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Abstract
Digital color imaging technology has become omnipresent

in today’s modern life. Digital image capturing and reproduction
devices such as smartphones, digital still and video cameras, dis-
plays, printers, and color scanners can be found in every home,
offering extremely high functionality and flexibility. In order to
guarantee qualitatively good results regarding the whole image
processing pipeline and to achieve high user acceptance, opti-
mized color conversion and correction algorithms play a crucial
role. In this context, a new implementation method of uniform
three-dimensional lookup tables (3D-LUTs) based on a standard-
ized pre-measured spectral reflectance database will be presented
and applied for the color correction of digital camera systems.
The strengths and limitations of such an implementation will be
discussed and a performance comparison with the standard 3×3
matrix color correction will be conducted. It can be found that
the proposed 3D-LUT approach outperforms the matrix method
in terms of CIEDE2000 color differences and color reproduction
properties, but still has its limitations when it comes to achromatic
colors and the representation of color gradients.

Introduction
In general, the RGB-sensor of a digital camera system does

not fulfill the Luther-Ives-condition [1, 2, 3], i.e, the spectral re-
sponse curves r(λ ), g(λ ), and b(λ ) of the RGB-sensor cannot be
described as a linear combination of the eye cone response func-
tions. As a consequence the spectral sensitivity of the camera
system differs significantly from the human perception described
by the color matching functions x̄(λ ), ȳ(λ ), and z̄(λ ) of the CIE
1931 standard observer [4], which can be seen in Fig. 1.

In order to guarantee qualitatively good results, proper cam-
era characterization and color correction are therefore an indis-
pensable part of the image processing pipeline from raw sensor
data to the final image displayed on a reproduction device [5, 6].
Especially, when modern LED lighting systems come into play.
In Ref. [5], the authors showed that scene-specifically optimized
LED emission spectra can lead to improved color reproduction
properties of digital camera systems. They further stated that
color enhancement with respect to certain color preference met-
rics was also feasible simply by adjusting the emitted LED spec-
tra accordingly. This holds true as long as the camera system was
characterized in such a way that the introduced colorimetric errors
are negligibly small.

If the camera system in first approximation provides col-
orimetrically a one-to-one translation, the long-term goal should
therefore be to establish an image enhancement pipeline which is
based on the flexibility of LED illumination rather than shifting it
to the tedious process of post-production. For this purpose suit-

able camera characterization and color correction algorithms have
to be chosen.

Basically, color correction aims at establishing the best pos-
sible mapping from device dependent RGB raw data to some
device independent color space, typically spanned by the corre-
sponding CIE XYZ values. If a trichromatic camera satisfied the
Luther-Ives-condition, its raw RGB responses would be linearly
related to the XYZ tristimulus values and a simple 3× 3 linear
transform could be applied without inducing any approximation
errors. However, this does not hold true for the vast majority of
the digital camera systems available on the market. Hence, in
order to account for the systematic non-linearities and to reduce
colorimetric errors in the mapping process, various approaches
such as polynomial regression [7, 8, 9, 10, 11] and neural net-
works [12, 13, 14] have been studied in the past leading to quite
satisfying results. A third, very promising method which should
be discussed in this work is the use of three-dimensional lookup
tables (3D-LUTs) for performing the camera characterization and
color correction.

400 450 500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Wavelength in nm

R
el

at
iv

e
S

p
ec

tr
al

S
en

si
ti

v
it

y

x̄(λ)
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Figure 1. Relative spectral sensitivities of the camera color filters (RGB)

compared to the color matching functions x̄(λ ), ȳ(λ ), and z̄(λ ) of the CIE

1931 standard observer [4].

Uniform as well as nonuniform 3D-LUTs have extensively
been studied in the literature and successfully applied to digital
printers and color displays [15, 16, 17, 18, 19, 20]. Basically,
a 3D-LUT for color correction directly relates the device depen-
dent signals to some device independent color space using for ex-
ample empirical methods which in general demand a large num-
ber of measurements [21]. As a benefit, highly accurate charac-
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terization and color correction can be achieved without knowing
the underlying non-trivial functional relationship between the de-
vice dependent and the device independent color space. With the
prospect of obtaining unprecedented high accuracy, an adequate
adaptation of the 3D-LUT approach for digital camera character-
ization would be most desirable.

The aim of this paper therefore is to present a new imple-
mentation method of uniform 3D-LUTs for camera characteri-
zation based on a standardized pre-measured spectral reflectance
database. Furthermore, the strengths as well as the current lim-
itations of such an implementation will be discussed in terms of
CIEDE2000 color differences and visualized color gradients. A
comparison with the standard 3×3 color correction as defined in
Ref. [22] will be performed.

The paper is organized as follows. In Sec. 2 we give a de-
tailed introduction on the creation of a uniform 3D-LUT for digi-
tal camera characterization as proposed in this work including the
packing, extraction, and interpolation process. Sec. 3 discusses
the influence of different parameters on the final interpolation re-
sults whereas the color correction and reproduction properties of
the 3D-LUT approach are analyzed in Sec. 4. In Sec. 5 we finish
the paper with some concluding remarks and an outlook on future
developments.

Three Dimensional Lookup Table for Color
Correction

As discussed before, camera color measurement and human
perception differ significantly. From Fig. 1 we notice that the red,
green, and blue filter curves have little in common with the cor-
responding color matching functions x̄(λ ), ȳ(λ ), and z̄(λ ), re-
spectively. This mismatching cannot be corrected satisfyingly by
using a simple linear transformation and has a major influence on
the color reproduction properties of the digital camera system.

In order to improve the color reproduction, we therefore
introduce a new camera characterization and color correction
method based on a 3D-LUT mapping the device dependent RGB
raw data to some device independent color space. Following
Ref. [23], building a 3D-LUT for color correction requires three
successive phases: (i) packing which describes the partitioning
of the RGB camera source space by selecting appropriate sam-
ple points from a training set which constitute the lattice points
of the LUT, (ii) extraction which aims at finding the location of
an arbitrary input RGB value in order to extract the color values
of the nearest lattice points, and (iii) interpolation which uses the
input values and the extracted lattice points to calculate the color
specifications of the input point in destination color space.

Being of fundamental importance for the success and accu-
racy of the 3D-LUT approach, each of the three phases will thor-
oughly be discussed in the following.

Figure 2. Schematic structure of the training data used for creating the uni-

form 3D-LUT mapping raw camera data to device independent color space.

Partitioning of the RGB source space
For the partitioning of the RGB camera source space a train-

ing set is needed. Here, the standard object color spectra (SOCS)
database has been chosen. This database standardized in ISO/TR
16066:2003 [24] was developed for the evaluation of the color-
sensor quality of image capturing devices [25, 26] and contains
more than fifty thousand reflectance spectra of real-measured ob-
jects.

For each database entry the corresponding XY Z tristimulus
values, CIELAB coordinates and raw RGB sensor data are calcu-
lated assuming reference illuminant D65. As a result, we obtain
more than fifty thousand coordinate pairs of RGB→XY Z/L∗a∗b∗

as illustrated in Fig. 2, which form as a training set the basis for
creating a uniform 3D-LUT mapping digital camera raw data to
the device independent CIELAB color space.

In general, a uniform 3D-LUT consists of an equidistant
sampling of dimension d along each axis of the RGB camera
source space as illustrated in Fig. 3. This leads to a total number of
d3 lattice points defining (d− 1)3 interpolation cubes. Thus, for
each given lattice point in RGB source space the corresponding
values in L∗a∗b∗ destination space have to be calculated from the
training set first and tabulated into the LUT. The destination space
values of nonlattice points lying within a certain cube can then be
interpolated by using both the RGB and L∗a∗b∗ coordinates of the
nearest lattice points. Further details on the interpolation process
will be discussed later.

Figure 3. Illustration of a five dimensional 3D packing [23].

In order to select appropriate sample points which constitute
the equidistantly spaced lattice points of the uniform 3D-LUT, a
local linear regression approach is applied to the training data.
For each lattice point RGBi, the six nearest (Euclidean) RGB val-
ues from the training set and their corresponding XY Z values are
chosen to calculate a 3× 3 local matrix Ai which performs the
mapping from RGB to XY Z in this part of the training set.

The optimal Ai can be obtained by a distance-weighted least-
squares regression which minimizes the mean squared error met-
ric of the linear fit to the six training samples. Mathematically,
this can be written as

minimize
Ai

(
1
6

6

∑
n=1
‖XY Zn−Ai ·RGBn‖2 ·w(dn)

)
,

subject to Ai · (255,255,255)T = (95.047,100,108.883)T ,

Ai ·RGBi ≥ (0,0,0)T ,
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where ‖·‖ denotes the Euclidean norm giving the length of the er-
ror vector and the weighting factor w(dn) = (dρ

n + ε)−1 inversely
depends on the Euclidean distance dn between the lattice point
RGBi and the nth selected training sample RGBn for calculating
the local matrix Ai. It is chosen in such a way that training points
that are distant from the lattice point are less weighted in the error
metric and, therefore, in the data fitting process than nearby sam-
ples. The smoothness and locality of the data fitting can directly
be controlled by the two parameters ρ and ε [21, 30].

The matrices Ai are finally used to estimate the tristimulus
values XY Zi of each lattice point RGBi. In this context, the two
additional constraints on the matrices Ai guarantee white point
preservation to D65 and avoid the invalid mapping to negative
XY Z values. The resulting XY Zi values are then transformed to
L∗a∗b∗i coordinates, leading to the final form of our 3D-LUT that
can eventually be used to calculate device independent L∗a∗b∗

from arbitrary raw RGB input data.

Extraction and Interpolation Process
After the creation of the uniform 3D-LUT from a set of train-

ing data described in the previous section, an extraction and inter-
polation algorithm has to be implemented in the next step.

Given an arbitrary RGB input value, the extraction algorithm
locates the dedicated cube and, therefore, finds the lattice points
required for the computation of the corresponding L∗a∗b∗ desti-
nation space coordinates. Due to the equally spaced packing of
the uniform 3D-LUT, an efficient extraction algorithm can easily
be implemented following Refs. [23, 31]: If in 8bit quantization
each RGB axis is divided into (d− 1) = 2 j equal sections where
j < 8 is an integer, the nearest lattice points can be directly ob-
tained from the most significant j bits of the RGB input along
each axis. Being based on masking and shifting bits, this proce-
dure is computationally much faster than performing comparison
operations and allows for an efficient determination of the proper
interpolation borders.

For the subsequent interpolation various methods are re-
ported in the literature [21, 23, 31]. However, due to its computa-
tional simplicity but also promising accuracy, a tetrahedral inter-
polation technique has been chosen. As can be seen from Fig. 4,
tetrahedral interpolation subdivides a cube which is spanned by
eight lattice points into six different tetrahedra sharing one com-
mon edge representing the diagonal of the cube along the neutral
axis in RGB space leading to improved accuracy in the reproduc-
tion of color gradients.

Within a tetrahedron the interpolation can be performed us-
ing the four associated lattice points. Given an arbitrary RGB
input value, an average of 2.5 comparison tests for determining
the corresponding tetrahedron and three linear interpolations [21]
are necessary to calculate the corresponding L∗a∗b∗ coordinates
given by

L∗a∗b∗ = c0 + c1
∆R
k

+ c2
∆G
k

+ c3
∆B
k
, (1)

where ∆R=R−R000, ∆G=G−G000, and ∆B−B000. Here, R000,
G000, and B000 are the coordinates in RGB space of the lower
left point as indicated in Fig. 4 and k is the edge length of the
interpolation cubes defining the step size of the uniform 3D-LUT
as shown in Fig. 3. The interpolation coefficients c0, c1, c2, and
c3 can be calculated from the L∗a∗b∗i coordinates of the lattice

Figure 4. Overview of the tetrahedral interpolation scheme. The interpola-

tion cube spanned by eight lattice points is divided into six different tetrahedra

sharing the cube diagonal. Within each tetrahedron the interpolation of an

arbitrary RGB input value can be performed using the four associated lattice

points [31].

points and depend on the tetrahedron used for interpolation. An
overview is given in Table 1.

Hence, tetrahedral interpolation offers an efficient and ac-
curate method for calculating device independent L∗a∗b∗ coordi-
nates from raw RGB camera input data while greatly reducing the
computational costs compared to other linear interpolation tech-
niques.

Influence of Interpolation Parameters
Throughout the whole packing, extraction, and interpolation

process introduced in the previous sections three different, essen-
tial parameters influencing the quality and accuracy of the final
interpolation results can be identified. These parameters are the
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Table 1 – Applied inequality relations and corresponding coefficients c0, c1, c2, and c3 as implemented for tetrahedral interpolation.
Note that each possible tetrahedron gives its own inequality relation leading to different interpolation coefficients.

Tetrahedron Condition c0 c1 c2 c3
T1 ∆R > ∆G > ∆B L∗a∗b∗000 L∗a∗b∗100−L∗a∗b∗000 L∗a∗b∗110−L∗a∗b∗100 L∗a∗b∗111−L∗a∗b∗110
T2 ∆R > ∆B > ∆G L∗a∗b∗000 L∗a∗b∗100−L∗a∗b∗000 L∗a∗b∗111−L∗a∗b∗101 L∗a∗b∗101−L∗a∗b∗100
T3 ∆B > ∆R > ∆G L∗a∗b∗000 L∗a∗b∗101−L∗a∗b∗001 L∗a∗b∗111−L∗a∗b∗101 L∗a∗b∗001−L∗a∗b∗000
T4 ∆G > ∆R > ∆B L∗a∗b∗000 L∗a∗b∗110−L∗a∗b∗010 L∗a∗b∗010−L∗a∗b∗000 L∗a∗b∗111−L∗a∗b∗110
T5 ∆G > ∆B > ∆R L∗a∗b∗000 L∗a∗b∗111−L∗a∗b∗011 L∗a∗b∗010−L∗a∗b∗000 L∗a∗b∗011−L∗a∗b∗010
T6 ∆B > ∆G > ∆R L∗a∗b∗000 L∗a∗b∗111−L∗a∗b∗011 L∗a∗b∗011−L∗a∗b∗001 L∗a∗b∗001−L∗a∗b∗000

Figure 5. Mean (left) and maximum (right) CIEDE2000 color differences of

the Leeds-1000 test set as a function of the weighting parameters ρ (upper

row) and ε (lower row). The dependence of the final interpolation results on

the two parameters ρ and ε is observed to be quite weak.

weighting parameters ρ and ε of the weighting factor w(dn) as
well as the step size parameter k giving the edge length of the in-
terpolation cubes. The influence of these parameters on the final
interpolation results will be discussed in the following.

In order to obtain a quality measure, the Leeds-1000 spectral
database [32] has been chosen as a test set being not included in
the training set. This database contains one thousand representa-
tive reflectance spectra derived from approximately one hundred
thousand real measured objects. First, we calculate the corre-
sponding CIELAB values denoted by L∗a∗b∗i,calc under reference
illuminant D65 as well as their representations RGBi,calc in cam-
era source space, where i = 1, 2, ..., 1000.

Next, the uniform 3D-LUT is built from the SOCS training
data as described above using different parameters ρ , ε , and k.
For each set of parameters, the resulting LUT is then used to es-
timate device independent CIELAB coordinates L∗a∗b∗i,est from
the RGBi,calc input data. Finally, the CIEDE2000 formula [33]
is used for evaluating the perceivable color differences ∆E00,i be-
tween the directly calculated and the estimated CIELAB coordi-
nates. Thus, the mean and the maximum of the CIEDE2000 color
differences of all Leeds-1000 test colors can be considered as a
measure for the quality and accuracy of our 3D-LUT approach.
The smaller both quantities are the better the mapping between
RGB input signals and device independent L∗a∗b∗ coordinates is

performed leading to good color reproduction properties of the
digital camera system.

Weighting Parameters
As mentioned earlier in this paper, the weighting function

w(dn) depends on the two weighting parameters ρ and ε giving a
direct control on the smoothness and the locality of the data fitting
process. For increasing ρ , the weighting function w(dn) supports
a more local behavior since the influence of the training samples
for calculating the local matrices Ai decreases more rapidly as
a function of the distance from the corresponding lattice points.
On the other hand, a large value of ε results in a more global
regression as the weighting function w(dn) becomes less sensitive
to the distance [21, 30]. Hence, finding the optimal parameters ρ

and ε is always a trade-off between overall smoothness and local
accuracy.

In this study, the optimal parameters for the specifically cho-
sen training and test set were found by a heuristic trial and error
approach trying to minimize both the mean and the maximum
CIEDE2000 color differences of the test colors using a step size
of k = 16 for building the 3D-LUT.

Figure 6. Mean and maximum CIEDE2000 color differences of the Leeds-

1000 test colors as a function of the step size parameter k. With decreasing

k the color differences can be reduced. The higher the resolution of the 3D-

LUT the better the quality and accuracy of the color correction.

It should be noted that the dependence of the the final inter-
polation results on the two parameters ρ and ε , as illustrated in
Fig. 5 in terms of the mean and the maximum CIEDE2000 color
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differences, is observed to be quite weak. This can be due to the
fact that a relatively small number of only six training samples
is used for determining the local matrices Ai at the lattice points.
Nevertheless, the heuristic approach trying to minimize both the
mean and the maximum color differences of the test colors leads
to ρ = 3 and ε = 15. From now on, this choice of weighting
parameters will be used for all subsequent calculations.

Step Size
Next, the influence of the step size parameter k should be

examined. Defining the resolution of the 3D-LUT and, therefore,
the edge length of the interpolation cubes, five different step size
values have been chosen for further consideration. These are k =
64, 32, 16, 8, and 4 in 8bit quantization leading to a total number
of 125, 729, 4913, 35937, and 274625 lattice points.

Figure 7. Histograms of the CIEDE2000 color difference distribution for the

Leeds-1000 test set. The upper histogram is obtained by using the matrix

method, the lower one by using the 3D-LUT approach. The 3D-LUT offers

better overall performance, even though some outliers can be detected.

In Fig. 6 the mean and the maximum CIEDE2000 color dif-
ferences of the Leeds-1000 test colors are shown as a function of
the step size parameter k. As can be seen, both the mean as well
as the maximum color differences are reduced by decreasing the
step size k. Thus, a higher resolution of the 3D-LUT allows for a
better performance regarding the quality and accuracy of the color
correction, but also leads to an exponential increase in computa-
tional costs when building the LUT. For the following sections a
3D-LUT step size of k = 4 will be applied.

Color Correction and Reproduction Quality
In the next few sections, the color correction and repro-

duction properties of the current uniform 3D-LUT approach for
digital camera characterization will be further discussed and an-
alyzed with respect to its strengths and limitations in terms of
CIEDE2000 color differences and visualized color gradients. A
comparison with the standardized color correction procedure de-
fined in ISO 17321-1:2012 [22] using a simple, non-linearly opti-
mized 3×3 matrix will be conducted.

Color Differences and Color Reproduction
In order to obtain a feeling about the color correction and re-

production properties of the uniform 3D-LUT approach, the dis-
tribution of the corresponding CIEDE2000 color differences for
the Leeds-1000 test set is shown in Fig. 7 and compared to the
results obtained by using a non-linearly optimized 3×3 matrix to
perform the color correction for the same set of test colors.

From the comparison of both histograms, we can conclude
that the 3D-LUT approach offers a better overall performance re-
garding the issue of color correction, even though some outliers
can be detected. However, almost two-thirds of the Leeds-1000
test colors have color differences smaller than ∆E00 < 2, whereas
in the case of the matrix method, the CIEDE2000 color differ-
ences of the majority of the test colors (≈ 60%) range between
two and five. Furthermore, the 3D-LUT approach gives an aver-
age CIEDE2000 color difference which is about 40.4% smaller
than the one obtained via the matrix method. The same holds
true for the 95%-quantile which is about 27.5% smaller. Table 2
summarizes these findings.

Table 2 – Color reproduction performance of the uniform 3D-
LUT approach compared with the results of the matrix method.

3×3 Matrix 3D-LUT
mean(∆E00) 3.3781 2.0141
max(∆E00) 10.2541 16.8932
Q0.95 6.9283 5.0228

A detailed analysis of the observed outliers of the LUT
method, giving fairly large color differences ∆E00 > 8, revealed
that most of them are distributed along the achromatic axis.
Hence, the current 3D-LUT approach generally offers great color
reproduction properties but still has its limitations when it comes
to achromatic colors.

Figure 8. Reproduction of an X-Rite ColorChecker Classic. Each patch

is divided into three different segments. The one on the left represents the

direct human perception under D65. The segment in the middle shows the

result obtained by using the matrix method and the one on the right by ap-

plying the 3D-LUT approach. Obviously, the 3D-LUT outperforms the matrix

method but still has its limitations when it comes to achromatic colors.

This behavior can also be visualized. In Fig. 8 the reproduc-
tion of an X-Rite ColorChecker Classic is shown. Each patch of
the ColorChecker is divided into three different segments. The
one on the left hand site represents the direct human perception
of the corresponding color patch calculated under D65. The seg-
ment in the middle shows the result obtained by using the matrix
method and the one on the right hand side reproduces the patch
color by applying the 3D-LUT approach described in this paper.
Note that all calculated patch colors have been converted from the
device independent CIELAB space to AdobeRGB in order to be
displayed on a monitor or printed on a sheet of paper.

As can be seen, the reproduction of the colored patches
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on the right obtained via the 3D-LUT approach is almost indis-
tinguishable from the reference on the left, whereas the matrix
method in the middle consistently produces too much lightness.
This again indicates the better overall color reproduction proper-
ties of the 3D-LUT approach. However, perceivable deviations
can also be observed for the LUT when applied to the achromatic
patches revealing the limitations of the current approach. Thus,
for future developments a solution has to be found to enhance
the reproduction properties of the current 3D-LUT approach for
achromatic colors.

Color Gradients
Another big challenge for any color correction method is the

proper reproduction of well-defined color gradients. In Fig. 9 sev-
eral different color gradients given as three dimensional lines in
RGB camera source space (see Fig. 10) have been calculated and
visualized. This allows for a direct comparison of the perfor-
mance of the matrix method (lower bar of each color gradient)
with the results obtained by using the 3D-LUT approach (upper
bar of each color gradient).

Basically, the matrix method gives slightly smoother color
gradients due to its global character, which is especially obvious
at the beginning and at the end of the color gradients where the
corresponding RGB values are far outside the gamut of the SOCS
training set used for building the 3D-LUT which finally performs
the mapping. Furthermore, the color gradients (2) and (4) that
pass the achromatic axis show distinct jumps and a non-smooth
behavior for the achromatic colors. Being in accordance with the
conclusions of the previous section, additional research is there-
fore necessary to improve the performance of the uniform 3D-
LUT when applied to achromatic or near-achromatic colors.

Conclusion and Outlook
In this paper we proposed a new implementation method of

uniform 3D-LUTs for camera characterization based on a stan-
dardized pre-measured spectral reflectance database which has
been used as a training set for building the 3D-LUT. In order to
obtain a uniformly-spaced three dimensional packing, a distance-
weighted local linear regression algorithm has been implemented
for estimating the L∗a∗b∗i coordinates of the equidistant lattice
points RGBi from the training data. Arbitrary RGB input data can
eventually be mapped to device independent CIELAB color space
by using a fast and efficient tetrahedral interpolation technique.

Different parameters influencing the final interpolation re-
sults have been tested and analyzed in terms of CIEDE2000 color
differences. It was found that the step size k is the most significant
parameter for the specifically chosen training and test set used in
this work. The smaller the step size the larger the resolution of
the 3D-LUT leading to a better performance regarding the quality
and accuracy of the color correction.

Finally, we analyzed the color correction and reproduction
properties of the proposed 3D-LUT approach and compared its
performance with the ISO standardized procedure for camera
characterization using a non-linearly optimized 3×3 matrix. We
found that our 3D-LUT approach outperforms the matrix method
and offers better color reproduction properties for most of the test
colors. However, the approach has its limitations when it comes
to achromatic colors and the representation of color gradients.

In contrast to the matrix method which gives pretty smooth

Figure 9. Reproduction of various color gradients as defined in Fig. 10. The

results obtained by using the 3D-LUT approach (upper bar) are compared

to the performance of the matrix method (lower bar). The matrix method

gives smoother gradients due to its more global character. Especially at the

beginning and at the end of the color gradients the deficiencies of the 3D-

LUT approach become apparent. Numbers 1-8 assign each visualized color

gradient to its corresponding representation in RGB source space as shown

in Fig. 10.

color gradients due to its global character, the 3D-LUT approach
shows distinct jumps and non-smooth behavior, especially at the
beginning and the end of the gradients where the corresponding
RGB values are far outside the gamut of the training set, which
can be seen in Fig. 10. Here, training data that are far distant from
the actual lattice points have to be used for calculating the cor-
responding L∗a∗b∗ coordinates leading to relatively large errors
and, eventually, to a false representation in the color gradients.
A possible improvement could be achieved by adding additional
data to the training set filling the void in the RGB source space.
This might also improve the reproduction of achromatic colors.
If one for example includes the Leeds-1000 test set in the train-
ing data the mean and the maximum color differences can be both
reduced by 30% and somewhat smoother color gradients can be
observed.

However, special care must be taken since a simple enclosing
of additional spectra from arbitrary databases might also increase
the redundancy of some RGB values in the training data causing
metameric effects. This means that one single RGB training point
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Figure 10. Three dimensional lines in RGB camera source defining the

color gradients visualized in Fig. 9. Numbers 1-8 indicate their relation. Note

that the start and end points of some of the gradient lines lie far outside the

Gamut of the SOCS training set indicated by the black points resulting in the

poor performance of the 3D-LUT in this part of the RGB space.

could have multiple XY Z/L∗a∗b∗ output data. Since the current
implementation of the packing algorithm simply searches for the
six closest RGB→ XY Z pairs to the lattice points whose L∗a∗b∗

coordinates should be determined, it may happen that six training
points with exactly the same RGB but slightly different XY Z are
chosen from the training set. This will most probably lead to a
local matrix which is unsuitable for a proper reproduction of the
corresponding lattice point resulting in large interpolation errors.
Hence, we must either increase the number of training points used
for the local linear regression or an intelligent and more complex
sampling method for selecting appropriate training data must be
implemented. First tests showed that increasing the number of
training points from six to fifty gives much smoother color gra-
dients comparable to those obtained via the matrix method while
keeping the mean and the maximum color differences more or less
the same. Unfortunately, this drastically increases the computa-
tional time required to perform the local linear regression at each
lattice point and, therefore, a trade-off has to be found.

Finally, it should be noted that this work created the basis
for further research on all aspects of the 3D-LUT approach for
digital camera characterization. Probably, a combination of all
improvement proposals discussed in this section will eventually
lead to a characterization method that outperforms all other ap-
proaches regarding its color correction and reproduction proper-
ties. In particular, the smoothness problem needs to be fixed in
order to make our approach applicable for real imaging applica-
tions. A Gaussian weighting of the training data with a standard
deviation larger than the grid point distance might solve or at least
improve this issue. Besides, it is also thinkable to expand our ap-
proach to nonuniform 3D-LUTs which offer more flexibility by
tweaking the lattice points in such a way that color differences are

further reduced and color gradients may appear smoother. Ongo-
ing research on these topics is currently being performed by our
group.
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