with the actual illuminant. A second pair of images are C (scene
reproduced by estimate made by second arbitrary illuminant esti-
mation algorithm) and D (the ‘correct reproduction’). In terms of
recovery error the estimate of the light that leads to the reproduc-
tion A has a larger error than that which results in C. Conversely,
the reproduction error for C is larger than A. The observers are
asked that the result of which algorithm is better which will ul-
timately show with which metric they agree more. The results
of the experiment show that in most cases observers agree with
the choice of reproduction angular error of the better illuminant
estimation algorithm.

The psychophysics experiment conducted in this paper is
also new in essence, unlike most studies carried out in the past,
the images are given a photographic look being passed through a
simplified in-camera color processing pipeline which is simulated
by a learned look-up table (or lattice).

In Section 2, we provide a background on the performance
evaluation of illuminant estimation algorithms. Section 3 explains
the experimental setup and procedure. The results are discussed
in Section 4. The paper is concluded in Section 5.

Background: Evaluation of Illuminant Esti-
mation Algorithms

The most well know evaluation method in illuminant estima-
tion is recovery angular error [7] which is defined as:

errrecovery = cos−1(
Eact ·Eest
|Eact ||Eest |

), (1)

where, Eact is the RGB of the ground truth and Eest is the
RGB of the estimated illuminant.

Later it was shown in [5] and [6] that recovery angular error
introduces a wide range of error for the same algorithm applied
on the same scene when only illuminant is changing even though
the illuminant estimates that are made result in an identical image
reproduction. As a remedy to this flaw, a new metric - reproduc-
tion angular error [5, 6] - was introduced as an improvement to
recovery angular error:

errreproduction = cos−1(
(Eact/Eact) · (Eact/Eest)√

3|Eact/Eest |
) (2)

The new metric measures the angle between the color of a
white surface corrected by the estimated and the ground truth il-
luminants.

Reproduction angular error is shown to be more stable to-
wards the changes of light. Although, there is a correlation be-
tween the two metric [8], but in some cases the ranking of algo-
rithms switches when the algorithms are evaluated using repro-
duction angular error instead of recovery angular error. Whether

70 © 2017 Society for Imaging Science and Technology



the switches in the ranking of illuminant estimation algorithms
are predicted by human observers and to what extend they agree
with the ranking by reproduction angular error needs to be tested
in a psychophysical experiment.

Psychophysical evaluation of illuminant estimation algo-
rithms have been the subject of a number of studies before [9, 10].
For instance, in [9], the correlation between different numerical
evaluation methods and human observer evaluation of illuminant
estimation algorithm was studied and it was shown that among all
the numerical methods of performance evaluation of illuminant
estimation algorithms, recovery angular error is more correlated
with the observers’ opinion in comparison with other methods.

In this paper, we wish to study with which angular error-
recovery or reproduction- the human observers agree more. In
the next section we detail an experimental framework we use to
answer this question. Then the results of our experiments are
presented and the experimental approach we have adopted is dis-
cussed in detail

Experiment Setup
Data Preparation

The images for our experiment are from the 200 images of
the Canon EOS 600D camera from the recently created NUS
dataset [11].

In our experiment, illuminant estimates are ‘divided out’
from the raw images. Then, in a second step we apply a camera
processing pipeline (in effect modelling color correction, gamut
mapping and tone correction [12]). The color mapping pro-
cess, i.e. mapping the raw sensor values to their corresponding
RGB outputs, has been the subject of a number of studies (e.g.
[13, 14, 15, 16]). However, most of those research are concerned
with radiometric calibration, which is the process of recovering
scene radiance from image intensities. For this experiment, we are
interested in creating a camera output look for the white balanced
images generated when we divide out the camera’s estimate. Li
et al. [17] suggest a calibrated (trained) sparse 3D lookup table
(LUT), also known as lattice [18, 19], suffices to map the raw sen-
sor values from a particular camera to their corresponding RGB
outputs. Crucially, to a good approximation, the same lattice can
be used independent of the white point [17]. Using the calibrated
lattice for a specific camera we can render white balanced images
as if they have been passed through an in-camera color processing
pipeline like the simplified model in Figure 1.

Here for calibrating the lattice we have used a random se-
lection of 50 raw images white balanced by the ground-truth illu-
minants and their corresponding output JPG images captured by
Canon EOS 600D camera from the NUS dataset. We randomly
select 50000 pixels from each image to generate the lattice. The
above sampling results in 2500000 points for training the lattice.
In our experiment, the dimension of the lattice is three ( for R,
G and B color channels), the boundaries of the grid is set to be
between zero and one and the size of the grid is 35 nodes in each
dimension. So, we solve for a 35×35×35 = 42875 lattice. Fig-
ure 2 gives a visual illustration of calibrating the lattice for the
Canon EOS 600D camera based on a set of NUS dataset images
captured by the same camera. Where for simplicity a 9×9×9 lat-
tice is shown. The optimisation to derive the lattice is presented
in detail in [19].

Figure 3 shows a few examples of images from Canon600D

camera which are white balanced by the shades of grey algorithm
[20] and their equivalent JPG transformation by the calibrated lat-
tice. The first row of this figure are the raw white balanced im-
ages, the images are raised to the 1/2.2 gamma value to make
them visible. The second row are the results of just applying
the trained lookup table to the images in the first row with no
gamma correction. The last row are the actual JPG outputs from
Canon EOS 600D. Note that the images in the second row look
better that those in the first. Often illuminant estimation experi-
ments (in computer vision or psychophysics) use raw images with
some gamma correction but this figure illustrates that applying the
lookup table instead of gamma correction results in better images.

Monitor
The images are presented on a high resolution profes-

sional LCD Backlit monitor (an HP DreamColor LP2480zx) with
1920× 1200 pixels resolution. The monitor uses both a true 30-
bit panel and an RGB LED backlight, providing over one billion
possible colors and a wide color gamut. According to ISO 3664
standards, the calibration of the monitors for the psychophysics
experiment is necessary. The monitor was calibrated using Spy-
der4Elite prior to running the experiment. The calibration was
carried out in the same environment in which the experiment
would later take place. The experimental environment is a room
illuminated with a dim light source (to avoid eye strain) provided
behind the monitor to avoid glare.

Observers
All observers participated in the experiment have normal

color vision and normal to corrected-to-normal visual accuracy
(all observers were asked to declare any visual deficiency includ-
ing color blindness). At the beginning of the experiment the ob-
servers are allowed to adapt their vision for 30 seconds by staring
at a variegated grey screen. This adaptation period is necessary
to allow the observer’s vision to adjust to the viewing conditions.
There were eight observers participating in this experiment with
their age ranging from almost 25 to 65. The group of observers
contained both male and female participants.

Experimental Procedures
An observer is shown two pairs of images on a variegated

grey background(like the one shown in Figure 4). The first pair
contains a ground-truth (based on the physical white point) repro-
duction and that produced by algorithm a estimate. We, respec-
tively, denote the two images in the first pair It 1 and Ia

1. A second
image pair is calculated in the same way. A ground-truth image
It 2 is produced and that for a second illuminant estimation algo-
rithm Ib

2. Note the scene in the first image pair is different from
the second and two different illuminant estimation algorithms are
used.

Figure 4 shows an example from our experiment. Top left
and right (Ia

1 and Ib
2) respectively are the reproduction deliv-

ered using the edge-based and pixel-based gamut mapping algo-
rithms [22, 21]. The other images (It 1 and It 2) are the ground-
truth reproduction. The images are selected carefully. Image
Ia

1 is reproduced by the illuminant estimation algorithm a has
a lower reproduction error than image Ib

2 reproduced by algo-
rithm b (in this example the reproduction errors are, respectively:
3.76◦ < 8.73◦). Conversely, the recovery angular of algorithm
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Figure 1: The simplified in-camera color processing pipeline (from [17] with a little modification). A single sparse LUT has replaced
several steps in the imaging pipeline.

Figure 2: Lattice calibration for the Canon EOS 600D camera
from the NUS dataset.

a for image Ia
1 is higher than the recovery error of algorithm b

for image Ib
2 (in this case 4.15◦ > 3.46◦). That the pairs of im-

ages shows are ranked in opposition from one another in terms of
recovery and reproduction error we call the ‘swapping property’.
Seven pairs of images similar to the one in Figure 4 are chosen
for each two algorithms.

In the experiment, the observer is then asked which image
pair appears more similar. That is does Ia

1 look closer to It 1 com-
pared with Ib

2 and It 2 (or vice versa). Note the observers do not
know which image is corrected using the ground-truth illuminant
and which by the estimate. We are interested in whether an ob-
server judges Ia

1 to be closer to It 1 or Ib
2 to It 2. If the former, the

reproduction error correctly predicts image reproduction. If the
latter, it is recovery error that predicts observer’s responses. The
experiment is repeated for eight observers. Each image represen-
tation is repeated twice with the ‘a’ and ‘b’ pairs shown respec-
tively left and right and the converse.

Importantly, the observers understand the concept of illumi-
nant estimation and image reproduction. As such, given the scene
content the observer - even thought they are looking at a reproduc-
tion - can plausibly infer the color of the light a scene could have
been observed. Further, on average, illuminant estimation algo-
rithms ‘undershoot’. That is to say a very yellow light is estimated
to be slightly less yellow than average and so the reproduction still
- again on average - can display a colour bias in the direction of
the illumination. This said, the observer can - albeit at a higher

Figure 3: Examples of raw to JPG transformation using the cali-
brated lattice: The first row are the raw white balanced images by
the shades of grey algorithm. The second row are the results of
applied lattice. The last row are the actual JPG outputs from the
camera (with the camera’s properly white balanced algorithm).

cognitive level - plausibly judge the reproductions in terms of the
starting illuminant colour. And, so, could plausibly judge the pair
where the recovery error is less as preferred ‘closer’.

Of course in proposing the above mental gymnastics we are
not really expecting the observers to make this inference. Quite
the opposite. Rather, we are pointing out the inference they would
have to make if they were to choose image reproductions as a ap-
pearing closer according to recovery error. Yet, if we as a com-
munity continue to use recovery error (where we use illuminant
estimates to drive image reproduction) then we are, in effect, bet-
ting that people do follow this convoluted line of reasoning.

We compare four illuminant estimation algorithms in this ex-
periment: 1st grey edge [23], 2nd grey-edge[23], shades of grey
and pixel-based gamut mapping; here, denoted as GE1, GE2,
SOG and GP respectively. Each algorithm is compared with the
rest and in each pair of comparisons seven pairs of images are
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Figure 4: Screen setup for the experiment.

used. For instance, to compare 1st grey edge and 2nd grey-edge
algorithm seven pairs of images are shown to the observers where
in each pair one image is corrected by the 1st grey edge and the
second image is white balanced by 2nd grey edge. Each pair of
pairs has the ‘swapping property’ previously described. That is
pair ‘a’ compared to ‘b’ can have lower recovery error and in re-
verse pair ‘b’ compared to ‘a’ has lower reproduction error.

It should be noted the images for which illuminant estima-
tion algorithms fail significantly (with recovery or reproduction
errors higher that nine degrees) [2] are excluded in this experi-
ment. Since, when the results of illuminant estimation algorithms
are significantly poor it does not matter which algorithm has per-
formed better and if fact it is almost impossible to tell.

Results and Discussion
The Chi-square test [24] is a statistical test commonly used

to compare observed data with the expected data. Here, the ex-
pected data is the number of pairs in which the image corrected
by algorithm a is better than the image corrected by algorithm b
according to the chosen metric. For instance if according to re-
production angular errors of the seven pairs of images, algorithm
a is predicted to be better than algorithm b then the expected value
would be seven. The observed value is the number of pairs where
algorithm a is preferred over algorithm b by the observer. Chi-
square is the suitable measure of the “goodness to fit” between
the observed and expected values.

The chi-square test is used here to attempt to reject the null
hypothesis that the observed and the expected data won’t fit or in
other words are independent.

With the expected (e) and the observed (o) values known,
the Chi-square is calculated as the sum of the squared difference
between:

χ
2 =

(o− e)2

e
. (3)

It can be seen from the above calculation that it is intuitive
to conclude that a large difference between the observed and ex-
pected values will result in accepting the null hypothesis which
the independency of the two. If the observers agree with the re-
sults by reproduction or recovery angular error, then the difference
should be small and the null hypothesis will be rejected. Clearly
if χ2 is zero then the expected and observed values are exactly
the same and we can immediately reject the null hypothesis. In
general, for small χ2 we can reject the null hypothesis for some

criterion amount we will not be able to reject the null hypothesis.
This criterion amount is found by consulting the statistical tables.

Formally, to be able to accept or reject the null hypothesis,
the calculated Chi-square value in Eq. 3 should be compared
against the critical chi-square value in the corresponding table
(e.g. [24] ). The critical value is decided from the table of chi-
square for a desired significance level (e.g. 5% or 0.05). If calcu-
lated chi-square value is greater than the critical chi-square value
the null hypothesis is accepted and the observed and expected data
will not fit. Otherwise, the null hypothesis is rejected and ob-
servers agree with the expected data. We have eight observers in
our experiment, so the number of samples (observations) is eight.
The critical chi-square value for seven degree of freedom with
p = 0.05 is 14.07

In Table 1, the Chi-square values for the goodness of fitness
between the observers’ data and the expected values by repro-
duction angular error can be seen. Here, each cell of table con-
tains two values (x, y), where x represents the number of pairs
of images for which algorithm a performs better than algorithm
b according to reproduction angular error. The value y is the ob-
servers’ data, which shows the number of comparisons in which
the observer has preferred algorithm a over algorithm b. For in-
stance in the column indicated by GE1-GE2, the 1st grey edge al-
gorithm is compared against the 2nd grey edge algorithm. Based
on observer 1 for all seven pairs of images GE1 is better than GE2,
or observer 3 has agreed with the GE1 superiority over GE2 only
for four out of seven pairs. The expected number of pairs where
algorithm a performs better than b according to the reproduction
angular error is for all the seven pairs. However, we found that
some observers were not consistent with their choices when they
were shown the same pair for the second time. If that was the
case, we excluded that pair from the calculation of Chi-square for
that specific observer. An example of such occurrence can be seen
for observer 2, who has been consistent with his choices only for
three pairs when comparing GE1 and GE2 algorithms. Since we
are comparing four algorithms: GE1, GE2, SOG and GP, there are
six columns of data which is the number of possible combinations
of two out of four algorithms.

A comparison between the critical chi-square value for eight
observers (which is 14.07 with the significance of p = 0.05) and
the ones calculated in Table 1 shows there is no reason to reject the
null hypothesis that the observed and expected values match. In
other words, the observers agree with the prediction of the quality
of the reproduced images by reproduction angular error.

Table 2 reports the same result but for comparison of the ob-
servers’ data with the results by recovery angular error. Notice
that the name of the algorithms in this table is switched, i.e. GE1-
GE2 in Table 1 has changed to GE2-GE1 in Table 2. The high
values of Chi-square in Table 2 for all six pairs of algorithms re-
ject the null hypothesis that the observers’ data match recovery
angular error’s prediction.

To analyse whether there is an agreement between the ob-
servers [25, 26] the individual difference from the mean of obser-
vations have been calculated. For each observer, the correlation
coefficient of x/y ratio by which the observer has agreed that al-
gorithm a is better than algorithm b with the average of the same
ratio for all the observers is computed. For all the pairs in Table 1
and all the eight observers the correlation coefficients calculated
vary from 0.7 to 0.9 with an average of 0.8. Also, the correla-
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Table 1: Chi-square values for comparing the results by the observers and the reproduction angular error. Each (x,y) represents
(reproduction error, observer’s data). (x,y) denotes there are x pairs for which the observer made a consistent judgment and for
y (y <= x) of these pairs the observer agreed with the error metric.

GE1-GE2 GE1-SOG GE1-GP GE2-SOG GE2-GP SOG-GP
observer 1 (7,7) (6,5) (7,4) (7,7) (7,6) (6,4)
observer 2 (3,2) (4,1) (7,7) (7,6) (6,5) (7,6)
observer 3 (7,4) (7,5) (7,6) (7,6) (7,7) (7,7)
observer 4 (5,4) (5,4) (6,5) (5,5) (4,4) (5,4)
observer 5 (6,4) (7,7) (7,6) (7,5) (6,6) (7,6)
observer 6 (7,4) (6,5) (5,5) (5,5) (6,5) (3,2)
observer 7 (6,4) (6,6) (6,4) (7,7) (7,6) (7,6)
observer 8 (4,2) (5,4) (3,3) (6,4) (7,7) (6,4)
Chi-square 5.44 3.55 2.40 1.52 0.62 2.30

Table 2: Chi-square values for comparing the results by the observers and the recovery angular error. Each (x,y) represents
(recovery error, observer’s data). (x,y) denotes there are x pairs for which the observer made a consistent judgement and for
y (y <= x) of these pairs the observer agreed with the error metric.

GE2-GE1 SOG-GE1 GP-GE1 SOG-GE2 GP-GE2 GP-SOG
observer 1 (7,0) (6,1) (7,3) (7,0) (7,1) (6,2)
observer 2 (3,1) (4,3) (7,0) (7,1) (6,1) (7,1)
observer 3 (7,3) (7,2) (7,1) (7,1) (7,0) (7,0)
observer 4 (5,1) (5,1) (6,1) (5,0) (4,0) (5,1)
observer 5 (6,2) (7,0) (7,1) (7,2) (6,0) (7,1)
observer 6 (7,3) (6,1) (5,0) (5,0) (6,1) (3,1)
observer 7 (6,2) (6,0) (6,2) (7,0) (7,1) (7,1)
observer 8 (4,2) (5,1) (3,0) (6,2) (7,0) (6,2)
Chi-square 22.44 31.55 34.40 40.52 42.62 32.30

tion coefficient between the x/y ratios for the individual observer
ranges from 0.6 to 0.9. The highest agreement between the ob-
servers was for the GE2-GP pair of algorithms and the lowest
correlation was for the GE1-GE2 pair. This is expected as the 1st

and 2nd order grey edge algorithms (GE1-GE2 ) are instances of
the same algorithm and their performances are very close in many
cases which makes the choice difficult for the observers.

Conclusion
Evaluation of illuminant estimation algorithms using the re-

production and recovery angular errors shows there are sometimes
disagreements between the two metrics regarding the ranking of
a pair of algorithms. In this paper, a psychophysical study was
conducted to investigate which of the two error metrics predicted
the image preference judgments made by human observers.

The results of the experiments show that in most cases the
observers agree with the evaluation by reproduction angular error.
In other words, where according to reproduction angular error al-
gorithm a is performing better than b, in most cases the observers
make the same choice. Although, there are cases where the ob-
servers disagree with the reproduction angular error’s evaluation.
However, the overall statistical analysis of the results using the
Chi-square test shows the observers data highly agree with the
results by reproduction angular error.

Perceptual analysis of images in terms of accuracy of repro-
duced colors is a difficult task since it could depend on many fac-
tors other than the accuracy of colors, such as content, etc. In

digital photography the aim is not always reproducing the colors
which are colorimetrically accurate but a reproduction of prefer-
ence is sometimes more desired. To this end, in the experiment
performed in this paper, we also aimed to create a more photo-
graphic look for the raw images by passing them through an ac-
tual camera pipeline. This will provide the observers in the ex-
periment with more natural photographic-look images and makes
the task of comparison easier for them. To our knowledge, this is
the first time in a psychophysics experiment concerning the qual-
ity of the color corrected images that the images are rendered to a
photographic look before the experiment.
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