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Abstract
Spectral simulation methods can be useful in the creation of

mappings from recorded values to colorimetric values for cam-
eras and scanners. In this work, a spectral data set is expanded
using simulated spectra created from a real data set. The ex-
panded data set is used to create a multi-dimensional look-up-
table (MLUT). The performance of the MLUT is compared to the
performance of an MLUT created without the simulated spectral
data. Results suggest that the use of simulated spectra in creating
an MLUT could help to reduce maximum errors.

Introduction
The design of a mapping from raw camera values to col-

orimetric values should consider a number of different parame-
ters. These include the mapping’s computational performance,
its colorimetric performance, its ability to adjust to changing il-
lumination conditions and the device noise to name a few. In
achieving colorimetric performance, there tend to be two primary
approaches, a black box and an analytical method.

In the black box approach, a characterization target such as a
Macbeth chart is recorded by the camera providing camera mea-
sured values. The target samples are also measure with a col-
orimeter providing CIEXYZ (or equivalent) values. A mapping is
then constructed between the two sets of data. This approach has
an advantage in that it can be quickly implemented using a variety
of generic fitting algorithms. It is however limited by the fact that
the training data is fixed to a specific training chart.

The analytical method uses a physical model for the imaging
system. This approach is limited by the need to obtain accurate
estimates for the spectral sensitivities of the imaging system, its
nonlinearities and its noise characteristics. It has an advantage
over the black box approach though in that a huge variety of spec-
tral samples can be pushed through the physical model providing
the opportunity for more robust training as well as improved anal-
ysis of the performance and error properties.

In both the black box and analytical approaches, the mapping
that is constructed can be any number of methods including but
not limited to a linear matrix mapping [1, 2], a multi-dimensional
look up table [3], a polynomial fit [4, 5], or an artificial neural net-
work [6]. In addition, the cost function that is minimized can be
any number of perceptual colorimetric measures such as CIELAB
∆Eab, CIECAM02, ∆ JMh etc.

While the analytical method has the advantage of being able
to use a large set of spectral samples in its training, the training is
limited by the need to have on hand a large set of measured spec-
tra. There are a number of publicly and commercially available
data sets of spectral reflectances including [7, 8, 9, 10]. The set
from [10] is particularly large but is still much smaller than the set
of spectra that exist in the real world. With mapping methods that

have a few parameters such as a linear matrix, the need for a huge
number of spectral samples is not going to be as great as it would
be for a mapping method like a multi-dimensional look-up-table
that has a large number of parameters.

Spectral simulation methods are techniques that can be used
to expand a set of existing reflectance into a much larger set that
has similar properties. In [11], a number of techniques for sim-
ulating spectra were introduced. These methods made use of the
statistical properties of an existing data set. Ideally, the much
larger generated data set can provide a wider variety of realistic
spectral samples that might be encountered by the camera.

The goal of this work is to investigate the impact of using
spectral simulation methods on creating camera mappings. In par-
ticular, we will focus on multi-dimensional look-up-tables due to
the large number of parameters that exist in these mappings. The
paper is organized to first pose the analytical camera mapping
problem in a general form. We will then discuss spectral sim-
ulation methods and MLUT creation. Finally, we will conclude
with training and performance testing using real and simulated
reflectance spectra.

Analytical Camera Mapping
To model the imaging system of the camera as well as the

human visual system, we will use a vector space approach out-
lined in [12]. With this approach, the noise free camera recording
model can be expressed as

ci = NT Lcri (1)

where ri is the spectral reflectance vector at spatial location i, Lc
is a diagonal matrix whose elements are the spectral power dis-
tribution of the capture illumination, the columns of the matrix N
represent the spectral sensitivities of the camera and the vector ci
is the recorded color value for the camera at spatial location i. For
most cameras, the dimension of the vector ci would be three for
the red, green and blue spectral sensitivities.

In a similar form, the human visual system can be expressed
as

vi = F (AT Lvri,P) = F (ti,P) (2)

where Lv is a diagonal matrix representing the spectral power dis-
tribution of the viewing illumination, the columns of matrix A
contain the CIEXYZ color matching functions, ti is the CIEXYZ
value of reflectance ri under Lv, F is a mapping from CIEXYZ
to some perceptual color space and P is the conditions/adaptation
parameters required to perform the mapping F .

Given the above two equations, we can form an optimization
problem to find a mapping G that minimizes the perceptual color
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error in the color space defined by the mapping F . This problem
can be expressed as

min
G

= ||F (AT Lvri,P)−F (G (NT Lcri),P)|| (3)

over some set ri. Note that as discussed above, the result that we
get for G is going to be highly dependent upon the set ri. Our goal
here is to see if creating a larger set can help provide improved
results when the mapping G is a multi-dimensional look-up-table.

Spectral Simulation
Much of the modeling of reflectance spectra has been fo-

cused upon the mean and the covariance structure of the data. For
example, many of the principal component methods rely upon a
small set of basis vectors to describe the set of spectra. If the
spectral data was a multi-variate Gaussian data set, the mean and
covariance would completely describe the properties of the spec-
tra. Since reflectance spectra are bounded between zero and one
(ignoring fluorescence) the data is not Gaussian distributed. His-
togram analysis of the data in [7] and [10] reveals that the data is
far from Gaussian and the partial distributions vary significantly
across the wavelengths.

In [11], several methods for generating simulated reflectance
spectra were investigated. One of the more promising methods
was one that made use of set theoretic techniques. Set theoretic
methods have been used on a number of color problems [12, 13].
For spectral generation it can be used to create a set of vectors
such that they are properly bounded, have a specific mean and
have a variation distribution similar to another data set. In this
way, one can generate reflectance spectra that are similar in prop-
erties and provide a useful means to expand our set of reflectance
spectra that we can use to train and or test our system.

Another method from [11] that can be used to generate spec-
tral reflectances is through the use of an artificial neural network
(ANN). In this case, an ANN introduces the correlations between
the spectal wavelengths as well as the bounding constraints. For
example, one can create an ANN that produces simulated spectra
when given white noise as input. Once the network is trained, this
ends up being a way to rapidly create spectra compared to the set
theoretic method, which relies upon an iterative technique.

Given a white noise input vector e of size Mx1, the output
of the 2-layer feed-forward ANN with S neurons in layer one is
expressed as

r = L (e) = Ψ [VΦ(We+b)+d] (4)

where Φ(x) = [φ(x1), ...,φ(xS)]
T , b is an S element vector, W is

an SxM matrix, V is an MxS element vector, d is a M element
vector, φ is the sigmoidal function, which is given by

φ(x) =
2

1+ exp(−2∗ x)
−1 (5)

and the output function is given by Ψ(x) = [ψ(x1), ...,ψ(x171)]
T

ψ(x) =
1

1+ e−x , (6)

which insures the output values will be bounded between zero and
one. Note that we are representing our reflectance spectra with

171 samples in the visible spectrum. Based upon the principal
component analysis in [7], the variability of most reflectance data
is completely contained within an eight dimensional space. This
points to selecting S to be approximately this value.

The distribution function used for the white noise input can
be determined by performing a whitening transformation on the
real reflectance spectra data and computing a histogram. The
whitening transformation is given by

w = DT [r− r̄] (7)

where

Kr = DΛDT (8)

is the covariance matrix of the reflectance spectra and r̄ is the
mean of the reflectance spectra.

Applying the above whitening transformation to a set of re-
flectance spectra, we can then use the whitened data and the re-
flectance spectra to train our network. In this work, the network
was optimized using the Levenberg-Marquardt algorithm.

Since we wish to maintain the statistical distribution of the
original spectral data (and use data similar to which the network
was trained), whitened data with the same probability distribution
of the training whitened data was provided as input to the network.
The whitened data for creating new spectra was generated by cre-
ating uniform distributed uncorrelated data for each wavelength
and transforming each wavelength to the desired probability den-
sity function (PDF) through the use of

[w]i = F−1
i ([u]i) (9)

where Fi is the cumulative distribution function (CDF) for element
i of the whitened spectral data. The CDF was estimated using a
histogram of the whitened training data.

MLUT Creation
The methodology for creating the MLUT is described in

[14]. To review, that method uses a locally linear approximation
of nearby training spectra to interpolate and extrapolate grid point
values in the MLUT. Figure 1 displays a 2-D example (red-blue
plane), where the training data points are shown in blue (small cir-
cles) and we wish to interpolate the grid point shown in red (large
circle). To do this, we use training data that surrounds our MLUT
grid location and compute a matrix M

min
M

= ||F (AT Lvri,P)−F (M(NT Lcri),P)|| (10)

where i indexes across the points that surround our grid point.
With matrix M calculated, we then use the matrix to compute the
value to place at the grid point.

Similarly for the extrapolation of grid points outside the
gamut of our training data, we use data values near the grid point
to compute a matrix and use it to compute the grid point value. A
2-D example is shown in Figure 2 for illustration. In this work, the
error metric used in optimizing the table was CIECAM02 ∆JMh.

Use of Simulated Data
For our testing, the camera spectral sensitivities, N, are as

shown in Fig. 3. The viewing illumination Lv and capture illumi-
nation Lc were both D50. To understand the usefulness of sim-
ulated data on the creation of an MLUT, the data in [7] and [10]
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Figure 1. Example of interpolation of point in MLUT
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Figure 2. Example of extrapolation of point in MLUT

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Camera Sensitivities

nm

C
a
m

e
ra

 r
e
la

ti
v
e
 r

e
s
p
o
n
s
e

Figure 3. Spectral sensitivities used for simulation

were combined into a single data set of 2616 spectral samples.
The combined data set was randomly divided into two equally
sized sets. One set was for training and the other set was for test-
ing. The training data set was used to create a 9x9x9 MLUT that
used no simulated data. We will refer to this MLUT as the stan-
dard (std) MLUT. The testing portion of the data was then used
to test the performance of this MLUT. In addition, the training
data set was expanded using an ANN created with the method de-
scribed in Section . With this ANN, a data set was created that had
11308 samples (10000 simlulated spectra were added to the train-
ing set). This expanded data set was then used to create another
9x9x9 MLUT that we will refer to as simulated (sim) MLUT. The
previously used testing data was then used to test the performance
of this MLUT. This process was repeated a total of ten times to
provide a measure of the variability due to the random splitting of
the data and the ANN training. The results are shown in Table 1.

At the bottom of the table, the average is shown over the
ten iterations and the standard deviation is computed. The results
show a small increase in the average ∆ JMh error but a large (10
percent) reduction in the maximum error. This indicates that it
may be possible to make use of the simulated spectra in creating
the MLUT for the purpose of reducing the maximum error. Note
however, that the variation in the results is high with a 2.39 esti-
mated standard deviation on the maximum error when using the
simulated spectra.

Discussion and Summary
The use of simulated spectral data in creating mappings for

color managing digital camera values was investigated. The re-
sults indicate that simulated spectral data could be helpful in re-
ducing the maximum errors when creating an MLUT for the map-
ping. The use of simulated spectra however did result in a slight
increase in the MLUT average error over the testing data. In ad-
dition, a fair amount of variation occurred across the results. The
next step in this work is to investigate how to select those spectra
that result in a reduction in the maximum error without increasing
the average error. Typically the MLUT maximum error occurs in
the areas of the table that are being extrapolated. Including only
simulated spectra that are used in extrapolation would be the log-
ical next step in this work.
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Performance results for MLUTs
Iteration MLUT Avg ∆ JMh Max ∆ JMh

1 std 1.69 9.84
sim 1.82 7.99

2 std 1.66 7.57
sim 2.13 7.66

3 std 1.59 11.08
sim 2.07 9.78

4 std 1.72 10.93
sim 1.97 7.97

5 std 1.42 10.21
sim 2.12 14.93

6 std 1.17 10.08
sim 1.93 8.13

7 std 1.65 10.06
sim 1.72 7.07

8 std 1.59 9.96
sim 2.20 11.32

9 std 1.61 10.57
sim 2.08 8.30

10 std 1.73 10.27
sim 1.90 7.71

Avg std 1.64 10.06
sim 1.99 9.09

σ std 0.09 0.97
sim 1.99 2.39
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