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Abstract. Capsule endoscopy, using a wireless camera to capture
the digestive track, is becoming a popular alternative to traditional
colonoscopy. The images obtained from a capsule have lower quality
compared to traditional colonoscopy, and high-quality images are
required by medical doctors in order to set an accurate diagnosis.
Over the last years several enhancement techniques have been
proposed to improve the quality of capsule images. In order to
verify that the capsule images have the required diagnostic quality
some kind of quality assessment is required. In this work, the
authors evaluate state-of-the-art no-reference image quality metrics
for capsule video endoscopy. Furthermore, they use the best
performing metric to optimize one of the capsule video endoscopy
enhancement methods and validate through subjective experiment.
c© 2017 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2017.61.4.040402]

INTRODUCTION
Capsule video endoscopy has proven to be a powerful
tool for diagnosis of the digestive tract diseases. It has
many advantages over traditional colonoscopy,1 as being less
invasive, the lack of a requirement for sedation, and no need
for gas insufflation. Also, since it is less invasive it might also
increase participation in colorectal cancer screening. Capsule
video endoscopy has been used to diagnose inflammatory
bowel disease2 (i.e., Crohn disease and ulcerative colitis),
gastrointestinal bleeding, and polyps. It has been shown to
have a high sensitivity for the detection of clinically relevant
lesions.3 The capsule itself is about 11 mm× 32 mm and
usually captures images at a rate of 4 frames per second.4
The images are at a lower resolution compared to traditional
colonoscopy (usually full-HD). The images produced by
capsule video endoscopy suffers from several problems, such
as uneven illumination, low resolution, images taken under
low illumination, high compression ratio, and noise. The
problem of capsule image quality enhancement has been an
active research topic since capsules appeared commercially in
2006. Enhancement techniques for capsule video endoscopy
can be categorized based on the image attributes they focus
on for accurate diagnosis of pathologies. There are four main
categories: (1) making blood vessels visible; (2) removing
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or de-emphasizing specular reflections and illumination
variation; (3) making tissues visible; and (4) keeping the
original color tone.

For the first category, the Flexible spectral imaging
color enhancement (FICE) emphasizes certain ranges of
wavelengths by spectral decompositions.5 Narrow Band
Imaging6 uses a set of filters to restrict the incident light to
two narrow bands of wavelengths. For the second category,
Ramaraj et al.,7 proposed a homomorphic filtering technique
to deal with uneven illumination, and claimed better
results than contrast limited adaptive histogram equalization
(CLAHE).8 Okuhata et al.9 applied the retinex theory
for capsule video endoscopy enhancement of illumination
variation. For the third category, Gopi et al.10 proposed
an image denoising technique using dual tree double
density complex wavelet transform. A de-blurring technique
based on total variation minimization was proposed by
Liu et al.11 Li et al.12 proposed a method using adaptive
contrast diffusion for enhancing tissue details. Ahmed et al.13
proposed a method for enhancing the visibility of detail
and shadowed tissue surfaces using concentric circles at
each pixel for random walks combined with stochastic
sampling. For the last category, Vu et al.14 proposed an
image enhancement technique that preserves the original
color tones. Imtiaz et al.15 used a sigmoidal function and
space-variant color reproduction for enhancement.

In order to evaluate if the enhancement techniques
improve the quality of the image, and leading to a more
accurate diagnosis by the doctor, quality assessmentmethods
for capsule video endoscopy are required. So far, studies
have relied on psychometric experiments with doctors to
evaluate the quality of the enhancement techniques.13 In this
article, we evaluate objective image quality metrics against
the results from a psychometric experiment, with the goal
of finding a suitable image quality metric to assess the
quality of capsule video endoscopy. Further, we use the best
performing image quality metric to optimize the parameters
of one enhancement technique in order to produce higher
quality images. The results of the optimization is verified by
a medical doctor.

This article is organized as follows: first we introduce
relevant image quality metrics, then we present the experi-
mental setup, followed by results and discussion, and finally
optimization of an enhancementmethod beforewe conclude.
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BACKGROUND
Image quality metrics can be classified depending on the
availability of the reference: full reference, reduced reference,
and no reference. In full reference16 the complete reference
is used in the assessment of quality, in reduced reference
we have partial information about the reference image, and
in no reference17,18 a reference is not available. In capsule
video endoscopy a reference image does not exist, and
therefore only no-reference image qualitymetrics are suitable
to evaluate capsule video endoscopic images. We present
some of the relevant no-reference metrics for this work.

Blind Image quality index (BIQI)19 is based on natural
scene statistics. BIQI first identifies the presence of a
distortion in the image, where the standard set of distortions
includes JPEG, JPEG2000, white noise, Gaussian Blur, and
Fast fading. The amount or probability of each distortion in
the image is measured. Further, the quality of the image is
measured along these distortions. Then the overall quality
is a probability-weighted summation of the different quality
values.

Blind/Referenceless Image Spatial QUality Evalua-
tor (BRISQUE)20 is a natural scene statistic-based distortion-
generic blind/no-reference image quality metrics which
operates in the spatial domain. BRISQUE does not compute
distortion specific features such as blocking, blur, ringing, but
rather uses scene statistics of locally normalized luminance
coefficients to quantify possible losses of ‘‘naturalness’’ in
the image due to the presence of distortions. It is based
on features that are derived from an empirical distribution
of locally normalized luminances and products of locally
normalized luminances under a natural scene statisticmodel.
BRISQUE is also considered to have low complexity, which
makes it ideal for optimization or real-time applications. It
has, among others, shown toworkwell for image denoising.20

The BLind Image Integrity Notator using DCT
Statistics-II (BLIINDS2)21 is a general-purpose,
non-distortion specific, blind/no-reference image quality
metric that uses natural scene statistics models of
discrete cosine transform (DCT) coefficients to perform
distortion-agnostic quality assessment. The metric uses a
small number of features, that are computed from a natural
scene statistics model of block DCT coefficients. These
features are fed to a regression function that computes the
final image quality scores.

The Spatial-Spectral Entropy-based Quality
index (SSEQ)22 takes advantage of local spatial and spectral
entropy features of distorted images to form quality aware
features. The features then feed to a regression machine
to predict image quality. SSEQ has shown to be capable of
assessing the quality of images across multiple distortion
categories. In addition, the metric has relatively low
complexity.

The Just Noticeable Blur Metric (JNBM)23
is a perceptual-based no-reference objective image
sharpness/blurriness metric developed by integrating the
concept of just noticeable blur into a probability summation
model. The just noticeable blur is the minimum amount of

blurriness perceived around an edge with contrast higher
than just noticeable difference.

The No-reference Image Quality Metric for Contrast
distortion (NIQMC)24 performs quality estimation both
locally and globally. Locally, the metric focuses on regions
with much information, and computes entropy in these
regions. Globally, the image histogram is compared with the
uniformly distributed histogram of maximum information
via the symmetric Kullback–Leibler divergence.

The Sharpness Index (SI)25 is a variant of the global
phase coherence sharpness metric,26 which instead if using
randomphase images, the equivalentGaussian random fields
are used. The metric is defined by reference to the regularity
(total variation) of Gaussian random fields. The metric has
been used for optimization of images,25 having the advantage
of being fast and giving good results.

Anisotropy-based Quality estimation of
images (AQI)27 uses an anisotropic measure to assess the
quality of images. AQImeasures the variance of the expected
entropy of an image upon a set of predefined directions. The
metric was made for natural images, and showed similar
performance as peak signal-to-noise ratio.

The no-reference JPEG metric (JPEG-S)28 is a com-
putationally inexpensive and memory efficient feature ex-
traction method. Two features, blockiness and activity,
are calculated horizontally and vertically, and combined
to obtained an overall quality score. The metric is both
computationally and memory efficient.

Oriented Gradients Image Quality Assessment (OG-
IQA)29 extracts a 6-dimensional relative gradient feature
vector from the image; further it uses an AdaBoosting
back-propagation neural network to map image features
to image quality. OG-IQA has been shown to be rather
independent of the database and have low complexity.

The No-Reference Perceptually Weighted local
Noise (NRPWN) metric30 is based on integrating noise
variance estimation and contrast sensitivity thresholds into
a probability summation model. The metric was shown to
perform well for different types of noise.

The Discrete Cosine Transform Statistics
Prediction (DCTSP) metric31 is made specifically for
blur. It is based on block-based DCT statistics and a linear
prediction method. The metric was optimized for the
LIVE database,32 but showed good results in CSIQ33 and
TID200834 as well.

TheCumulative Probability of BlurDetection (CPBD)
metric35 is a no-reference sharpness metric based on a
cumulative probability of blur detection. CPBD splits the
image into blocks, and only blocks classified as edge blocks
are processed. The metrics also take into account response of
the human visual system to blur distortions.

TheDistortion Identification-based Image Verity and
INtegrity Evaluation (DIIVINE) metric36 uses two-stage
framework; first it does identification of the distortion,
then it does quality assessment of each identified distortion.
Evaluation of the metric36 showed that it was statistically
superior to the signal-to-noise ratio and that it was
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Figure 1. Images in the dataset.

statistically indistinguishable from the full-reference metric
SSIM.37

The Integrated Local Natural Image Quality
Evaluator (IL-NIQE)38 is based on features from natural
image statistics, which is used to learn a multivariate
Gaussian model of image patches from a collection of
pristine natural images. Through the learned multivariate
Gaussian model, the quality of patches is calculated; the
overall quality is the average of these patches. IL-NIQE is
faster than DIIVINE and BLIINDS2, while having a better
performance.

The Weighted Level Framework (WLF)39 measures
perceptual contrast in digital images by using a pyramidal
approach where contrast is computed at different levels. The
overall contrast is the weighted combination of the local
contrast maps. WLF showed high correlation with perceived
contrast, with a higher performance than other contrast
measures.39,40

LAB variance (LABV)41 is a contrast metric, which
calculates the geometrical mean of the variance in each
channel in the CIELAB colorspace. LABV showed similar
performance to WLF, but it is computationally faster and
less complex.41 LABV has also shown to correlate well with
perceived contrast in projection displays.42,43

EXPERIMENTAL SETUP FOR EVALUATIONOF
METRIC PERFORMANCE
In order to evaluate the performance of the image quality
metrics we have used the dataset from Ahmed et al.13
The 30 sample images (Figure 1) in the dataset were
selected by a medical doctor from the KID dataset44,45
and GivenImaging46 capsule videos with pathologies and
normal images from different parts of the colon. Raw images

with original resolution are not available for testing due to
proprietary issues. Image resolution reported here are as
accessed from KID dataset44,45 and Given Imaging.46 26
images were captured by Given Imaging Pillcam COLON
capsules, out of which 17 images have resolution of 576×
576 and the remaining images are of resolution 480× 480.
Moreover, four images are taken withMirocam capsules with
resolution 360× 360. These 30 images were processed with
three different enhancement techniques, giving 90 enhanced
images, resulting in a total of 120 images.

• Bilateral:47 enhances high-contrast images with high
dynamic range while preserving details. For the image
to be enhanced the method computes a multiscale
decomposition based on the bilateral filter. The method
combines detailed information at each scale for recon-
structing the enhanced image.
• Weighted least square (WLS):48 images enhanced with

a multiscale edge-preserving smoothing method based
on weighted least square image decomposition.
• Stochastic capsule endoscopy image enhancement

Method:13 enhances detail and shadow texture of
tissues for capsule video endoscopy images. Based
on stochastic sampling and edge-aware smoothing, the
proposedmethod enhances vessels and tissue details for
clinical applications. The framework decomposes the
image into two detailed layers that contain shadowed
tissue surfaces and detail features. Two concentric
circles given by radii R1 and R2 are used for random
walk and stochastic sampling, respectively. In order
to smooth and contrast enhance the target pixel
simultaneously, similar local neighborhood and local
lightness and darkness pixels are explored. Similar local
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Figure 2. Z -scores from the psychometric experiment plotted with a 95%
conference interval. A higher z -score indicate better diagnostic quality.

neighborhood pixels are explored through random
walk within the inner circle which are used to smooth
the image locally and get the base layer of the image,
while local lightness and darkness pixels are explored in
the outer circle resulting in a locally contrast enhanced
image. The difference between the original image and
base layer gives detail layers and similarly the difference
between locally contrast enhanced image and base layer
results in shadow texture layer. The final detail and
shadow tissue texture enhanced image is obtained by
convex linear combination of the two layers of detail
and adding them back to the smoothed image.

The psychometric data is from Ahmed et al.13 In their
study five medical doctors who specialized in colonoscopy
imaging participated in the experiment. They were asked to
‘‘Decide which image has the best diagnostic image quality.’’
The observers ranked the images from best to worst. BENQ
BL seriesUHDdisplay, with screen resolution of 3840× 2160
were used. The display is color managed for sRGB with
luminance level of 80/cd m2. Moreover, to measure screen
uniformity, a middle gray patch is used, and three points are
sampled from left to right of the display. Benchmark result for
screen uniformity shows a 3.8 standard deviation inCIEXYZ
values. To measure color uniformity, different patches of red,
green, and blue weremeasured along black andwhite patches
with average CIE2000 value of 1.5686, which is below the just
noticeable difference (JND). The images were displayed and
positioned side by side in a random order. The rank-order
data was further processed into z-scores (Figure 2). Each set
of 30 images enhanced by the different methods including
original images, have been evaluated by the five observers
(medical doctors).

To assess the performance of the image quality metrics
we use the rank-order method proposed by Pedersen and
Hardeberg.49 The rank for each image quality metric in
the different images have been used as basis to generate
z-scores, similar to what is common from psychometric
rank-order experiments.50 Further, we calculate the Pearson
product-moment correlation coefficient and Spearman’s
rank correlation coefficient between the image quality
metrics’ z-scores and the observer’s z-scores. In addition,
to better analyze the performance for individual images

we also investigate the correlation between the sum of
scores (ranks) from the observers and the values of the
image quality metrics. We have selected the following image
quality metrics for the evaluation: JNBM,23 BLIINDS2,21
BRISQUE,20 NIQMC,24 SI,25 AQI,27 JPEG-S,28 OG-IQA,29
NRPWN,30 DCTSP,31 CPBD,35, DIIVINE,36 IL-NIQE,38
WLF,39 LABV,41 BIQI,19 and SSEQ.22 These metrics have
shown to correlate well with either perceived image quality or
with perceived quality of relevant quality attributes, or they
obtain properties that could be relevant for optimization. For
image qualitymetrics that requires a grayscale input, we have
converted the color images (RGB) to grayscale (G) using the
following Equation:

G= 0.2989×R+ 0.5870×G+ 0.1140×B. (1)

EXPERIMENT RESULTS ANDDISCUSSION FOR
METRIC PERFORMANCE
We have ranked all the images according to the quality
value obtained after performing image quality assessment.
Based on the ranks from 1 to 4 corresponding to the
best quality and the worst, respectively, we have computed
z-scores for each metric, as suggested in Ref. 49. We can see
the results for the two metrics with the highest similarity
to the observer z-scores in Figure 3. Both metrics have a
different range compared to the observers, but they both
have the same ‘‘shape’’ as the observers, with the stochastic
enhancement having the highest z-score. Following, the
correlation between the metric z-scores and the observer
z-scores have been calculated. The results are shown in
Figure 4.

From obtained results in Fig. 4, we can see that the
highest Pearson correlation coefficients (greater than 0.8)
are obtained by BLIINDS2, BRISQUE, CPBD, and DIIVINE.
Investigation of the Spearman correlation identifies that
BLIINDS2 and BRISQUE have a perfect rank order with a
coefficient of 1, while AQI, CPBD, DIIVINE, OG-IQA, BIQI,
and SSEQ have a coefficient of 0.8.

To further determine the metric with the best perfor-
mance we also analyzed the results for each of the 30 images
in the dataset, where the sum of scores (ranks) from the
observers were compared to the quality values from the
image quality metrics. We will show the results for the
two best metrics (Figure 5). We can see that BRISQUE
has a better correlation between the sum of scores from
the observers and the metric values. BRISQUE has a linear
Pearson correlation coefficient of 0.56, while BLIINDS2 has
a coefficient of 0.27. For Spearman correlation, BRISQUE
has a coefficient of 0.54 and BLIINDS2 has a coefficient of
0.27. It is important to notice that even if BRISQUE has
the best performance, there are images where BRISQUE do
not correlate completely with the observers. This is most
likely due to the fact that BRISQUE is based on natural
scene statistics, and that capsule endoscopic images might
not be completely ‘‘natural.’’ It is also interesting to notice
that BRISQUE is only working in grayscale, since it is stated
that it is important to keep the original color tone when
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(a) BLIINDS2 (b) BRISQUE

Figure 3. Z -score plots for BLIINDS2 and BRISQUE according to the method proposed by Pedersen and Hardeberg.49 Both metrics have a plot similar
to that of the observers (Fig. 2).

Figure 4. Pearson correlation between observer z -scores and metric Z-scores. The best performing metrics are BLIINDS2, BRISQUE, CPBD, DIIVINE and
BIQI.

enhancing capsule images.13 The explanation of this is that
the enhancement methods are already incorporating the
aspect of maintaining color tone, and because of this they
normally do not alter the color and therefore BRISQUE
performs well. Overall BRISQUE performs well, and because
of its low computational complexity, it is well suited for
real-time applications and for optimization. Based on this
analysis, we will use BRISQUE in order to optimize the
parameters from enhancement of capsule video endoscopy.

OPTIMIZATIONOF PARAMETERS USING BRISQUE
In order for a no-reference quality metric to be a practical
tool in evaluating capsule image quality, we adopt a
cross-validation technique by optimizing against the metric
and validate through subjective experiment. Given the
high performance of BRISQUE metric, we have used the
metric to find optimal parameters for the best performing

enhancement method in the study by Ahmed et al.13 The
objective of this section is to optimize the result of existing
method with BRISQUE metric, which is better correlated
with the observers.

In their method, Ahmed et al.13 used two concentric
circles given by radii R1 and R2 for random walk and
stochastic sampling, respectively. Sampling method controls
the way the algorithm enhances the contrast and details
texture features. Large number of samples N and iteration
M gives smoother and better result. The other parameters
that are closely related to R1 are σI and σg . Taking smaller
values of σI gives lower weight to neighboring pixels that
have significantly different intensity value from the target
pixel, while σg weights neighboring pixel similarity based
on the edges crossed during the random walk within the
inner circle R1. The final enhanced image is obtained by
linear combination of detail layer D1 and lightness layer
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(a) BLIINDS2 (b) BRISQUE

Figure 5. Sum of scores (ranks) from the observers plotted against the quality values from BRISQUE and BLIINDS2. Each dot represents a different image.
We can see that BRISQUE has a better correlation with the observers than BLIINDS2. Linear Pearson correlation for BRISQUE is 0.56 and BLIINDS2 is
0.27.

(a) D1 versus BRISQUE for different values of M (b) D1 versus BRISQUE for different values of N

(c) D2 versus BRISQUE for different values of M (d) D2 versus BRISQUE for different values of N

Figure 6. BRISQUE score against parameter space of Ref. 13.
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(a) Unoptimized (b) Optimized

Figure 7. Comparison of unoptimized and optimized images.

D2. For details of the method, we refer the reader to Ref.
13. Due to space limitation, we focus our discussion on
parameters that affect the BRISQUE score significantly. In
order to optimize using BRISQUE, we run the method
for D1 = [0, 2] and D2 = [0, 2] with step size of 0.1,
N = [5, 10, 20, 50, 60, 90], M = [5, 10, 20, 50, 100, 250],
R1 = [1, 5, 10, 25, 30, 45], R2 = [5, 10, 100, 400, 500, 800],
σI and σg for [0.5, 1, 2, 5, 150, 10000] values, respectively.
The parameter space is chosen as described in Ref. 13. The
results are summarized in Figure 6.

As is shown in Fig. 6 optimal BRISQUE score is obtained
for number of samples,M = 250. Similarly,N = 10, number
of iteration is required with detail layer and lightness layer
mixing multiplier D1 = 0.5 and D2 = 0.3, respectively.
Random walk inner circle radius of R1 = 10, with stochastic
sampling outer circle of radius R2 = 800 with σI = 10 and
σg = 10, gives optimal BRISQUE score.

In order to evaluate the performance of the optimized
images, we have conducted a psychometric experiment
with a medical doctor using QuickEval.51 The 30 images
shown in Fig. 1 processed with the standard parameters
from Ahmed et al.13 and with the optimized parameters
suggested by BRISQUE. A paired comparison experiment
was conducted in a dim room, with a viewing distance of
approximately 50 cm. The doctor was instructed to select
the image with the highest diagnostic quality. In 20 of the
30 images the doctor preferred the optimized image, and
in 10 images the unoptimized. Binomial sign test shows
statistically significant difference to null hypothesis with 95%
confidence interval of [0.472, 0.827]. The result shows that
values from the BRISQUE metric is highly correlated with
experts rating of capsule images.

Figure 7 shows the unoptimized image and the op-
timized image using BRISQUE. We can notice that the
unoptimized image has more noticeable blocking artifacts.
This can also be seen in many of the other test images,
especially those with larger areas of the same color.

CONCLUSION
We have evaluated state-of-the-art no-reference image
quality metrics on a dataset from capsule video endoscopes.
The Blind/Referenceless Image Spatial QUality Evaluator
(BRISQUE) has the highest performance with regard to

human observers. BRISQUE has further been used in
order to optimize one of the recent enhancement methods
for capsule video endoscopy. By using BRISQUE the best
parameters for the enhancement method was selected. Based
on a small psychometric experiment with a medical doctor
we show that through optimization using BRISQUE images
with higher diagnostic quality can be generated.
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